(WANG) WANG

BASIC LANGUAGE

: PROGRAMMING
» MANUAL

el 2200

e, ' a»;l“kht‘)qt;ii‘tjv u’;&:u e
-éwwnwmv*ka Aaomvﬁkaﬂcévgfun:t twnuibn&:-
uunn.mn'-n.uu-nuna.unuuu"uum.—m.
:.an.-Wao-:n-&-.in ‘qu»uuo ov‘;ar‘ll-jmusw--wm%
cm»ﬁamkqu‘ﬂac'l]c«.iiv'l.ooiclhdﬁ’#;lttmd*nuu
SIS - - - SRR - = - -~ S
Fenvvoress ACOBIIBIREIR- e v v rnnacece o, INRBEBEIDIIN o« e comrrme

FEE e e e nnon s BREIDIRUIRINITIIINIIRONIINIIRIBGG. e e e o I
205 3 & SUNPIURNRIRRNIN- v -tk o1 il s P2 T RO, .

" WANG BASIC LANGUAGE

PROGRAMMING
MANUAL
|

AAAAAAAAAAAAAAAAA

()

)

HOW TO USE THIS MANUAL

This is a beginner's introduction to programming in the BASIC language on
Wang 2200 computer systems., Starting at the most elementary level, it introduces
. the reader in a step-by-step fashion to the fundamentals of BASIC, and the mechan-
ics of creating programs on a Wang 2200 system. It introduces all the concepts
and statements needed for competent fundamental programming in BASIC, in commercial
and non-commercial environments. It presumes no prior knowledge of BASIC or of
programming in general.

The reader is urged to try out new statements and programming concepts as they
are introduced. As many as possible of the example programs should be keyed in and
executed. One should experiment with the example programs by making changes to
them, predicting the effects of the changes, and then confirming or correcting one's
knowledge based on the observed effects. As soon as possible one should begin to
write programs that solve simplified problems within one's particular area of interest.
Only in this manner can the concepts and capabilities introduced here become practical
knowledge.

There is nothing that can be done from the keyboard that can damage a Wang 2200
system. Cautions are included in the text when statements that might destroy on-line
data files are introduced. Thus the reader can feel free to experiment at every stage
of learning.

B In general the reader should follow the sequence of presentation in the text.
)However there are some suggested alternatives. Chapters 4 and 5 discuss saving programs,
and the elementary use of a printer, respectively. Since they deal with these rela-
tively more '"mechanical" subjects, they have been written so that they may be read at
any time between Chapters 2 and 9. By deferring them until the reader wishes to save a
program or use a printer, or until Chapter 9, the continuity of presentation of BASIC
may be better preserved.

Since this is intended to be an introduction to BASIC for those who will program
commercial applications as well as for those who will program non-commercial, or
"technical" applications, example programs are drawn from both areas. However, the
prospective commercial programmer should feel free to pass over obviously technical
examples, if so desired. He will not thereby miss any programming concepts important
to commercial applications. Sections 6-3, 6-4, 15-6, and 19-3 may be entirely omitted
by the commercial applications programmer, if desired.

Though this volume is specifically designed for the person who wishes to learn to
program in BASIC on Wang 2200 systems, it can also serve as a general introduction to
* programming in BASIC on any system. However, the reader must be aware that the BASIC
language, like most programming languages, has many forms. When going from one imple-
mentation of BASIC to another, the user must first become familiar with the idiosyn-
cracies of the new version. Nevertheless, there remains a largely common core that
. 1s a part of Wang BASIC and most other versions of the language. If the reader wishes
to read this volume focusing on this common core, the following sequence is suggested.

ii4

Sections 2-1, 2-2
Chapters 3, 6, 7, 8, 10, 11, 12, 13
Sections 14-1, 14-2
Chapters 15, 16, 19
At the end of each of the chapters in Part I of this volume, there is a review
of the main points of the chapter. The reader who is already familiar with BASIC,
or with another programming language, may wish to skim through Part I reading the

review sections only, reading more closely when they raise a question.

Only the most commonly used peripheral devices are discussed in this volume.
Specifically, these include:

Keyboard

CRT Display
Printers

Cassette Tape Drives

Disk and Diskette Drives

iv

B

)

PART 1

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

2-1
2-2
2-3
2-4
2-5

2-7

3-1
3-2
3-3
3-4
3-5
3-6
3-7

TABLE OF CONTENTS

THE FUNDAMENTALS OF BASIC

INTRODUCTION TO THE EQUIPMENT IN YOUR WANG SYSTEM

The Principal Components of a Wang 2200 System .

Turning on Your Wang System
GETTING STARTED

Programs and Your Wang System

Two Simple Problems and Their Solutions in

How to Key a Program into Memory
Using the EDIT Mode
Listing a Program

Executing a Program
Chapter Review and Exercises , .,

L]

L]

L] L] * L] L] L] L] L]
e e o o o o o

L]

FUNDAMENTAL INSTRUCTIONS
How the Example Programs Work

The PRINT Statement

Line Numbers, Lines, and the GOTO Statement

The IF...THEN Statement . . .
The INPUT Statement , ., . . .
The REM Statement . . . « . o

SAVING AND LOADING PROGRAMS

Introduction « ¢« « « o o ¢ & & &
Saving Programs on Cassette Tape
Saving Programs on Disk

SELECT STATEMENTS AND THE USE OF A PRINTER

.

L]

o o o

*

L] . L] . * L]

The LET Statement and Numeric Expressions

Introducing Device Selection . . « « « + .

Using a Printer

FUNCTIONS

L] L . L] L L] L] L] L] L] L] * .

L] L] L] . L] L] L] L] L]

BASIC

Introduct ion . * L] L] L] . . L] L] L[] L] L] . . L[] L] L] *
The Integer, Absolute Value, and Sign Functions

¥ and The Random Number Function
The Trigonometric, Logarithmic, and Square Root Functions

The DEFFN Statement

L] L L] L] L] L]

e o o o o o o

e o o o o o o

e e o o o o o

e © e o o o o

. L] L] * L] . *

L] . L] . .

L) . * [] L] * [}

. . * L] *

e o o o o o o

e o o o o

Page

11
14
15
16

18
28
36
46
49
55
57

58
58
62

70
73

77
77
81
82
83

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

7

7-1
7-2
7-3
-4

8-1
8-2
8-3

9-1
9-2
9-3
9-4
9-5
9-6
9-7

10

10-1
10-2

11-1
11-2
11-3
11-4

12

12-1
12-2

13

13-1
13-2
13-3

14-1
14-2
14-3
14-4

LOOPS

The Parts of @ LOOP ¢ + ¢ ¢ ¢ o« o o o o ¢ o o o & &
Controlling Loops With FOR...TO and NEXT , , . . .
STEP and the General Form of the FOR...TO Statement
Nested Loops and Branching with Loops , , , ., . . .

e o o .
e o o o
e o o o

* o o o

INTRODUCTION TO ALPHANUMERICS

Alphanumeric Variables . . . « ¢« ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o o o o @
A Closer Look at Alphanumeric Variables (PRINT and DIM) , .
INPUT and IF...THEN with Alphanumeric Variables , , , . . .

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

The STOP Statement and the CONTINUE Command ,
Immediate Mode Operations . . « « ¢« ¢« &« & « &
The HALT/STEP Key, TRACE, SELECT P
The RENUMBER, CLEAR P, and CLEAR V Commands .,
Multistatement Lines . . . ¢ ¢ ¢ ¢ ¢ ¢ o o &
The END Statement « « « « ¢ o o o o o o o o o
Memory Usage by Program Text and Variables .,

THE "ON" STATEMENT WITH "GOTO"

Simle Use Of ONOOOGOTO L] L) (] L] L] .] L) L) L] .] . . [} . . L]
Using More Complex Expressions in ON...GOTO , , , .,

LISTS

Introducing Lists, DIM Revisited
Alphanumeric Lists . . « « . . &
Lists and FOR...TO/NEXT Loops . .
A Note on Terminology

. L] L] L]
L] L] L] L]
L] L] L] L]
[. o o
e o o o
L] L] L] L]
L] L] L] L]
L] [] L] L]
L] L] L] []
L] L] L] L]
L] L] * L]
o o e o
e o o o

SUPPLYING CONSTANTS WITH DATA, READ, AND RESTORE

Introducing DATA and READ . . . ¢ ¢ ¢ ¢ ¢ o o o o o o o o &
The RESTORE Statemnt L4 L] L] L] L . . L] L L] L] . L] L] L] L] L] L] .

INTRODUCTION TO SUBROUTINES
GOSUB and RETURN

RETURN CLEAR
ON'..GOSUB L] L] L] L L]

THE DEFFN' STATEMENT

Using DEFFN' to Mark Subroutines . . « « « « « « . .
Argument Passing .« ¢ ¢ ¢ ¢ ¢ . ¢ 4 b e 0 e 0 e 0 o
Defining Special Function Keys with DEFFN'
Defining a Special Function Key for Character String Entry

vi

e o e o o o o * o o o

e o o o

Page
()

87
89
93
98 -

102 .
104
108

115
116
118
123
125
127
127

130 .-
133 ')

135
138
139
143

145
148

152
155
156

158
159
162
166 (

3

-

)

PART II

CHAPTER 15

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

15-1
15-2
15-3
15-4
15-5
15-6

16

16-1
16-2
16-3
16-4

16-5
16-6

17

17-1
17-2
17-3

18

18-1
18-2

19

19-1
19-2
19-3

20

20-1
20-2
20-3
20-4
20-5
20-6
20~-7
20-8
20-9
20-10
20-11

GAINING PROFICIENCY

CONTROLLING OUTPUT FORMAT WITHFIMAGE(Z) AND PRINTUSING

Introducing Image and PRINTUSING « «
Alphanumeric Labels in the Image Statement
The $, +, and - Symbols . .
Alphanumeric Print Elements
Suppressing the CR/LF ., ,

Exponential Format

e o o o
e o o o
e o e o
e o o o
e o e o
e o o o
e o o o
e o o o o o
e o o o

MORE ABOUT ALPHANUMERICS

Hex Codes . . . ¢+ ¢ ¢ ¢ ¢ o o o & .
The HEX() Function e o o o o o o o e o o o
The String Function , ¢« ¢ ¢ ¢ & o o«
Initializing an Alphanumeric Variable with a

mo .

ecl

fic

Character (INIT) L] [] L] L[] * L] L] . L] [] * . [] [] * L] L] L[] L]
The LEN() Function , . ., . . v ¢ v ¢ o o o ¢ o o o o

Converting Alphanumeric Values to Numeric Values, and

Vice versa L) . . L] o L] * L] L] L] L[] L] . L) L[] L] * L] L]
CONTROLLING A CRT
CTR Hex Control Codes . . ¢« ¢ ¢ ¢ o o «

The Line Length Character Count ., , . .
Using the CRT Hex Control Codes , , . .

Hex Control Codes for the 2221W Printer ., , ., .
Hex Control Codes for the 2201 Output Writer

TABLES (TWO-DIMENSIONAL ARRAYS)

Introducing Two-Dimensional Arrays ,
Using Two-Dimensional Arrays .,
The Matrix Statements

AN INTRODUCTION TO DISK DATA FILES

Overview of Chapter 20 , ,

Files and the Disk Catalog ., . . « « o o o o o

Establishing and Opening Data Files ,
Saving Data in a File

Marking the End of Data in a File and Closing the Fi

Loading Data From a File . , . . &« ¢ ¢ o o o o o«
Non-sequential Access with DSKIP and DBACKSPACE
Data Records and Planning Data Files ., .,
Record Access Techniques . . . o o o ¢ o o ¢ « &
How to Access Several Files in One Program , . .
The "T" Platter Parameter ., . ., . « o & o o« o &

vii

e o o o o o

le

e @ e o © o o o o o o

e o o o

e ®© ® o o o o o o o o

Page

169
172
173
177
178
180

181
182
185

187
189

191

195
197
198

201
206

209
212
214

221
221
222
225
227
228
230
235
242
243
248

CHAPTER

CHAPTER

21

21-1
21-2
21-3
21-4
21-5
21-6
21-7
21-8
21-9

22
22-1

22-2
22-3

DATA STORAGE ON TAPE CASSETTES

Overview of Cassette Data File Operations
Marking the Beginning of a File with DATASAVE OPEN

Saving Data Records . « « « « + &
Marking the End of a Data File .
Loading Data from a File
The SKIP and BACKSPACE Statements
Efficient Data Storage
Specifying Tape Device Addresses
Updating Cassette Data Files . .

CHAINING PROGRAM MODULES

Overview

The Load Statements (LOAD and LOAD DC)

The COM and COM CLEAR Statements

viii

Page

252
253
254
255
256
258
261
266
268

272
273
275

pa—

CHAPTER 1l: INTRODUCTION TO THE EQUIPMENT I¥ YOUR WANG SYSTEM

1-1 THE PRINCTIPAL CCMPOWENTS OF A WANG 2200 SYSTEN

At the heart of a Wang 2200 system is a Central Processing Unit,
a keyboard, and a CRT display. Your system may include any of the several
different models of each of these items. It may also include
such additional items as printers, tape cassette drives, disk or diskette
drives, plotters, card readers and a wide variety of other devices. The
purpose of this chapter is to introduce you to the functions of a
few of these items before we begin to discuss programming.

The Central I ing Upit

The Central Processing Unit (CPU) is at once the very heart of any
Wang system and its least conspicuous item. Figure 1.1 shows a 2200T
CPU. During program execution,
the Central Processing Unit gets program instructions from it's memory
interprets and executes them; cr, if they involve other devices, initiates
their execution. It controls the entire system. It contains the
system memory, where programs and variables are kept during
program execution.

By itself, the Central Processing Unit has no
means of receiving information or of communicating results. Tt is designed to
be able to use a wide variety of other devices for these input and output
operations. Two such devices, which are a part of almost every
Wang system, are a keyboard and a CRT display. These two items form the
heart of the system from the operator's point of view.

Eeyboards

Though there are several different keyboard models they all have the
same essential functions. They let you enter commands, program lines, and
data to the CPU. The Model 2223 keyboard is shown in Figqure 1l.2.

You should consult your reference manual or the Wang Introductory Manual for
information about your specific keyboard. However, a few notes which pertain
to programming are in order here.

ALPHA CONTROL ZONE 4 PROCESSING
SWITCH SPECIAL FUNCTION AND EDIT KEYS LIGHT
A

20NE 1 ZONE 2 ZONE 3
ALPHA CHARACTERS NUMERIC ENTRY KEYS PROGRAM
AND ARITHMETIC EXECUTION
OPERATORS ANDCOﬂ;ROL
On all keyboards there is at least one key labeled KEY
RETURN
(EXEC)
or
EXECUTE
(CR/LF)

Inr many operations this key has special significance. For
example, when keying in a program line, this key is used to tell the systenm
that the line is ccmplete. 1In this manual the symbol (EXEC)
is used to refer to this key. (If your keyboard has two or more keys
labeled RETURN (EXEC), the keys do the exact same thing; they appear
in several locations just for your convenience.)

CRT Displays

The CRT is the television screen device that sits directly
behind the keyboard, or is inccrporated with the keyboard into a single
console unit. Figqgure 1.3 shows the Model 2216 CRT display. (CRT stands for
cathode ray tube, the technical name for the television screen tube.)
The CRT provides a very fast and easy means for the Central Processing
Unit to get information to you. The standard 2200 CRT can display 16 lines
of information, each up to 64 characters wide.

Whether your system is equipped with a separate keyboard and CRT or
with a one piece console, the keyboard and CRT work together as if they are
in direct communication with each other. Strictly speaking, this is an
illusion. There is no direct link between the keyboard and the CRT. The
keyboard and CRT, even if they are physically in a single console, act as two
separate units attached to the Central Processor. It is the control function
of the Central Processing Unit which is responsible for the illusion of direct
connection.

Other Devices

Most Wang systems include other devices besides the CPU, keyboard and
CRT. For example, nearly all of them include some fast and ‘easy means of
saving programs and data outside of the CPU memory. Usually
tape cassette drives or magnetic disk drives perform this
function. These devices offer two key features: they save programs and
data in a fcrm that allows very rapid loading into memory, when compared to
the alternative of loading it via the keyboard; and, unlike memory, these
devices preserve all data and programs saved on them, even after the
system power is turned off.

Another device very commcnly included in a Wang system is a printer.
Printed output from the CPU is often called a "hardcopy" output as distinguished
from output that appears only on the CRT.

1-2 TURNING ON. YOUR WANG SYSTEWM

Fach of the devices discussed in the last section has its own power
switch, except the keyboard. However, many 2200 systems, and all the WCS
systems, have a central power switch which activates one or more devices.
For the location of these switches see the 2200 Introductory Manual.

When the power is turned on for the CPU, the system very quickly
goes through a procedure known as Master Initialization. Master
Initialization performs certain internal operations prepare the
processor and then displays on the CRT the symbol

READY

The contents of memory are lost when the CPU power is turned off.

CHAPTER 2: GETTING STARTED

2-1 PROGRAMS AND YOUR WANG SYSTEM

A program is a set of step-by-step instructions which, when carried. out,
accomplishes a specific task. Though programs are often associated with digital
computers and similar devices, the concept of a program does not apply only to
computers. When you give a guest directions for driving to your home, explain how t
make an omelet, or lead a child through long division, you are providing a kind of
program. The logical process ycu go through in developing these kinds of
instructions is no different than that used in developing step-by-step
instructions for a computer.

Similarly, there is nothing about a computer program which
requires that it be carried out by a computer. Given enough paper, pencil,
and time, any computer program can be carried out by someone who can read the
instructions of the program. This is not to say that it is efficient to carry
out computer programs this way, just that the instructions given in a computer
program are egqually effective outside of an electronic device.

This means that the careful step-by-step approach you use in
everyday problem solving also applies to solving problems with a computer.
However, the unique characteristics of a computer do have a bearing on the
way you give it instructions, and on the most practical and efficient means
of getting the job done.

One of the characteristics of a computer is that it does not inherently
understand any human language. Nevertheless, a computer can be made to act
on instructions given in a language that
is well suited to the tasks the computer can accomplish and to
the various needs of its human programmers. BASIC is such a language.

As the language of your Wang system, BASIC lets you create instructions using
familiar terms of English and elementary algebra.

Another important characteristic of a computer is that it can carry
out instructions extremely quickly. This fact, together with the observation
that many tasks involve repeating similar operations, has led to one of the
now essential concepts of a computer program: that it consists of a set
of instructions provided to the computer in advance of actual execution. By
first giving a computer all the instructions needed to accomplish a specific
task, and only then telling it to start executing the instructions, the
computer can work at its own tremendous speeds, repeating particular operations
as many times as necessary to get the job done.

¥hen you giée your Wang system a program, the program goes into the
system memory located in the Central Processing Unit. Normally just one
program is in memory at a time. 0ld programs, those which are not about to be
executed, are cleared out of memory before new programs are loaded in. Thus,
memory is not a storage bin but, rather, a kind of staging area.

There are several different ways of putting a program into memory.
When a program is being entered into memory for the very first time,
it usvally must be entered via the keyboard. (New programs can also be
entered via mark sense, or punched, cards, though these devices are beyond
the scope of this manual.) Once you have keyed in your first long progran,
though, you will be very glad that it does not have to be keyed in each
time it is to be run.

«.‘.

()

After a new grogram has been keyed in it can be preserved
on any of several different kinds of magnetic recording devices. The
two principal such devices are tape cassettes and disks. Once saved 2n one
of these, a fprogram is always available for quick and easy loading into
memory.

In Section 2-2 we introduce two simple complete tasks and the
programs that accomplish them. The remaining sections of this chapter
will show you how these programs can be keyed into memory. In Chapter 3
we take up the gquestion, "Why do these programs work."

2-2 TWO STMPLE PROBLEMS AND THETR SOLUTIONS IN BASIC

Suppose you have a very simple inventory problem. You have one
product, coal, which you buy from a mining company and sell to end
users. You want to always know how many tons are on hand at your
yard. You want to be able to post changes to the inventory when coal is
received or sold, and you want to be reminded to reorder coal immediately
if your inventory drops below 100 tons. When you start using your
system, your inventory stands at 42,500 tons.

Your inventory system should continuously display on
up-to-the-minute report on the CRT. The report should look like this:

TONS ON HAND = 25055
NUMBER OF TONS RECEIVED (+) OR SOLD (-)?

Here 25055 is the current number of tons of coal on hand. The question
mark at the end of the second line indicates that the system is awaiting an entry
by the operator. The operator will enter a sale as a negative value and
a receipt as a positive value.

Figure 2.1 shows the output from the series of inventory transactions
that may have preceded this regort.
Notice that at the next-to=last report the
inventory was below 100 tons, and, therefore, the reorder message appeared.
In the last report, the inventory is above 100 tons; therefore, the
reorder message does not appear. Notice that a blank line appears
between each report.

Figure 2.1 Reports on a Series of Inventory Transactions

OPENING INVENTORY = 42500
NUMBER OF TONS RECEIVED (+) OR SOLD (-)?-6000

TONS ON HAND = 36500
NUMBER OF TONS RECEIVED (+) OR SOLD (-)? 10000

TONS ON HAND = 46500
NUMBER OF TONS RECEIVED (+) OR SOLD (-)? -46370

TONS ON HAND = 130
NUMBER OF TONS RECEIVED (+) OR SOLD (-)? -75

TONS ON HAND = 55
REORDER COAL TIMMEDIATELY: INVENTORY BELOW 100 TONS
NUMBER OF TCNS RECEIVED (+) OR SOLD (-)? 25000

TONS ON HAND = 25055
5

NUMBER OF TONS RECEIVED (+) OR SOLD (-)?

A BASIC program that produces this inventory system is shown in
Example 2.1.

Example 2.1 The Simplest Inventory Program

10 LET 1I=42500

20 PRINT "OFENING INVENTORY="; I

30 INPUT “NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T

40 LET I=I+T

50 PRINT

60 PRINT "“ICNS ON HAND ="; I

70 IF I»=X100 THEN 30

80 PRINT "REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS"
90 GOTO 30

Before we analyze this inventory program, let's briefly look at another
type of problem and a BASIC language program which helps solve it. Then,
with two simple programs in hand, we can see what they have in common.

Suppose you would like to know the values of all the factorials of P
from P=0 to scme upper limit which you can specify at the time of
calculation. You take the factorial function to be defined for positive
integer values of P, that is 0,1,2,3, ... N. For any positive integer P, P
factorial, written P!, is equal to the product of all the integers up to
and including P. For example,

1X2X3X4 or 24
1X2X3X4X5X6X7 or 5040

if P=4 then P!
if P=7 then P!

For P=0, P! is defined as 1l.

The program should ask you to enter the highest value of P for which
P! is to be calculated. It could ask you this by displaying:

COMPUTE P! FOR P =1 TO P = 7
If you enter 12, for example, the result should look like this:

COMPUTE P! FOR P=0 TO P=? 12

P= 0 Pi= 1

P=1 Pi=1

P= 2 Pi= 2

P= 3 P!= 6

P= 4 PI= 24

P= 5 P!= 120

P= 6 Pt= 720

p= 7 Pl= 5040

P= 8 P!= 40320

P= 9 P!= 362880
P= 10 P!= 3628800
P= 11 P!= 39916800
P= 12 Pl= 479001600

kkkkk DONE *kkk%
A BASIC program that produces this output is shown in Example 2.2.

Fxample 2.2 Computing a Table of Factorials

b

()

10 INPUT "COMPUTE P! FOR P=0 TO P=",N
20 LET P =1

30 PRINT "p="; P, "pl=t; P

40 LET P = P+1

S0 LET F = P*F

60 IF P<= N THEN 30

70 PRINT "kk%%kk DONE *%kkk%n

Look over the two sample programs. You will notice that their lines
are numbered, and that the lines begin with words which are English verbs or
closely resemble them. These words are some of the keywords of the BASIC
language. (If you have a BASIC KEYWORD keyboard, you will find that these
words appear on your keys.) Following the keywords you find, among
other things, expressions and letter variables that look like simple algebra.
You also find phrases in quotation marks. One of the virtues of BASIC is
that its most fundamental and frequently used instructions are composed of
familiar English words and simple expressions which closely resemble the
actions they cause.

Though not apparent from mere inspection of the progranms,
spaces appearing within BASIC lines are totally ignored by the system, unless
they appear within quotation marks. They are put into a program wherever
they make it easier to read.

With the clue provided below and a little detective work comparing the
program and the displayed result, you may be able to get an idea of how
these BASIC programs work. The clue is:
the system always executes the instructions in the sequence of the numbers
at the left (the line numbers) unless an instruction tells it to go to some
other line and begin executing there. Don't try to figure out every little
detail, and don't worry if the programs seem a complete enigma. You should
have plenty of questions about them going into Chapter 3 where we will discuss
each statement in detail, and consider how the programs as a
whole are made up.

Now, though, we must concentrate on how to get these programs
into the memory of your Wang system, via the keyboard. Only when they are
in the memory of your system can they be executed.

2-3 HOW _TO KFY A PROGRAM INTO MEMORY
Clearing Memory

When you turn on your Wang system, its memory is completely clear of
all BASIC statements and variables. The display

READY

appears in the upper left corner of the CRT. The system is now ready
to accept a program.

If you haven't just turned on your Wang system, you should always clear
the memory before entering a new program. To do this, first depress the
RESET key. Depressing RESET stops the execution of any program, clears the
screen, and displays

READY

It does not clear memory of any BASIC statements or variables, though.

To clear memory, simply type the capital letters CLEAR. Each letter

appears on the screen as you enter it. If you make a mistake, depress the
BACKSPACE key, and re-key the correct character. Notice that as each key is
depressed, the underscore mark, _, called the cursor, moves to the right to
show the position the next character will occupy. (If your system is
equipped with a BASIC keyword keyboard, the word CLEAR can be displayed

with a single keystroke.)

After keying CLEAR the display should look like this

READY
:CLEAR_

Now depress (EXEC). The system memory and the CRT display are cleared, and
the READY :-display reappears. This indicates that execution of the CLD EAR
command has terminated, and the system is once again
ready for a keyboard entry. WNcw you can begin to enter a progranm.

Entering Statement lines

Look at Example 2.1, the inventory program. The 8 lines
that comprise the program
are called statement lines, and the numbers which appear at the left
of them are called statement line numbers, or simply line numbers. The
werds and symbols which appear to the right of the line numters make up the
statement itself. Statements in BASIC, like sentences in English,
are the fundamental unit of instruction.

¥Vhen you enter a program into the memory of your Wang system, you
enter it one statement line at a time. You begin each statement line with
a line number, then key the statement itself. Characters appear on the
CRT as you key them. After checking the line for accuracy, you enter it
into memory by depressing (EXEC). A colon and cursor then appear on the
next line of the CRT, signifying that another statement line can be entered.

On the BASIC keyword keyboard a special key labeled STHT. NO. can be
used to generate line numbers. Whenever the display indicates with a :_
that a new line can be entered, depressing STMT. NO. causes a number to
appear which is 10 greater than the highest line number already in memory.
Alternatively, on any keyboard, line numbers can be created by simply keyvying whatever
number is desired. You will learn more about line numbers and their
significance in Chapter 3.

Now, try entering the simple inventory program which appears
in Example 2.1 and is reproduced below for your convenience.

Example 2.1 A Simple Inventory Progran

10 LET 1I=42500

20 PRINT "“OPENING INVENTORY="; I

30 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T

40 LET TI=I+T

50 PRINT

60 PRINT "TCNS ON HAND ="; T

70 1IF I>= 100 THEN 30

80 PRINT "REORDER COAL IMMEDIATELY: INVENTORY BELO¥ 100 TONS"
90 GOTO 30

']

NOTE: .

From this point on we will not distinguish between entry
operations using BASIC keyword keyboards and character
only keyboards, except when some special circumstance
wvarrants. If you have a BASIC keyword keyboard, you
should be aware that a single keystroke can be used to
enter a keyword. Since on any keyboard a keyword can
always be entered by keying it character by character,
the text is worded to reflect this type of entry.

To enter the first line of the inventory example, first be sure

that the colon and cursor are in the display (:_). Now key

10 LET I = 42500 (EXEC)

The display appears as

:10 LET I = 42500

indicating that you can now enter another line.

When you enter a line, you can put spaces wherever you wish, and

as long as they are not added within quotation marks, they have no
effect on the execution of the prcgram. If you had entered

10LETI=U42500

the program would work just the way

the program in Example 2.1 works. 1In this text

we use spaces liberally in the examples and recommend that you
do the same in your fprogranms.

If you notice an error in a statement line before depressing (EXECQ),

correct it by depressing the backspace kevy until the erroneous
character is removed. Then, key the correct characters to finish the

line.

If you wish to avoid reentering the correct characters that follow

the erroneous one, you can correct the line by using the EDIT mode,
discussed below.

there
enter
mark,

this:

If you make a mistake, but don't notice it until after you depress

(EXEQ),

are several easy ways to correct it. To see what some of them are,
the next line of the inventcry program leaving out the 1left quotation

like this:
20 PRINT OPENING INVENTORY="; I (EXEC)
When (EXEC) is depressed, an error message appears which looks like

220 PRINT OPENING INVENTORY="; I
4ERR 10

The error message points to the location at which the system detected a
violation of BASIC language syntax. It is a warning that this statement,
stands, doesn't make sense to your Wang system, and, therefore, cannot be

as it

1

executed. A table of error messages and their significance appears in
Appendix A. However, since we simply want to show how to correct the problen,
we'll leave a discussion of error reporting for later. ’

Line 20 may now be corrected in either of two ways. It must be
corrected because in its present form it will prevent program execution. One
way to correct it is simply to reenter the correct statement, in its entirety.
Whenever a statement line is entered with the same line number as a statement
line already in memory, the new line completely replaces the old. For short
program lines, replacement is an easy means of correction. However, here, as
is frequently the case, just one character needs to be inserted to correct the
line. An easier means of correction is to use the EDIT mode to recall the
line and make the correction to the single incorrect character.

(o

2-4 USING THE EDIT MODE

L

To enter the EDIT mode depress the EDIT key which lies immediately to
the right of the Special Function keys at the top of all Wang keyboards.
(See Figure 2.2). Notice that after EDIT is depressed, the colon on the CRT
is replaced by an asterisk. This symbol indicates that the system is
in the EDIT mode.

PR Continuing with the example from the last section, since the line to

:) be edited is in memory, it must be recalled. Key 20, the number of the line
to be edited, and depress the RECALL key located in the EDIT Special
Punction strip. The line now appears on the CRT.

*¥*20 PRINT OPENING INVENTORY="; T_
The cursor appears to the right of the recalled line.

To move the cursor to the position of the missing quotation mark,
depress thes---- key. VNotice that the cursor moves 5 positions to the left
and that the characters remain unaffected. The&%---- and ----P keys cause
the cursor to move 5 character spaces in the indicated direction. The @
and 4 keys cause the cursor to move one character position.

Depress the cursor movement keys until the cursor is positioned under
the O of OPENING. This is the position the " should occupy. Depress the
INSERT key. The INSERT key puts a space into the cursor position, and moves

- all the characters to the right one position to accommodate it. Now, key the
quotation mark from the keyboard just as you normally would. When in the EDIT
mode, the keyboard keys function normally; that is, they cause the entered
character to appear in the line, at the cursor position. If the cursor marks
an occupied character position, the old character is replaced by the new. 1In

* this example the quotation mark replaces a space entered by the INSERT key.

The corrected line 20 can novw be entered into memory
by derressing (EXEC). The new line 20 replaces the o0ld one, and

y with the derression of (EXEC) the system leaves the EDIT mode. The :_
appears on the next CRT line, and program lines can be entered normally.

Briefly, let's look now at the other two EDIT capabilities. The DELETE
tl

key does the exact opposite of INSERT. It removes the character at the
cursor position and adjusts all the characters left, so that no space appears.
For example, given this erroneous line

*20 PRINT "OPENEING INVENTORY="; I
depressing DELETE produces
*20 PRINT "OPENING INVENTORY="; I

The ERASE key eliminates all characters from the cursor
position to the end of the line.
Given
%20 PRINT "OPENENG INVENTORY="; I

depressing ERASE produces
*20 PRINT "“OPEN_

There is one more feature of Wang systems which should be mentioned in
connection with EDIT; for it is during editing that it is most apparent. Key
EDIT 20 RECALL to bring line 20 back up for editing

*20 PRINT "OPENING INVENTORY='"; TI_

First of all, notice that it is correct; the edited line replaced the
erroneous line first entered. But now, move the cursor carefully over to
the O of OPENING. Slcwly depress the € key which causes movement one
character at a time. V¥hen the cursor reaches this position

*20 PRINT _"OPENING INVENTORY="; I

the next depression of € causes it to jump under the P of PRINT. This is
true regardless of whether PRINT was last entered with a single keystroke

on a BASIC KEYWORD keyboard or by keying the individual characters
P-R-I-N-T. The reason for this is that your Wang system automatically
reduces all BASIC keywords to a special code that uses only

as much space in memory as a single character.

#hen the system encounters one of these codes, it automatically displays the
entire keyvword, though it keeps the code in memory. This systenm

jreatly reduces the memory space required for your programs.

¥ith the cursor under the P of PRINT, depress DELETE. The entire word
PRINT, and a single space following it, are deleted. This is the result of
removing the single special code for the keyword PRINT. The keyword in the 7
is interpreted as including a space at the end. °

However, you certainly don't want to eliminate the keyword PRINT €from
the program. PFrom this position

*20 _ "OPENING INVENTORY="; I
there are general ways of getting the line back the way vou had it.
You can use the INSERT key. Depress IVSERT once. PRINT is one of
the few keywords which can be entered via a single keystroke on any model
keyboard. Whenever a keyword can be entered via a single keystroke, a single
space is adequate to e€dit it ir. From

*20 _"OPENING INVENTORY="; I

(%8

depress the PRINT key. The result is
*20 PRINT_ "OPENING INVENTORY="; T

Alternatively, INSERT can be depressed 5 times and the letters P-R-I-N-T keyed
in character by character.

The other way to get the line back the way it was is to simply use
RECALL. Remember that, during editing, memorvy is not changed until (EXEC)
is depressed. This replaces the 0ld line with the new. Therefore, as long
as the line number has been left intact, and (EXEC) has not been depressed,
the line as it is in memory can be recalled by simply depressing RECALL.

In our example from

*20 _"OPENING INVENTORY="; I
simply depress RECALL to get
*20 PRINT "OPENING INVENTORY="; I

An exit from the EDIT mode by depressing (EXEC) will now leave the 1line
unaltered.

There is one other type of editing which we have not yet covered.
This is the editing of an erroneous line number.

Suppose you had accidentally entered
30 PRINT "OPENING INVENTORY="; I

You want the line numter to be 20, not 30. Depress EDIT 30 RECALL to
bring up the erroneous line for editing. Move the cursor to left until it
is under the 3 of 30. Key 2, which replaces the 3, and then (EXEC) to
enter the new line 20 into memory. The thing that you must remerber about
editing line numbers is that the o0ld line, line 30 in this case, is still
in memory, now accompanied by line 20, which is otherwise identical to it.

In this particular case, if you actually made this error, fixed it
in this manner, and then went on to key in the correct line 30, no harm
would be done. The correct line 30 would wipe out this erroneous line 30
on entry. However, if you simply want to
delete a line from a program, simply enter the line number and follow
it immediately with (EXECQC).

Now, go ahead and enter the rest of the inventory program exactly
as it appears in Example 2.1. 1In the next section you will see how to
list the entire program on the CRT. If, while entering the program, vou
would like to obtain a listing of it, then read the next
section.

>

2-5 LISTING_A PROGRAM

’ Frequently, you will want to inspect a program or program segment. A
listing of all the program lines in memory can be obtained by keying LIST

(EXEC), whenever the :_ display is present. TIf you wish to clear the screen .
before listing, depress RESET. LIST does not alter the contents of memory.

For programs larger than 15 lines (the capacity of the standard
display), you will want the list to appear in segments. Keying LIST S (EXEC)
displays the first 15 lines of program text. Keying (EXEC) again displays the ~
next 15 lines. The process may be repeated until the entire program has been
listed.

LIST always displays lines in line number segquence, regardless of
the sequence in which the lines were actually entered. You will frequently
add a nevw line to a program with a line number which falls between two
lines already in the gprogram. You can then list the program and see
the lines in their correct locations.

LIST, LIST S, and CLEAR are called commands because as soon as
(EXEC) is depressed they immediately initiate the action they describe.
As commands, they are not entered into memory and cannot be
preceded by a line number.

By contrast, a BASIC statement can be preceded by a line number. It can
be entered into memory to form part of a program. Then, it is not executed
until the program itself is executed. Fach line in Examples 2.1 and 2.2 v
constitutes a statement. f)

s

2-6 EXECUTING A PROGRAM

By now you should have completely keved in and checked the inventory
program shown in Example 2.1. To run the program, first key RESET to clear
the screen. This is not strictly necessary but makes it easier to see the
results of this program.

Depress RUN (EXEC) to begin program execution. The display should
look like this

READY

¢ RON

OPENING INVENTORY = 42500

NUMBER OF TONS RECEIVED (+) OR SOLD (-)7

The question mark indicates that the system is awaiting an operator entry.
Key 5000 (EXEC) to represent the receipt of 5000 tons of coal. The systenm
displays a blank line followed by

TONS ON HAND = 47500
NUMBER OF TONS RECEIVED (+) OR SOLD (-)?

Go on making entries and observe execution of the program. What
happens when the screen becomes filled? What happens when TONS ON HAND
drops below 100; below 02

Depress RESET to stop program execution. To re-run the program
key RUN (EXEC) again. Again, the display shows:

OPENING INVENTORY = 42500
NUMBER OF TONS RECEIVED (+) OR SOLD (-)7

In this program the message
OPENING INVENTORY = 42500
appears only once each time the program is executed.

The RUN Ccmmand

RUN is used to begin program execution. When you key RUN (EXEC)
the systenm:

1. Scans the entire prcgram for variables and sets aside space in
memory for them. (The inventory program uses two variables, I
and T.)

2. Sets the value of all variables to zero.

3. Checks for certain types of errors in the progran.

4. TIf none of these errors are found, begins executing the program at
the lowest line number.

Normally, RUN (EXEC) is used to begin program execution.
However, it is possible to specify, in the RUN command, the
line number at which execution is to begin. For example, RUN 30 (EXEC)
causes execution of the inventory program to begin with

i5

30 INPUT “NUMBER OF TONS RECEIVED (+4) OR SOLD (-)", T

In addition to beginning execution at the specified line, if a line
numnber is specified in the RUN command, variables are not set to zero
before execution begins. If the lowest line number of a program is
specified in the RUN command, the effect is the same as a simple ROUW
command, except that the variable values are unaltered.

Since there are two forms of the RUN command, one with and one without
a line number, we say that the general form of the RUWN command is

RUN [line number]

where the square brackets [indicate that the line number is optional.

2-7 CHAPTER VIEW AND B S
Chapter Review
1. Before you key in a new program, memory should be clear.
2. WFhen you turn on your Wang system, memory is completely clear.
3. Memory can be cleared at any time with the CLEAR command. Key

CLEAR (EXEC) to clear memory.

4. After keying in a complete program line, key (EXEC) to enter it
into memory.

5. EDIT mode activates the EDIT Special Function keys. Depress the
EDIT key to enter edit mode.

6. In EDIT mode a line can be recalled from memory for editing by
depressing the RECALL key in the EDIT Special Function strip.

7. In EDIT mode the arrow keys (---<9,»,4 < ---) move the cursor
in the indicated direction.

8. In EDIT mode the TNSERT and DELETE keys insert a space or delete
the character at the cursor location.

9. In EDIT mode the ERASE key erases all characters right of the
current cursor position.

10. To list a program, key LIST (E XEC). To list a program in 15-line
segments, key LIST S (EXEC).

11. To execute the program that is in memory, key RUN (EXEC).
Exercises

1. Using EDIT mode and the inventory program, put extra spaces into some
lines; take them out of others. Verify that this does not affect

program execution.

2. Using EDIT, take out the spaces within the quotation marks of statement
30. What happens to the display during execution?

3. Delete line S0 from the inventory program and run the progranm.

6

RN

What has changed?

Key in and execute the factorial program (Example 2.2); Re-execute
the program ty keeping RUN (EXEC) again; use different values for P.

Execute the factorial program entering a value greater than 15.
What happens to the way P! is displayed at P=16? How many digits
are in P! for P=15?

Execute the factorial program entering a value greater than 69.
Observe the result.

\?

CHAPTER 3: FUNDAMENTAL INSTRUCTIONS
3-1 HOW THE EXAMPLE PROGRAMS WORK

In this section we will reconsider the example programs first
introduced in Section 2-2. We will concentrate on what each instruction
contributes to waking the program run the way it does. The later
sections of this chapter take up each instruction as a topic in itself€,
to see how it can te used in any grogram.

The guestion that we now want to take up is, "How do you go
from the problem to the solution in the form of the program?" There
is no simple, correct answer to this question. Wevertheless there is
a technique that is frequently used to help further define the task
to be accomplished, and to put it into the step-by-step form that is
required for a computer program. This technique is called Flowcharting.
A flowchart shows the operations that must be convied out to solve a
problem, and shows the sequence of these operations by means of connecting
arrows. A flowchart cf the inventory problem is shown in Figure 3.1.
Appendix B shows standard flowchart shapes and symbols.

Look over the flowchart shown Figure 3.1.. Carefully compare it
with the original prcblem description of Section 2-2. The flowchart
of Figure 3.1 can be readily ccnverted to the BASIC program shown in
Example 2.1. Fiqgure 3.2 compares the flowchart with the program by
showing the program statements in matching flowchart boxes, opposite
the flowchart itself.

11

Figure 3.1

Flowchart of the Inventory Problen

(esean)
{
1
SET OPENING

INVENTORY
EQUAL TO 42500

2
DISPLAY
OPENING
INVENTORY

REQUEST
ENTRY OF

J——
[4 OPERATOR

3S
| I L0

ADD TRANS-

ACTION AMOUNT

TO INVENTORY
TQSET Ly

NI,

G,

6
DISPLAY NEW
INVENTGRY
AMOUNT

NVENTOR
1 GREATER

DISPLAY
REMINDER
MESSAGE

1

SET OPENING
INVENTORY
EQUAL TO 42590

2
DISPLAY
OPENING
INVENTORY

REQUEST
ENTRY OF
TRANSACTION,

" OPERATOR
ENTERS

ADID TRANS-
ACTION AOUNT
TO INVENTGRY

TO GET MEVY
AERTGSY

SKIP A
LINE

6
‘DISPLAY NEW
INVENTORY

Figure 3.2 Ccmparison of the Program and the Problem Flowchart

10
LET | =42500

PRINT
20 “OPENING"
INVENTORY=";|

30 1put "NU. UF TONS

NUMBER OF
TONS
RECEIVED
OR SOLD?

EYBOARD
ENTRY INTO T

40

LETI= 4T

60
PRINT “TONS
ON HAND=";

80 PRINT
“REORDER
IMMEDIATELY"

e

Block 1 of Figure 3.1 says that the inventory should bhe set to
42500 at the beginning. We know that the purpose of this program is to
keep track of the changing number of tons in inventory (the changes are
effected in block #); therefore we need a place to keep the inventory
quantity. A fplace to keep a value is called a variable. Since the value
we are concerned with is a number, we will use a numeric variable. In BASIC,
numeric variables are named by a letter A, B, C,. . .%Z, or a letter and a digit
together AO, Al, A2,...BO, Bl, B2,...27, 28, Z9. We use the variable I for
the inventory gquantity.

Block 1 of Figure 3.1 is accomplished by statement 10 of the progranm,
shown in Figure 3.Z. Statement 10

10 LET I=42500
assigns the valve 42500 to the variable I.

Block 2 of Figure 3.1 says that the opening inventory amount should
be displayed. It should be labeled so that the operator knows what the number
represents. Block 2 is accomplished by statement 20 of the program (see
Figure 3.2).

Statement 20

20 PRINT "OPENING INVENTORY="; I
displays the characters within the quotation marks, followed by the value
of the variable I. We know that statement 10 made I equal to
42500; therefore, statement 20 causes the following display when the
program is executed

OPENING INVENTORY= 42500

Notice that the guotation marks are not displayed during

execution. They are used in the program to indicate that the enclosed characters

are to be treated collectively as a unit. 1A set of characters enclosed by
quotation marks is known as an alphanumeric literal string.

In Fiqgure 3.1 there are two blocks with the number 3.
This is done to reflect the fact that both operations are accomplished by
the single BASIC statement at line 30. Blocks 3 call for display of a
message requesting input of the transaction amount, and a keybhoard entry of
the amount. ,

Statement 30
30 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T

displays the input message followed by a question mark. The

question mark is the BASIC symbcl which is displayed whenever the systenm
is awaiting input from the keyboard. The system does not go past line 30
until an acceptable entry has been made from the keyboard.

When a value is to be entered with an INPUT instruction, the
instruction must specify a variable to receive the entered value. The
entered value in this case is received by the variable T. Whatever value T
may have had, before statement 30, is replaced by the new value entered from
the keyboard. The cld value is lost.

2l

Block 4 stipulates that the transaction amount is to be added to the
current inventory amount. The result is the new inventory amount. We
know that the current inventory amount is in I, and the
transaction amount is now in T. The new inventory is, therefore, equal
to I+T. 1In BASIC, the form I+T is an example of an expression. The LET
statement, which we encountered in Step 10, can be used to assign the
value of the expression I+T to a variable. The question now is what
variable should receive this new value.

At first you might say the value of I+T should be assigned to a new
variable. The variable might be I2 and the statement to accomplish the
assignment might be

40 LET I2 = I+T

Taken by itself, there is nothing wrong with this statement; it will
execute correctly. However, at this point, when writing this progranm,
you must look ahead to see how the program as a whole is to function.
From that new perspective the form of statement 40, shown above, is defective.

To see this, consider that the next time inventory assumes a new
value we would need a new statement such as

LET I3 = I2+T

which adds the transaction amount to the current inventory, I2, and assigns it
to a new variable I3. For each time inventorv assumes a new value, we would
have to add to the program new input, assignment, and display statements.

To effect 200 inventory transactions would, with this approach, require

a program with 1202 statements, using 201 variables. 300 transactions

could not possibly be effected; there would not be enough variable names.

The solution to this problem is fundamental to all programming. We
must construct this part c¢f the program in such a way that we can
reexecute the same instructions whenever the operation must be performed
again. This solution is known as a loop, and is made possible by letting
nevw values replace old ones.

We said that LET assigns to a numeric variable the value of an
expression. To this we must now add the comment that the receiving
variable can itself appear in the expression. Statement 40 (Figure 3.2)
illustrates this.

40 LET I = I+T

In executing line 40, the system first evaluates the

expression to the right of the equals sign, then it assigns the result

to the variable on the left. In this case the value of I, which was there
prior to reading this statement, is added to the value of T, and the result
is placed in I, thereby replacing its o0ld value with this new result. After
execution, the o0ld value of I is gone. I contains the new value and T is
unchanged.

By writing statement 40 in this way, the operation of updating the
inventory balance, which in this case comprises the entire program, can

be repeated with the same statements. That is, the operation can be performed
within a loop.

Block 5 calls for the display of a blank line. This is simply to
29«

e’

make the displayed "reports" easier to read. Statement 50
50 PRINT

accomplishes this. It is a print statement with nothing to be printed.
The result is a klank line.

Block 6 calls for the display of the new on hand inventory amount.
Again, it should be labeled for identification. Statement 60 accomplishes
this with a PRINT statement that is similar to statement 20.

60 PRINT "TCNS ON HAND="; I

Block 7 stipulates that the value of the on hand inventory is to be
examined. If it is greater than or egual to 100 tons, then the input message
for the next transaction can be immediately displayed. However, if the
inventory is less than 100 tons, then before the transaction input message is
displayed the operator must be told to reorder coal.

Statement 70 does exactly what block 7 calls for, and in doing so
introduces us to ancther fundamental concept of programming.
We said earlier that the system executes instructions in
the sequence of the line numbers. We have not shown how this sequence
of execution can be changed by the program itself. Statement 70

70 IF I>»= 100 THEN 30

checks the condition expressed between the keywords IF ... THEN. 1In
expressing the condition the symbol »= means "is greater than or equal to".

If the condition is true with the current values of the variables, statement
70 alters the normal sequence of execution by telling the system that the next
instruction to be executed is at line 30. If the condition is false, in this
case if I is less than 100, then the system proceeds on to the next
instruction in line number sequence.

In this case, if the condition is false, the system executes statement
80, which displays the reorder message. If the condition is true, i.e., the
inventory is greater than or equal to 100 tons, then statement 30 is executed
next. Once the transfer to line 30 is effected, the normal sequence of
execution, line number to next higher line number, takes over.

The IF...THEN statement is known as a conditional branch statement
since it causes the system to branch out of the normal sequence of execution
if a stated conditicn is true. If the condition is false, execution
continues with the next statement in line number sequence, as though the
IF...THEN statement had not even been present in the program.

TheIF...THEN statement never changes the values of the variables it
tests, regardless of the outcome of the test itself. The only thing it can do
is change the sequence of execution of the program statements.

Block 8, which is executed only if the inventory drops below 100 tons,
calls for the display of a reminder message, telling the operator
that coal should be reordered immediately. The PRINT statement at line
80 of the program causes the message to be displayed.

Notice that block 8 is the last block of the flow chart, and statement
80 is the last statement shown in Figure 3.2. However, if statement 80
were the last statement in the program (Example 2.1), then after the reorder
message was displayed the program would simply stop. The system, finding

13

no higher line number, would cease execution and display the :_ symbol.

The return to statement 30, which is implied in the flowchart by the
returning arrows coming out of block 8, must be made explicit in the
program. After statement 80 the system must be told to make 30 the next
instruction to be executed. Statement 90

90 GOTO 30
does this. It tells the system that the next statement to be executed
is at line 30.

The Factorial Example

Now that we have seen how the first example works, let's look at the
second. The flowchart for the factorial problem and program is shown in
Figure 3.3.

%

7 REQUEST

ENTRY OF
MAXIMUM.
WAIT,

1 OPER. ENTERS
MAX. FR. KBD.

Y

FOR P=0

P! IS DEFINED
AS 1

DispLAY
P AND PI
WITH LABELS

BY NEW P

INDICATE
THAT JOB IS
COMPLETE

m —_—

—————————

Figure 3.3 PFlowchart of Factorial Problem and Program

NPUT “COM-
PUTE P P=0
TO P=",N

KEYBOARD
ENTRY INTO N

———_J-——_

20

LET F=1

Yo A

0

PRINT “P=";

P, "P1="; F

Y

LET P =P+1

50

LETF=P+F

YES

60

The two blocks numbered 1 in Pigure 3.3 are accomplished by the
single INPUT statement at line 10 of the program. The operator enters
the maximum value for which P! is to be calculated. Th INPUT
statement specifies that the variable N is to receive the entered value.

Block 2 notes that for the first value of P, zero, the factorial of P
is defined as 1. Since this is true by definition rather than by calculation,
the program must simply assign these initial values for P and P!. The form
"PI" is not a legal BASIC variable, so the variable F has been chosen to
contain the value of the factorial of P. Statement 20 assigns 1 to F.

Statement 20 illustrates one of the essential stages for a loop.
This is the initialization stage, in which the variables affected by
the loop are set to beginning values which permit the loop
operations to be performed successfully.

Block 3 calls fcr printing the value of P and P!, with labels. This
block begins the program's processing loop. Statement 30 prints
the values of P and F, each preceded by an appropriate label. W®hen we look
at the PRINT statement in more detail, we will see how the commas and
semicolons in statement 30 produce the desired spacing of the output. For
novw though we know that the values of P and F are correct for the first
time through the loop. We know this because the statement which is printed
the first time through, P=0 P!=1l, is correct.

Block 4 says to add one to P. Statement 40 does this. It
evaluates the expression P+1 and assigns the result to P. On the first
time through, statement 40 assigns 1 to P.

Now that P has received a new value, the program must calculate a new
value for P!. Thisnew value of P! can be calculated by simply multiplying
the 01d value of P! by the new value of P. The old value of P! is in F,
and the new value c¢f P is in P; so, the expression needed is P*F. (In
BASIC the asterisk is the symbol for multiplication.) We want to assign
this value P*F to F. To do this the LET statement, shown as statement 50,
is used:

50 LET F = F * P

Before the new values of P and F are printed, we want to check to see
if P is still within the limit entered at statement 10. Block 6
calls for this check; it is accomplished by statement 60.

60 IF P = N THEN 30

Remember that N contains the maximum value for which P! is to be calculated.
Statement 60 means, "If the value of P is less than or equal

to the value of N, then 30 is the next statement line to be executed."

If the relationship expressed within the IF...THEN is not true,

then the normal sequence of execution prevails and line 70 is

executed next.

Until P is greater than N, statement 60 causes the program to loop
through statements 30, 40, and 50. Each time the loop is executed 30 prints
the values of P and F that were calculated and assigned the last time through.
Then statements 40 and 50 produce the next values of P and F. 1If the value of
P hasn't exceeded the limit the loop is repeated.

26

Block 7 specifies that a completion message is to be displayed.
Statement 70 accomglishes this.

Since there are no statement lines beyond statement 20, execution ends,
automatically, after the "DONE" message is displayed. The :_ symbol
reappears in the display, indicating that the system is ready to accept another
program cr command.

In the remaining sections of this chapter we look individuvally at
each instruction we have encountered in these two progranms.

3-2 THE LET STATEMENT AND NUMERIC EXPRESSIONS

The LET Statement

The LET statement assigns the value of an expression to one or
more numeric variables. (It can also be used with alphanumeric variables.
This use is discussed in Chapter 8.)

In the example programs we saw the LET statement used in one of its
principal forms: assigning the value of a numeric expression to a single
numeric variable. For example:

10 1IET I 42500

and
50 1ET F

P*P

As a result of each of these statements the value of the expression to the
right of the equals sign is assigned to the variable on the left.

The 0ld value of the variable on the left, whatever it may have been, is
lost. Variables on the right of the equals sign remain unaltered, unless
they also appear on the left.

Though the example programs did not show a
LET statement with several receiving variables, any number of variables may
appear on the left to receive the value of the expression. Variables must be
separated by commas. Enter and execute this program:

10 LET A, B, B3 = 5
20 PRINT "a="; A

30 PRINT "B="; B

40 PRINT "B3=";B3

The system displays

A= 5
=5
B3= 5

indicating that the value of the expression to the right of the equals sign in
statement 10 was assigned to each of the variables A, B, and B3.

Statement 10 could be written as three separate LET statements:

10 LET A=5
20 LET B=5
30 LET B3=5

with the exact same effect.

The multi-assignment form of the LET statement is frequently used
in what can be called set-up operations within programs. For example, it
may be necessary tc¢ set several variables to 1 or some other constant
before entering a loop or routine. This can be done with a single LET
statement. Subtotals can be set t0 zero when necessary with a statement
such as:

2%

(

550 LET S1, s2, s3, sS4, S5 =0

WLET" Optional

In the LET statement the word LET is optional. If it is omitted the
statement functions in the exact same way as if it had been present.
In the example programs the statements

10 LET I
40 LET I

42500
I+T

could have been written

10 1I=u42500
40 I=I+T

If you feel that the word LET contributes to the intelligibility of the program
by highlighting the receiving side of the statement, then feel free to use

it. Most experienced BASIC language programmers omit "LET" because it

occupies space in memory without having an intrinsic purpose. Since it is
seldom used in practice, we do not use it in forthcoming examples.

The LET statement is normally referred to as the assignment statement of
the BASIC language since its purpose is to assign a value to variables.

The general form of the assignment statement for numeric variables
is:

CLET] numeric variable [,numeric variable...] = expression

The square brackets indicate that the enclosed items are optional. The
general form of this statement will be expanded in Chapter 8 to accommodate
alphanumeric variables.

Now let's lock more closely at numeric quantities
and numeric expressicns.

Numeric Ouaptities

The inventory and factorial problems we looked at were both
concerned with numeric quantities; the number of tons of coal, the integers
and their factorials. Numeric quantities appeared as constants in such
statements as

10 LET I 42500

and

50 LET F 1
Numeric quantities were entered from the keyboard, as in
30 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T
In every case numeric quantities were stored, and updated, in numeric
variables. Since numeric quantities are so important to many

programming tasks, we want to look at the range of legal numeric quantities
in the Vang 2200 systenm.

Lq

)

The Wang 2200 can_operate on numeric quantities as large as Uf°:1and
as close to zero as 107?!, Thequantities may be positive or negative,
Quantities within this range can be represented by a maximum of 13 digits,
a decimal point and sign, and a two-digit positive or negative integer
exponent.

The following are legal numeric quantities in your Wang system, and may
be entered as shown. The letter E in a quantity means "times ten
raised to the power of",

EXAMPLE QUANTITY NOTE:
1) 244 Implied positive value with implied
decimal point at right
2) +244, Same quantity as 1) but with explicit
sign and decimal.
3) -4567.12 Explicit sign and decimal
4) -4,56712E3 Same quantity as 3), in scientific
notation
5) -1234567.891234 13 digits decimal point and sign
6) -1234.567891234E3 Same quantity as 5), represented with
exponent ,)
7) -1.234567891234E6 Same quantity as S5), in scientific notation '
3) 4.5E-12 Explicit sign in exponent.

The following are illegal numeric quantities:

EXAMPLE QUANTITY NOTE:
1) 103.2E99 Illegal because the value represented

is not less than 10"

2) . 87E-99 Illegal becaqﬁe the value represented is
less than 107

The form of the following gquantity is illegal in your Wang systen.

EXAMPLE QUANTITY NOTE:

1) 8.7E5.8 Exponent is not an integer -
2) -1.2E.5 Exponent not an integer

3) 123456789123.45 Too many digits (14).

Tt should be noted here that the PRINT statement does not necessary print
quantities in the form in which they are entered. This is discussed in
more detail in the next section.

Expressions

An expression is a constant, or numeric variable, or a series

30

of constants or numeric variables connected by arithmetic symbols.
Functions can also be included within an expression; they will be discussed
in Chapter 6.

In the example programs we encountered expressions such as those
underlined below.

10 T = 42500
50 F = P*F
60 P = P+1

Constants Within Expressions

The expression in statement 10 is a constant. A constant is a valid
numeric quantity, represented by digits (and the symbols +-.8), that appears
in a BASIC statement without quotation marks. As its name implies, it cannot
be changed by statements in the program. Since it is a kind of expression it
can be used whenever an expression can be used. Constants are not the only
numbers which appear in programs, but the others, line numbers and such, can
easily be identified ty context. Examples of constants are shown underlined
below. :

10 K = 1,2E6
10 PRINT 165

10 M = 1234567891234
10 29 = -7.66E-28

Note, however, that "165" as in
10 PRINT "165n

is neither a constant nor an expression. It is a literal string. Since a
literal string cannot be assigned to a numeric variable,

K = "165n
is not a valid BASIC statement.

Numeric Variables

A numeric variable in BASIC is designated by a letter of the
alphabet A, B, C, ...Z or a letter followed by a single digit A0, 11,
A2 ... A9, BO, Bl ... B9, CO, C1 ... 727, 78, Z9. The letters in variable
designations must be uppercase. Numeric variables are also called
scalar variables. Variables such as A and A0 are distinct.
There are 286 numeric variables available for use in BASIC.

A variable can assume the value of any numeric quantity. The value of a
variable remains unchanged during program execution, unless it is assigned a
new value by a statement in the program. The assignment statement, LET, is
one of several statements which can assign values to variables.

Arithmetic Operations

The arithmetic symbols, or operators, of BASIC are:

+ addition

- subtraction or negation

* multiplication

/ division (5/4 reads "5 divided by 4"

3

4 exponentiation (5% reads "5 raised to the 4th power")

In an expression any number of variables and constants can be linked
together by arithmetic symbols. Some simple expressions, using arithmetic
symbols, are underlined below:

10 F = F*p

10 z = 22/7

10 A3 = A3*%11000%29%J

10 G2 = 63/22.0FE8

10 D9 = DB8-6 T
10 ¢ = 34D

Oorder of Evaluatio

Expressions are evaluated left to right. For example, in the expression
A*B/C*D the product of A and B is divided by C, then this quotient is
multiplied by D. With mixed arithmetic operators the following priorities of
evaluation are observed:

First, all exponentiation (4) is performed, (left to right)
Second, all multiplication and division is performed (left to right)
Third, all addition, subtraction and negation is performed (left to right)

For examgle, enter and execute the following program:

10 W=4

20 x,Y,2=3
30 K=W*X¢Y-2
40 PRINT K

Statement 30 first raises X to the power Y. The result, 27, is multiplied by
W to yield 108. Finally Z is subtracted from 108 to produce the value 105,
which is then assigned to K.

This normal order of evaluation can be altered through the use of
parentheses. TIf parentheses are included in an expression, the portion of
the expression within the parentheses is evaluated first.

Change line 30 in the above example to
30 K = (W*X)4Y-2
When this program is executed the result of line 30 is:

First W*X is evaluated since this portion of the expression is

enclosed in parentheses. The result, 12, is raised to the power Y.

From the result of this operation Z is subtracted, yielding 1725 to -
be assigned to K.

In constructing expressions, parentheses may be nested within
parentheses, with no limit to the number of pairs of parentheses used.
The innermost parenthetical expressions are evaluated first. !

In addition to altering the sequence of evaluation, parentheses have
two other closely related uses. They can be used to make the normal sequence
of evaluation clearer to someone looking at the program listing, even if /
they do not alter the sequence that would otherwise take place.

For example our original line 30 could have been written

32

30 K = (W¥x(X2Y))-2

This form does not alter the sequence of execution but it does make
it clearer.

In BRASIC two arithmetic operators cannot appear next to each other.
Parentheses are used to set off terms, so that this rule is not
violated. For exanmtle

70 K=74-3
violates BASIC language syntax and must be written
70 K=7P (-

Not all combinations of constants and variables connected by
arithmetic operators are valid exgressions. In order for an expression to
be valid it must be capable of being evaluated in the stipulated sequence.
This means that at each stage of evaluation the operation to be performed
must be defined for the given values, and must yield a valid
numeric quantity. For example the following expressions are invalid for
the reason shown.

Expression ___ Invalid Because
1. (3.4E26%4)/9.7E17 (3.4E2644) yields an invalid numeric
quantity »10"®
2. 17/((A*B)-20) After evaluating ((A*B)-20) the system
when A=4 and B=5 attempts to divide 17 by 0, an

undefined operation.

3. (=3)43.5 The exponentiation (4) operation is
undefined for non-real results.

Expression 2 is invalid for some but not all values of the variables.
When an expression of this tygpe appears in a program it is your
responsibility, as the programmer, to ensure that the values assigned to the
variables at the time of evaluation yield a valid expression. If evaluated,
all of the above examples cause a math error, ERR 03, to be displayed and
interrupt program execution.

If the result of evaluating an expression or a portion of an expression
yields a quantity O, in the range
49 -
-101 < 0<10 "

the value of Q is zero.

23

1‘

10.

Review of Section 3-2

A LET statement causes the system to evaluate the expression to the

right of the equals sign and assign the result to the variable, or variables,

on the left.
Multiple receiving variables are separated by commas. e.g.,
LET A, B, B3 = 5

The multiassignment form of the LET statement is often useful in
setup or clearing operations within programs, e.qg.,

s1, s2, s3, sS4, S5, = 0.

In the LET statement the word LET is optional., e.g., F=P*P is
the same as LET F=F#*P,

The general form of the assignment statement is:

{LET] numeric variable [,numeric variable...] = expression
Numeric quantities can contain up to 13 digits, a decimal point and
sign, and a two digit positive or negative integer exponent., e.g.,

~7.66E-28.

An expression is a constant, or numeric variable, or a combination of
constants or numeric variables connected by arithmetic symbols.

A constant is a numeric quantity, represented by digits (and the +,
-4 ¢ E symbols), that appears in a BASIC statement without quotation
marks.

A numeric varialle is designated by a letter of the alphabet A, B,
C...Z or a letter followed by a single digit A0, Al, A2...27, 28,

Z9.

The arithmetic operations and their order of ‘evaluation are given by

ORDER OF EVALUATION

Operation Symbol Order of Evaluation
(Priority)

Expressions () Computed 1lst

within Parentheses

Exponentiation 4 Computed 2nd

Division / Computed 3rd

Multiglication *

Subtraction - Computed 4th

Addition +)

Using the above priorities, all expressions are
evaluated left to right.

>4

AT

11.

Two arithmetic operators

(+,

-, ¥, /,%) cannot appear next to each

other, e.g., use K4(-J) not K%{-J.

35

3-3 THE PRINT STATFMENT

Print Elements

In the example programs we saw the PRINT statement used several times,
and with slightly differing effects. For example,

80 PRINT “"REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS™®
This PRINT statement specifies just one item to be printed. The
item to be printed in this case is enclosed by quotation marks, and is
therefore known as an alphanumeric literal string or literal string for
short.
Execution of statement 80 printed on the display
REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS
with REORDER beginning at the left-most character position on the line.
Statement 20
20 PRINT "OPENING INVENTORY="; I
specified two items to be printed and the items are different kinds of
items. "OPENING INVENTORY=" is a literal string; I is a numeric variable.
When statement 20 was executed, the result wvas
OPENING INVENTORY= 42500
Statement 20 printed the literal string followed by the value of the
variable I. Observe the significance of quotation marks by entering and

executing this program

10 T = 42500
20 PRINT "OPENING INVENTORY="; "I®

the result of executing this new line 20 is
OPENING INVENTORY=I

Statement 10 still sets the numeric variable I equal to #2500, but in the
new statement 20 "I" is a literal string of exactly one character, not the
numeric variable I.

The items which are printed in PRINT statements such as

"OPENING INVENTORY="
"REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS"“
I

are known as the print elements. Any number of print elements can appear
in a single PRINT statement, but they must be separated by a comma or
semicolon. The significance of the comma or semicolon is discussed later
in this section.

The PRINT statement at line 30 of the factorial example (Example 2.2)
has 4 print elements.

36

30 PRINT "p="; P, "pI=t; F
"p=" apd "P!=" are literal strings; P and K are numeric variables.

Literal Strings as Print Elements

Literal strings are printed exactly as they appear within the
quotation marks. No spaces are added before or after the string. All
spaces within the quotation marks are printed.

Execute the fcllowing progran

10 PRINT "ABC"; "DEF"
20 PRINT “ABCDEEF"

The display showus

< RUN
ABCDEF
ABCDEF

.
-

The first ABCDEF is produced by printing the two literal strings in
statement 10, one right after the other. Since spaces are not added to
literal strings, the effect of statement 10 is identical to statement 20.

Expressions as Print Elements

Any expression can serve as a print element. When an expression
appears as a PRINT element, the expression is evaluated according
to the rules of evaluation discussed
in the last section. The value of the expression is then printed.
The variables in our example programs such as I, P and F are, as we know
from the last section, just one kind of expression.

To appreciate the power of using expressions as print elements, enter
and execute the following simple program which calculates the area of a
circle given the radius R, where area =R

Example 3.1 Exgressions as PRINT Elements

10 INPUT "“RADIUS", R
20 PRINT "RADIUS="; R, "AREA="; 3.14% (R%2)

Statement 20 first prints "RALIUS=", then the value of R. The
next print element, the literal string "AREA=", is printed followed by
the value of the expression 3.14*(R$2). (3.14 is used as an approximation
of). Statement 20 causes the expression 3.14* (R$2) to be evaluated.
No variables are changed by this evaluation. The result is just printed;
it is not saved anyvwhere.

If a calculated value is only printed, and not used elsewhere
in a program, the simplest approach is to let the PRINT statement perform the
calculation.

Suprose that in our inventory example we wanted to continuously
display the dcllar value of the on hand inventory. Assume that the value of a
ton of coal is 20 dcllars. Statement 60 (Fxample 2.1) can be modified
as follows to calculate and display this value:

37

60 PRINT "TOVS ON HAND="; I, "VALUE=$"; 20*I

Statement 60 does not change the value of the variable I. A PRINT statement
never alters the value of any variable. If this statement 60 is substituted
for the old statement 60, the program display appears as:

TONS ON HAND = 4500 VALUE=$ 90000
NUMBER OF TONS RECEIVED (+) OR SOLD (-)?

Now let's see how expressions are printed with regard to spaces.
Enter the following program

10 T = 42500
20 PRINT "OPENING INVENTORY="; I; "TONS"

We have added the literal string "TONS" to statement 20
so that any trailing spaces, printed with the expression I, can be
detected. BRBxecuting this program produces

OPENING INVENTORY= 42500 TONS

The value of the expression is printed with a space before and after
the digits. Now, however, change line 10 to

10 I = -42500
Execution now produces
OPENING INVENTORY=-42500 TONS

which reveals that the leading space is actually just an implied + sign. When
the value is negative the position is occupied by the minus sign. The space
at the end still appears, however.

In summary, the value of an expression is printed preceded by a space,
if positive, or a minus sign if negative. Thevalue is always followed
by a space.

A seven character value, such as 5600.12 (six digits and a decimal),
occupies 9 character locations. Enter and execute

10 T = 5600.12
20 PRINT I; -2*%*I; "g&g"
30 PRINT "ABCDEFGHIJKLMNOPQRSTUV"

The result of execution is

5600.12 -11200.24 £&&
ABCDEFGHIJKLMNOPQRSIOV

The space above the A is the implied + sign and the space above the I is
the automatic trailing space. Similarly, the space above S is the trailing
space of the value -2*I. The ampersands are printed to reveal the final
trailing space.

Now that we have seen how expressions are printed, from the point of
view of spacing, let's look at the way the value itself appears. The PRINT
statement prints the value of an expression in one of two forms depending on
what the magnitude of the value is.

35

If the absolute value of the number being printed (the expression)
is greater than or equal to .l and less than or equal to 9, 999, 999, 999,
999 (or it is zero) then the value is printed in normal form. Normal form
is

$9722227.FFFFFFFA

where S is minus sign (-) if value €0 or blank if value 2 0
Z is an integer digit
F is a fractional digit
A is a space

The decimal is in the proper position; it is omitted if the value is anmn
integer. Leading and trailing zeros are omitted.

For example, these numbers are in normal form.

212
-4593.172¢€6
-6.1

0

12345678901. 23

If the absolute value }0| of the expression satisfies

10"“5 0 < .1

or
Q > 1&3

then the PRINT statement outputs Q in scientific notation.
Scientific notation is
SH. MMMNMMNME+XX

where is minus sign (-) if value € 0 or blank if value 2 0

S
M is a mantissa digit

E is tbe symbol indicating the beginning of the exponent
E is the sign of the exponent, always explicit

X is an exponent digit

A is a space

¥ine mantissa digits are printed even if some are zero. Therefore any value
printed in scientific notation by the PRINT statement occupies 16 character
positions. For example:

10 PRINT 1E13
produces

1.00000000E+13

Note that the PRINT statement determines the output form, normal or

scientific, without regard to the form in which the value is input.

For example, enter and execute

10 PRINT .01; .05; .09; .1
20 PRINT 5.00/75

L]

30 PRINT 275634%112913534
40 PRINT 2.56E8, 2.56E8 * 1.02E-2

Each PRINT statement generates one line of output. The total output is
shown below. Ccmpare the output lines with the statements that generate
then.

1.00000000E-02 5.00000000E-02 9.00000000E-02 .1
6.66666666E-02

3.11228090E+13

256000000 2611200

Semicolons and Commas Between Print Elements

Semicolons and commas serve a dual function in PRINT statements. They

separate one print element frcm the next, and they help to control the
spacing of output.

A comma or semicolon must be used between each PRINT element. This is
a requirement of BASIC syntax. For example, this statement violates BASIC
syntax, and, upon entry, produces the error message shown:

10 PRINT "ABCY" WDEF"
4ERR 10

A semicolon can be thought of as the "do-nothing" element separator.
It fulfills the syntax requirements of BASIC, but causes no additional
spacing between print elements. Th only spaces that appear between print
elements separated by semicolons are those that are output with the print
elements themselves.

For example, if we insert a semicolon into the above statement, as
follovws:

10 PRINT "ABC"; W“DEF"
the result, upon execution, is:

¢ RUN
ABCDEF

Since there are no spaces within the print elements, no spaces appear in the
printed output.

To look again at a previous example,

10 T = 5600.12
20 PRINT I; -2*I; "ggen
30 PRINT "ABCDEFGHIJKLUNOPQRSTUV"

:RON
5600.12 -11200.24 §&&%
ABCDEFGHIJKLMNOPQRSTUV

all the spaces that appear in the first line of output are the implied plus
sign and the trailing spaces, output automatically as the result of printing
the expressions.

A comma can be used in a PRINT statement to cause the next print element
to be printed at the beginning of the next print zone. Each line of the CRT

%6

€)

is divided into l6-character zones. The standard 64 character CRT line
accommodates four such print 2zones.

When the system finds a comma, it outputs spaces until it reaches
the first character position of the next print zone. It then outputs
the next print element starting at this position. For example, the following
line appeared in the factorial program (Example 2.2).
30 PRINT "P="; E, WPI=W; F

Output from repeated executions of this line looked like this on the CRT:

ZONE 1 ZONE 2
P=0 P!=1
P= 1 pi=1
P= 2 BP!= 2
P= 3 P!= 6
P= 4 P!'= 24
P= 5 Pl= 120

Th comma after the second print element causes the system to space to the
right to the beginning of the next zone.

If a comma is encountered when the output from the previous print
element has entered the right-most zone of the CRT, output from the next
print element begins at the left ¢f zone 1 on the next line. For exanmple,

lo PRINT "A"' "E"' llcll' "D"' "Ell

¢ RUN

A B C D
E

Th%letters WAN-"D" are printed in the first character position of zones
1 to 4. YE" is printed at the beginning cf zone 1 of the next line, since
on 64 character line there is room for only four zones.

Commas can be used anywhere in a print statement and can be used in
succession. For example, if another comma is put into line 30 of the
factorial example (Example 2.2) as follows:

30 PRINT "“p="; P ,, "pi=w:; F
the result appears as:

ZONE 1 ZONE 2 ZONE 3

P=0 1=]
P= 1 pi= 1
P= 2 pt= 2
P= 3 Pi= 6
P= U P!= 24
P= 5 P!= 120

xxkkk DONE *%kkk*k

The second comma causes the system to output spaces up to the first character
position of zone 3.

Commas and Semicolons at The End of Print Statements

“l

After outputting the last print element in a PRINT statement, the 2200
system automatically moves the cursor to the left-most position of the next
linre. (The cursor defines the CRT screen-location for the next printed
character.) The 2200 system moves the cursor by issuing special cursor
control characters to the CRT. (These characters are discussed in detail
in Chapter 17.) The cursor control characters are the equivalent of a
carriage return and line feed on a typewriter, and therefore are known
as CR/LF. For examrle, execution of

10 PRINT "ABC"™
20 PRINT "DEFW"®

produces

¢ RON
ABC
DEF

"DEF" appears on the line below "ABC" because of the CR/LF issued
automatically after "ABC", For the same reason, each PRINT statement
execution in the original examgle programs (Examples 2.1 and 2.2) causes
output to appear on a new line.

Often an autcmatic CR/LF is exactly what we wish to have occur after
a PRINT statement. Examples 2.1 and 2.2 illustrate this. However, sometimes
we may wish to suprress this automatic CR/LF.

The automatic CR/LF can te suppressed by putting a semicolon or comma
at the end of the PRINT statement. For example,

10 PRINT "AEC";
20 PRINT “DEF"

< RUN
ABCDEF

Here "ABC" and "DEF" are output on the same line because the semicolon at
the end of the PRINT statement suppresses the CR/LF.

Enter and execute this simrle program that prints the powers of two
from 241 through 2420.

Example 3.2 Powers of Two, illustrating PRINT With Trailing Semicolon

10 ¥ = N+]1

20 PRINT 24N;

30 IF N< 20 THEN 10
40 PRINT "DCNE"

The output is:

2 4 8 16 32 64 128 256 512 1024 2048 2096 8192
16384 32768 65536 131072 262144 524288 1048576 DONE

The semicolon at the end of line 20 suppresses the carriage return/line feed.
The system issues a CR/LF only when it senses that a PRINT element will
overflow the line, in this case when 24N is 16384. The spaces between the
values are the implied plus sign and trailing space, printed with each
expression.

2

N

)
If a comma appears after the last print element in a PRINT statement,
the cursor is moved to the beginning of the next zone, and the CR/LF is
suppressed.

* Reenter the powers of twc programs as follows:
Example 3.3 Powers of Two, Illustrating PRINT With Trailing Comma
10 N=N+1
- 20 PRINT 29N,
30 IF N € 20 THEN 10
40 PRINT "DONE

This program produces the following output:

2 4 8 16

32 6u 128 256

512 1024 20u8 4096

8192 16384 32768 655 36

131072 262144 524288 1048576
DONE

Each time statement 20 is executed the value of the expression is printed
at the current cursor location, and then the cursor is moved to the beginning
of the next zone. This causes the output to appear as shown.

The TAB() Print Flement

The comma element separator is convenient for organizing output into
16 character columns, but suppose that you wish to use some other column
format. For example, suppose you wish to print in three, approximately
equal, columns across the CRT. The first of these columns is to begin at
CRT column 0, the next at column 22, the next at 43. This column
spacing could be acccmplished by using commas together with the proper number
of spaces enclosed in quotation marks. However, BASIC offers the TAB()
print element as an easier means of accomplishing this type of output
formatting.

TAB() tells the system to output spaces until the cursor is at a
specified CRT column. €Example 3.4 calculates the length of the
hypotenuse of a right triangle based on the lengths of the sides and outputs
the three lengths at columns 0, 22, and 43,

Example 3.4 Sides of a Right Triangle, Illustration of TAB()

10 INPUT "LENGTH OF SIDE A", A
. 20 INPUT "IENGTH OF SIDE B", B

30 PRINT

40 PRINT “SIDE A"; TAB(22); "SIDE B"; TAB(43); "HYPOTENUSE"

50 PRINT A; TAB(22); B; TAB(43); (A%2+B42)%.5

' : RUN
LENGTH OF SIDE A? 5
LENGTH OF SIDE B? 12

SIDE A SIDE B HYPOTENUSE
5 12 13

At line 40 of Example 3.4, TAB(22) appears after "SIDE A". TAB(22) is

15

print element that tells the system to output spaces until the cursor is at
column 22 of the CRT. Similarly, after printing "SIDE B", TAB(43) outputs
spaces until the cursor reaches column 43. Since TAB() is a print element, an
element separator (, or ;) must be used with it. Normally, the semicolon is
used, since it is less confusing if the cursor is moved only by the TAB,
rather than by a ccmbination of TAB()'s and commas.

For the purpcse of TAB(), CRT columns are numbered 0-63, not 1-64. TAB
tells the system to issue spaces until the specified column is reached.
Therefore, it is not possible to move the cursor left with a TAB(). If the
column specified in the TAB is to the left of the current cursor location, the
TAB simply does nothing; the cursor is not moved.

If the column specified in the TAB() is greater than the line length of
the CRT, the cursor is moved to the leftmost position on the next line. A
column specification greater than 255 produce an error.

Any expression can be used in a TAB() to specify the desired column. 1In
Example 3.5 the previous program has been modified to allow entry of the
desired output column width.

Example 3.5 Using An Expression To Calculate a TAB()

10 INPUT "COLUMN¥ WIDTH", T

20 INPUT "LENGTH OF SIDE A", A

30 INPUT "LENGTH OF SIDE B", B

40 PRINT

50 PRINT "“SIDE A"™; TAB(T); "SIDE B"; TAB(2*T); "HYPOTEWUSE"
60 PRINT A; TAB(T); B; TAB(2*T); "AP2+B+2)%.5

Line 50 prints "SIDE A", and then, in order to execute the TAB()
evaluates the expression 7. T has the value entered at line 10. The TAB is
executed moving the cursor to the specified column. After SIDE B is printed,
the expression 2*T is evaluated to determine the second column position. Only
the whole number, or integer, portion of the value is used to determine the
column. Thus, an entry of 10.6 causes a TAB to column 10, followed by a TAB
to column 21 (integer portion of 21.2).

1¢

)

Review of Section 3-3

1.

lo0.

11.

12.

13.

The things to be printed in PRINT statements are known as print
elements. Any number of print elements can appear in a single PRINT
statement.

Literal strings are printed exactly as they appear within quotation
marks. No spaces are added before or after the string.

When an expression is encountered in a PRINT statement, the
expression is evaluated and the result is printed.

A PRINT statement never alters the value of any variable.

The value of an exrression is printed preceded by a space if positive
or a minus if negative, and followed by a space.

The PRINT statement prints the value of an expression in normal form
or scientific form, depending upon the value.

The cursor, always present on the CRT, occupies the location at which
the next character will te displayed.

The semicolon element separator tells the system, "Leave the cursor
where it is."

After all the elements in a PRINT statement have been printed the
system automatically issues a cursor control that is the equivalent
of a carriage return and line feed on a typewriter. This automatic
function can be suppressed by specifying an element separator (, or
;) at the end of a PRINT statement.

The CRT is divided into four print zones, each 16 characters wide.

When a comma (,) element separator is encountered in a PRINT
statement it moves the curscr to the beginning of the next zone. 1If
the cursor is in the 4th, or rightmost, zone, the comma moves the
cursor to the beginning of zone 1 on the next line.

A comma can appear anywhere in a PRINT statement. Commas can appear
one after another tc move the cursor to the 2nd or 3rd next print
zone, etc.

The TAB() print element can be used to move the cursor to the right
to a specified column lccation.

¢s

)

3-4 LINE NUMBERS, LINES, AND THE GOTO STATEMENT

So far our example programs have shown line numbers in the sequence 190,
20, 30... <« Line numbers in this sequence are conventionally used in BASIC
programs, but any number in the range 0-9999 can serve as a line number. The -
use of 10, 20, 30... as line numbers is a convention which makes program
debugging and modifying easier. It allows up to nine lines to be inserted
betvween each twc lines of original program. Non-integer values such as 1.1,
22.5 are illegal. Spaces may not precede line numbers. Lines may be keyed in
in any order. Based on the line number the system automatically determines .
the logical location of the line within the program.

In the last two sections when we said such things as "Any number of
print elements can appear in a single print statement" you may have wondered
if there is scme unexpressed qualification to these statements. There is.
The longest statement line that can be entered is one generated by 192
keystrokes. The number of characters which represent this line can exceed
192, since keywords can be entered with a single keystroke. A program line
with over 64 characters will, of course, continue onto a second CRT line.
This does not affect program execution.

We said earlier that the normal sequence of execution
in a program is line number sequence, from the lowest line to the next
higher, to the next, etc. This sequence of execution is "normal" in the
sense that it is the sequence that the system uses, except when
an instruction is encountered that tells it to go to some other location
for its next instruction. 1Instructions of this kind are called branching ,
instructions, and the simplest of them is the GOTO statement. :)

The GOTO statement appeared in our original inventory example at
line 90.

90 GOTO 30

This statement simply causes the system to find its next statement at line 30,
rather than at the next higher line number. (In the inventory program there
is no higher line numter than 90, so without statement 90 the program would
end.)

After a branch as has been effected, the normal sequence resumes from
the new location. Srpecifically, if statement 90 is executed in the inventory
program, the line number sequence of execution is 90, 30, 40, 50, 60... .

The general form of the GOTO statement is
GOTO line number

The words "line numkter" indicate that only a line number may be used.
A variable may not be used. 1In addition, a BASIC statement must actually
te present at the line number specified in a GOTO statement.

Though our inventory example showed the GOTO effecting a branch v
"back" in a program, a branch "forward", that is one which branches over
higher numbered lines, may also be effected.

A well organized program avoids unnecessary use of the GOTO statement by
relying upon the normal sequence of execution, insofar as is possible. An
obvious example is shown in Example 3.5. Statements 20 and 110 can be
eliminated by rearranging the program to rely on the normal sequence of

46

execution. At the bottom the program is shown rearranged.

Example 3.5 Computing The Sum and Mean of Entered Values, With
Unnecessary GOTO's

10 PRINT "COMPUTE AVERAGE"

20 GOTO 200

100 PRINT "NUMBER OF ITEMS=%"; K, "SUM="; S,, "MEAN="; S/K

110 GcOoTO 300

200 INPUT "ENTER VALUE (OR ZERO TO END ENTRY)", X
210 IF¥ X=0 THEN 100

220 K=K+l
230 S=S+X
240 GOTO 200
300 PRINT
310 GOTO 10

Example 3.6 Program Reorganized Eliminating Extra GOTO's

10 PRINT "COMPUTE AVERAGE"
100 INPUT "ENTER VALUE (OR ZERO TO END ENTRY)", X
110 IF X=0 THEN 200

120 K=K+l
130 S=S+X
140 GOTO 100

200 PRINT "NUMBER OF ITEMS="; K, "SUM="3; S,, "MEAN="; S/K

210 PRINT
220 GOTO 10

In the next section,

in which we look at the IF...THEN statement,

we will see how the GOTO at line 140 of the lower program can also be

eliminated.

%7

Review of Section 3-4

A line number can be any number 1-9999. V¥Yon-integer values such as
1.1, 22.5 etc. are not allowed.

The longest legal statement line is one generated by 192 keystrokes.
The normal sequence of execution is line number sequence.
Instructions that can tell the system to find its next instruction
at some location other than the next higher line number, are known

as branching instructions.

The simplest of the branching instructions is the unconditional branch
to a line number, the GCTO statement. 1Its general form is:

GOTO line number

Once a branch has been effected, the normal sequence of execution
prevails from the new location.

A well crganized program avoids unnecessary GOTO's.

¢+ 8

3-5 IHE IF...THEN STATEMENT

The IF...THEN statement causes a branch to a specified line if a stated
condition is true. If the stated condition is false, the normal sequence of

execution prevails.

The condition, which appears between the keywords "IF" and "THEN", is
stated as a relationship between two expressions. We have seen the
following IF...THEN statements in example programs; the condition portion

is underlined:
70 IF I >= 100 THEN 30
60 IF P <= N THEN 30
30 TF N & 20 THEN 10

The symbols such as €, €=, » , which separate the expressions are
known as relational operators. All the relational operators and their

meanings are given below.

RELATIONAL
OPERATOR MEANING

= is equal to
> is greater than
< is less than
<> is not equal to
>= is greater than or equal to
<= is less than or equal to

It must be emphasized that the values of variables are never changed
by an IF...THEN statement. The statement simply tells the system to evaluate
two expressions using the current values of the variables and compare the
results obtained. If the system finds that the results are in the
relationship specified by the relational operator, then the system branches
to the specified line number to ottain its next instruction.

Uses of the IF...THEW Statement

In the inventory example IF...THEN was used to decide within the
program if a reorder message should be displayed. This simple program
decision, based on a quantity calculated in the program, is a typical
€lementary use of IF...THEN.

In the factorial program the statement
60 IF PL= N THEN 30

is used to decide whether the loop should continue, or processing is
complete.

In the program that prints the first 20 powers of two (Example 3.2)
the statement '

30 IF N < 20 THEN 10

performs similarly to statement 60 in the factorial progranm.

*+1

A common use of the IF...THEN statement, not yet shown, is the
testing of keyboard entries. Frequently you want to be sure that an
entry is within a certain range. If it is not, you can again request
a correct entry.

For example, in the factorial program a negative entry is meaningless
and an entry 3; 70 or greater produces an error at P=70 (because the value of
P! exceeds 10). Therefore, it would be good programming practice to
restrict operator entries to the valid range 0-69. The program can bhe
modified as follows:

Example 3.7 Testing The Keyboard Entry In The Factorial Progran

10 INPUT "COMPUTE P! FOR P=0 TO P=", N
12 IF N < 0 THEN 15

13 IF N €= 69 THEN 20

15 PRINT "INVALID REENTER"
16 GOTO 10

20 LET P = 1

30 PRINT "p="; E, "Pl=w; F
40 LET P = P+l

50 LET F = E*F

60 IF P<= N THEN 30

70 PRINT "Wksksks DONE *ksaxn

An TF...THEN statement can also be used to test a keyboard entry that
represents a selection amcng alternatives. For example, we might combine into
a single program the factorial program and the print powers of two program.

At the beginning of the combined program we would want a selection routine in
which the operator can choose which of the two operations are to be performed.
Such a combined program appears in Example 3.8.

Example 3.8 An Operator Selection Using IF...THEN

10 INPUT "ENTER 1 TN CALCULATE FACTORIALS. ENTER 2 TO PRINT
POWERS OF TWO.", S

20 IF S = 1 THEN 110

30 IF S = 2 THEN 1010

40 PRINT "INVALID. REENTER"™
50 GOTO 10

110 INPUT "COMPUTE P! FOR P=0 TO P=", N
120 LET F = 1

130 PRINT “p=%; P, W“pl="; F
140 LET P = P + 1

150 LET F = F * P

160 IF P<=N THEN 130

170 GOTO 1040

1010 N = N + 1

1020 PRINT 2 N;

1030 IF N < 20 THEN 1010
1040 PRINT "DONE"

The selection routine occupies lines 10-50, the factorial progran
110-120, and the powers cf two programs 1010-1040. TIn the selective
routine notice that if neither 20 nor 30 cause a branch, then the
entry is invalid and the operator is prompted to reenter the
selection. Also notice that statement 170 avoids executing both
programs when the first is selected.

Thus far, in the example programs, the condition portion of the

56

—-—

IF...THEN statements has been a relation between simple variables or
variables and constants. While in practice many comparisons may be
of this form, the capability of the IF...THEN statement to compare
complex expressions should not be overlooked.

For example, suppose we wWish to determine if the length of one line
segment is greater than another. We are given Cartesian coordinates for the
end points of the segments, and have assigned them to variables in the

following manner.

(X1,Yl) and (X2,Y2) define line segment one.
(X3,Y3) and (X4,Y4) define line segment two.

The following statement effects a branch to line 570 if the length of line
segment one is greater than line segment two.

510 IF (X1-X2)82+ (Y1-Y2)42 » (X3-X4)22 +(¥Y3-Y4)®2 THEN 570

Another use for complex expressions in IF...THEN statements is to
exploit the logic cf arithmetic to allow testing of
"multiple" conditions in a single IF...THEN statement.

Suprose, for example, that somewhere in a program you wish to
branch to line 480 if any one of four variables are equal to zero.
Assume the variables are W,X,Y,Z. One way to do this would be to
write four statements:

50 IF W=0 THEN 480
60 IF X=0 THEN 480
70 IF ¥Y=0 THEN 480
80 IF Z=0 THEN 480

This sequence of statements would work perfectly, but another way
would bhe to write a single statement such as

50 IF W*X*Y*Z=0 THEN 480

In the new statement 50 the value of fhe expression W*X*Y*7Z is 0 if
any of the variables are zero. The effect is the same as the four
statements written above.

The same approach can be used in a slightly more complex situation.
Suppose you want to tranch to line 115 if ¥=95 or if X=W*2 or if Y=55,
You could write

50 IF #=95 THEW 115
60 IF X=W*2 THEN 115
70 IF Y=55 THEW 115

or, alternatively, you could write
50 IF (W-95) * (X-(W*2)) * (Y-55)=0 THEN 115

In this latter statement S50, if W is equal to 95 then the value of the
expression (¥W-95) is zero. It is easy to see that the other expressions
in parentheses, (X-(¥*2)) and (Y-55) are equal to zero when the
conditions expressed in lines 60 and 70 are true. Since the entire
expression on the left is equal to zero if any of the terms equal zero,
the effect of the latter statement 50 is the same as statements 50,

60 and 70 above it.

57

Efficient Use of IF...THEN

Now that we have discussed some of the capabilities of the
IF...THEN statement itself, let's see how it can be used most efficiently.

Suppose you are writing the inventory program that we
introduced in Section 2-2. You have written the first six statements
of the program:

10 LET I=42500

20 PRINT "OPENING INVENTORY="; T

30 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (=), T
40 LET I=I+T

50 PRINT

60 PRINT "TONS ON HAND ="; T

Now you look back at the description of the problem and read "you
want to be reminded to reorder coal if your inventory drops below 100
tons." So, you write

70 IF I € 100 THEN 90
which says exactly what the statement of the problem said.

At 90 you intend to put the PRINT statement which produces the
reminder. So, now you add

80 GOTO 30
90 PRINT "REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS"
100 GOTO 30

Your program is now complete and appears as follows:

Example 3.9 The Inventory Program (Example 2.1) Written With Aan
Extra GOTO

10 LET I=42500

20 PRINT "OPENING INVENTORY="; I

30 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T

40 LET I=I+T

50 PRINT

60 PRINT "“TONS ON HAND ="; I

70 IF I< 100 THE¥ 90

80 GOTO 30

90 PRINT "REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TOWS"®
100 GOTO 30

When 1< 100, statement 70 causes a branch around the GOTO statement at line
80.

This program will produce the exact same results as the example progran
we originally gave (Example 2.1), but the original example program displays
more skillful use of the IF...THEN statement. The two programs are identical
in lines 10-60. Statement 70 cf the original example program is

70 IF I >= 100 THEN 30

$2

fﬁ) Instead of testing for the inventory being less than 100 tons, the original
program tests for the opposite relation. If I »2100 then the progranm need
not display the recrder message. The entire original program is:

Example 3.10 The Original Inventory Program (Example 2.1)

10 LET I=42500
20 PRINT “OPENING INVENTORY="; T
30 INPUT "NUMBER CP TCNS RECEIVED (+4) OR SOLD (-)", T
40 LET I=I+T
- 50 PRINT
60 PRINT "“TONS ON HAND ="; I
70 IF I >= 100 THEN 30
80 PRINT "“REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS"
90 GOTO 30

Reversing the relational operator at line 70 let us utilize
the normal sequence of execution for the possibility that the
reorder message should be displayed. The GOTO statement at line 80
of Example 3.9 has thereby been eliminated.

Sometimes efficient use of IF...THEN reguires that the condition be
specified as the oprosite contradictory of the way it might normally be
conceived. This condition reversal was seen in the transition from Example
3.9 to Example 3.10 above. A table pairing the opposite relational operators
is given below:

\ €>»and = are opposites
;) >= and € are opposites
e <= and » are opposites

The following program performs identically to the original
factorial example. However, it includes a GOTO that was eliminated in the
original example through more skillful use of the IF...THEW
statement. Compare it to the original example, Example 2.2.

10 INPUT “CCMPUTE P! FOR P=0 TO P=", N
20 LET F =1

30 PRINT “p=%"; P, "pi="; F

4O LET P = P+l

50 IF P » N THEN 80

60 LET K = E*F

70 GOTO 30

80 PRINT Mk#%kk* DONE #**k*kk%n

If one of the rossible outcomes of a test is to skip forward over
intervening statements and the other is to execute the intervening
. statements, then the IF...THEN should effect the branch to the
higher numbered line. For exanmple,

. 50 IF X=Y THEN 70
60 GOTO 200
70 PRINT Y
: (processing)

200 PRINT X

is better written,

532

50 IF X<£» Y THEN. 200
60 PRINT Y

200 PRINT X

Review of Section 3-5

1.

The IF...THEN statement tells the system to branch to a
specified line if a stated condition is true. If the
condition is false, the normal sequence of execution
prevails.

Variable values are never changed by an IF...THEW
statement.

The IF...THEN statement can be used for a decision branch
based on a quantity calculated in the program. Its use
in the original inventory program is an example of this.

IF...THEN can be used to test for continuation of a
processing loop. The factorial program uses it in this
fashion.

IF...THEN can be used to test the validity of an operator
entry.

IF...THEN can be used to test an entry which represents a
selection among alternatives.

Complex expressions can be used in the condition portion of
the IF...THEN statement.

The logic of arithmetic can be exploited to test "multiple"
conditions in a single IF...THEN statement.

Skillful use of the IF...THEN statement makes use of the
normal sequence of execution as much as possible. This

eliminates unnecessary GOT0's. The significance of the

IF...THEN statement can be reversed by substituting the

opposite or contradictory, relational operator.

s

3-6 THE INPUT STATEMENT

The INPUT statement provides an easy means for receiving data fron
the keyboard during program execution.

Since ordinarily the operator should be told what data is to be
entered, the INPOT statement can contain a literal string prompt, which
it will display at the current cursor location.

In the examrle programs, we have seen such INPUT
statements as

10 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T
and

10 INPUT "ENTER 1 TO CALCULATE FACTORIALS. ENTER 2 to

PRINT POWERS OF 2", S

Literal string prompts are optional in the INPUT statement. If
the above statements had been written,

10 INPUT T
and
10 INPUT S

the statements would not display the literal string, but otherwise
they would function as the original statements did.

The prompt, if it is used, must be followed by a comma. Commas
in the INPUT statement unlike commas in the PRINT statement, have no
effect on the prompt location. They serve only to separate the parts
of the INPUT statement.

Regardless of whether a prompt is included in an INPUT statement, a
question mark and space are always output. The question mark is a standard
signal to the operator that the system is awaiting input.

As the operator keys in characters, they are displayed at the cursor
location. Keying Lkackspace eliminates the character at the previous cursor
locatior, and allows for reentry.

When the operator depresses (EXEC) the value entered is
assigned to the variable specified in the INPUT statement, and a CR/LP
is issued to move the cursor to the beginning of the next line. If
anything other than a valid numeric quantity is entered, an ERR is
signalled, the question mark is redisplayed, and the operator can again
enter the value.

Multiple entries can be made with a single INPUT statement by
specifying more than one receiving variable. A statement such as

10 INPUT "ENTER EMPLOYEE NUMBER, THEN HOURS WORKED", E,H

displays the prompt followed by the question mark. The operator can then
enter two values, which will be assigned to E and H respectively.

The operator can enter the values separated by a comma and followed
by (EXEC) in this fashion:

ENTER EMPLOYEE NUMBER, THEN HOURS WORKED? 1234, 40.00 (EXEC)

55

Alternatively, the operator can enter the first value, key (EXEC), then enter
the second in the same manner. TIf this latter form of entry is used the
question mark is redisplayed at the left of the next line, after the first
value is entered.

Other than the maximum line length, there is no limit to the number of
variables that may appear in a single INPUT statement. All variables must be
separated by commas and only one prompt may be specified. However, INPUT
statements with many variables terd to be awkward for an operator, and promote
entry errors.

If an operator merely depresses (EXEC) in response to an INPUT
instruction, the value of the receiving variable is unaltered. However, this
response also terminates the INPUT instruction, thereby eliminating the
possibility of entering values for any remaining variables.

The general form of the INPUT statement is
INPUT Ekmaracter string"a variable [variable..J

In addition to its primary use as a means of receiving data from the
keyboard, the INPUT statement is an excellent way of inserting a processing
interruption into a program. TIf printer paper, a disk, or tape must be
mounted in the middle of a program, a simple INPUT statement such as 550 INPOJT
"MOUNT PAPER. KEY (EXEC) TO RESUME", A9 can be used to interrupt execution.
The value of A9 can be ignored, or tested to see that no entry was in fact
made. (An entry might suggest that the operator was confused about the
operation.)

Revievw of Section 3-6

l. The INPUT statement allows a value or values to be entered
from the keyboard and assigns them to specified variables.

2. 1A prompt can be specified in the form of a literal string.
The prompt is displayed by the INPUT statement at the current
cursor location. The prompt is optional, but if it is used
it must be followed by a comma.

3. The INPUT statement causes a question mark and space to be
displayed. This occurs after any prompt has been displayeqd,
and is the standard signal that the system is awaiting input
from the keyboard.

‘4. Values entered by the operator are assigned sequentially to
the variables specified in the INPUT statement.

5. Multiple receiving variables in the INPUT statement must be
separated ty commas.

6. If an operator merely depresses (EXEC) in response to
an INPOT instruction the value of the variable which was to
receive the entry remains unchanged.

7. The general form of the INPUT statement is

INPUT ["character string",] variable Evariable..J

56

3-7 THE REM STATEMENT

The REM statement has not appeared in any of the example programs, thus

far. REM is an abbreviation of the word "remark"; the purpose of the

REM statement is to allow you to insert into a program explanatory comnments,
or remarks, about the program itself.

In effect, REM says to the system "ignore this statement".

statements have absclutely no effect on the execution of a program.
statements inserted, our inventory program could have appeared as follows:

Example 3.11

10 REM
20 REM
30 REM
40 REM
50 REM
60 REM
80 REM
90
100
110 REM
120
130
140
150
160
170 REM
180
190

Adding Comments (REMs) To Example 2.1

(EG3.11) A STMPLE INVENTORY PROGRAM
%% ikkkkikk VARIABLE USAGE *kkdkkkkidkkdkk
I = INVENTORY BALANCE

T = TRANSACTION AMOUNT
e ke e e o o ok ook o o ook ok e o ook ook ok ok o ke e ke st ok ok ook ok ok ok ok

ASSIGN OPENING EALANCE

LET I=4250C

PRINT '"OPENING INVENTORY="; I
*%k%kk%kx MAIN PROCESSING LOOP **k¥k*

INEUT "“NUMEER OF TONS RECEIVED (+) OR SOLD (-)",

LET TI=I+T

PRINT

PRINT “TONS ON HAND ="; I
IF I»= 100 THEN 120
DISPLAY RECRDER MESSAGE.

REM
‘With REM

T

PRINT "REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS™

GOTO 120

The inventory program as shown here executes in the exact same manner
as the original inventory program did.

REM comments

are extremely useful, not only for someone else, who may
want to understand your program, but also for yourself, should you have to go
back and revise sections of a program you wrote a while ago.

s7

CHAPTER U4: SAVING AND LOADING PROGRAMS

4-1 INTRODUCTION

When first created, a program is normally entered into memory via
the keyboard. However, it would be extremely inconvenient to reenter it this
way each time it is to be run. Since memory is automatically cleared each
time the CPU power is turned off, some means of saving programs outside of
the memory of the system is a practical necessity. The two principal such
means in use with Wang systems are tape cassette and magnetic disk storage.
(Systems which are equipped with both types of device may use either or both
for program storage.)

After a program has been keyed-in the first time, it can be saved

on tape or disk for later use. Then, it is a relatively simple and quick
operation to lcad the program when it is needed. -

4-2 SAVING PROGRAMS ON CASSFTTE TAPE

Cassettes and Cassette Drives

Cassette tape is a convenient medium for saving programs. It can also
be used for saving data. (Data storage on cassette tape is discussed in
Chapter 21.) A single tape cassette can hold many programs. The exact number
depends upon the size of the programs, and whether a long (150 £ft) or short
(75 £t) tape is being used. Programs are recorded one after another on the
tape. Each program is treated as a single unit called a "file'".

To prevent accidental destruction of tape contents, tape cassettes
are equipped with "prctect tats." These plastic tabs are located in the
bottcm corners of the cassette. If these tabs are folded inward to expose
the square holes at each end of the cassette, the cassette is "protected";
further recording carnot te performed on it until the tabs are moved back to
the non-protect position. All the information on a protected cassette is
avajilable for loading into the system; only recording is prevented. For
protection frcm dust, cassettes should be kept in their individual plastic
boxes when not in use.

To help identify programs saved on tape, and to make loading of selected
programs easier, you should specify a name for each program saved on a
cassette tape. The name can be up to 8 characters long, including spaces, and
should Adistinguish the program from all others on the cassette. Any keyboard
characters can be used in the name. You should maintain a list of the
programs and program names stored on each cassette. The list should show the
sequence in which the programs are recorded. Notice that at line 10 of
Example 3.11 the name of the program“EG3.11"is given in a REM statement.
Putting a program name into a REM at the first program line is a good
programming practice.

If a cassette's contents are no laonger of any value, a program may
be stored at the beginning of the cassette, as if the cassette were blank.
However, if any programs on a cassette are to be preserved, new programs
should be added heyond the end of the last program to be preserved.

Although up to six tape cassette drives can be used with a Wang
system, there is always one tape drive that is said to be the primary tape
drive. In this section we will discuss the program saving and loading

S8

/.)

Y

procedures for operations at this primary (or default) tape drive. PFor
systems equipped with a tape cassette drive in the CRT housing, this tape
drive is usually designated as the primary tape drive. User§ of systems with
stand-alone tape drives only (models 2217 or 2218) will have to determine
which drive is the primary drive before proceeding with the cassette

mounting operations described below. To determine this, simply key

RESET REWIND (EXEC) and observe which drive's tape movement light

flashes. The one that flashes is the primary tape drive.

If, after keying a grogram into memory, you wish to save it on a
cassette open the primary cassette drive door by pressing the white door
release button located at the right of the cassette door. Slip a blank,
unprotected cassette, with its label side facing you, into place between the
brackets on the cassette drive door as shown in Fiqure 4.1.

Figare 4.1 Mounting a Cassette
Once the cassette is in the cassette drive door, close the door.
Then, revwind the cassette by pressing the REWIND button on the cassette

drive housing. Rewinding, at this point, is a precautionary measure to
ensure exact positioning of the tape, at the beginning of the cassette.

Saving a Program On a Cassette

With a blank cassette mounted at the primary tape device, you can
save the entire program currently in memory by keying

¢SAVE "name" (EXEC)

vhere: “name” is a program identification, up to 8 characters long,
enclosed by gquotation marks.

For example, to save the inventcry program (Example 2.1), you could key
$SAVE "INVT1" (EXEC)
Upon keying (EXEC), the cassette should begin recording. During

recording the cassette drive emits audible clicks. When the SAVE operationm is
complete, the clicks cease, and the colon is restored to the next line of the

CRT. The SAVE command does not alter the contents of memory.

After saving the program the cassette can be rewound by depressing
the REWIND button on the tape drive, or by keying REWIND (EXEC) on the
keyboard. The cassette must be rewound before it can be removed from the

59

drive. After saving the program you label the cassette and start a list of
the files and file names stored on it. ;

If a cassette has valuable programs or data files on it you must
ensure that the tare is positicned beyond the end of these files before
giving the system the SAVE command. If you do not do this, the systen
will begin saving the new program file over an old file, thereby destroying
the 0ld program file.

One way to position a tape is to tell the system to SKIP
over preceding files. This must be done in a separate operation, before
the SAVE command is executed. For example, if a tape already contains 1
program, i.e., one program file, to save a second program onto the cassette
you should:

1. Mount the unprotected cassette in the device,
2. Depress the rewind tutton,
3. Key
:SKIP 1F (EXEC)

to skip over the one file,
4. Key

:SAVE "name" (EXEC)

where "name" is the name of the new progranm.
5. Rewind and remove the tape cassette.

6. Add the program name and description to the list of files stored
on the cassette.

If two programs are already on the tape be sure to key SKIP 2F at
step 3; if three, ZF, etc.

The cassette should be stored in its plastic case after removal. The
program will remain on it unaltered, indefinitely, and may be loaded whenever
desired.

Loading a Program from Cassette
To load a program from a cassette, mount the cassette and key

:CLEAR (EXEC)
:LOAD *"name" (EXEC)

vhere "name" is the name of the program to be loaded. The CLEAR command
ensures that memory is cleared of all other programs prior to loading the new
one. Vhen LOAD is executed, the system searches the tape for the beginning of
the named program. It then loads the entire program into memory.

For example if the inventory program has been saved under the name
WINVT1", it can be loaded by keying

:CLEAR (EXEC)
:LOAD "INVT1" (EXEC)

Review of Section u4-2

1. Cassettes are always mounted in the cassette drives with the exposed
tape up and the label facing out.

2. A single tape cassette can hold many programs. Programs are stored

()

7.

sequentially one after another on the tape.

You should specify a name, up to 8 characters long, for each program

saved on a cassette, and you should maintain a list of all the programs

saved on the cassette.

If any programs on a cassette are to be preserved, new programs should
be added beyond the end of the last program to be preserved.

To save a program from memory onto a cassette, first skip over the
presently saved files by executing

:SKIP xF
where x is the number of files currently stored on the cassette.
Next, save the program currently in memory by keying

¢ SAVE "name"
where "name" is the name of the new program, up to 8 characters.
After the SAVE command has been executed, depress the rewind button
on the cassette drive and remove the cassette. SAVE does not alter
the contents of memory.
To load a program into memory from a cassette, mount the cassette and
key

:CLEAR (EXEC)

¢ LOAD "name" (EXEC)

where "name" is the name of the program to be loaded.

6l

4-3 SAVING PROGRAMS ON DISK

There are two different kinds of disks used with Wang systenms.
One kind consists of a large disk platter, about the size of a long playing
phonograph record, that is housed within a rigid disk cartridge. This kind
of disk is used on the 2230 and 2260 type disk drives. The other kind of
disk more closely resembles a 45 rpm record, is flexible, and contained in
a soft envelope. This kind is used with the 2270 drives, and is usually
called a "diskette". The two kinds of disks vary principally in their
storage capacity, and speed af operation. They may be considered to be
identical from the pcint of view of programming.

NOTE:

While ycu are learning about disk operations, you should
not use a disk that contains important data or programs on
it. If you must use such a disk, be sure to consult with
an experienced programmer, who is familiar with the
details cf your system before executing anything described
in this section, or in the disk formatting sections of the
Disk Reference Manual. If your system includes a diskette
drive, a single diskette devoted to your use, would be a
good choice for storage of programs you write during the
course of reading this manual.

To help prevent accidental destruction of valuatle diskette contents,
diskettes used with the 2270 type drives are equipped with a mechanical
"protect" feature. V%hen a diskette is "protected™ it is possible to read,
(i.e., load) prcgrams or data from it, but it is not possible to record
programs or data onto it. 1A small hole in the diskette envelope, located
along the leading inserted edge, controls the protect feature. If this hole
is covered on both sides by a small piece of tape, the diskette is
unprotected. If the hole is exposed the diskette is protected.

Nearly every Wang system equipped with a disk drive has one
disk drive designated as the primary or "default address" disk drive. This
is the disk drive that is selected for use when the system is Master
Initialized.

If your system consists c¢f only one physical disk drive unit (which may
house more than one disk), then you may assume that this drive unit is
designated as the default drive. If your system has more than one disk drive,
you will have to determine which drive is the default drive by consulting
someone familiar with your system. The operations de~ribed in this section
take place at the primary disk drive, unless a different drive is
intentionally selected by you.

If your system is set up in such a way that it is inconvenient, or
unwise for reasons of file safety, for you to use the default disk drive,
then prior to performing any of the operations described here, you must select
a different drive. To do this, first determine from competent authority
what drive is approrriate for your use and what its address is.
Then select this drive for use by keying

: SELECT DISK XXX (EXEC)

vhere XXX is the address of the disk device to be used.

62

-

Once this disk drive has been selected, it will remain
selected for the operations described in this section until the power is
turned off. Each time the power is turned on, the SELECT command above
must be executed, if a drive other than the default drive is to be used.

Preparing a Disk for Cataloged Program Storage

Unlike a tape, a disk device provides direct access to the information
stored on it. (In this section the information we are considering consists of
programs.) By saying "direct access", we mean to-highlight the fact that if
several programs have been saved on a disk, each can be located and loaded
without having to search through any other programs. This principal of direct
access is illustrated in the phonograph. With a phonograph, you can move the
tone arm to any location on a record to play a selected piece. Similarly,
with a magnetic disk an arm moves a read/write head to a selected location,
rapidly skipping over other locations. This contrasts with a tape system in
which to get to an item in the middle of the tape, any preceding information
must pass by the heads in the segquence in which it was recorded.

¥hen you move a phonograph tone-arm to play a specific piece in the
middle of a record you locate the beginning of the piece by observing a
reduced density of grooves at that point. Reduced groove density is
your system for identifying individual items on the phonograph record.
In a disk storage system the disk drive positions the read/write
head to specific locations; therefore, it too needs a means of identifying these
locations. The fundamental system of identification is set up by the disk
drive itself, before any information is recorded on the disk. In this
system of identification the recording on the disk takes place in concentric
tracks; each track is divided into a number of
small chunks, known as sectors, and each sector is assigned an
identifying number, called its "address".

The process of setting up this system of addresses on a blank disk
is known as formatting the disk. Generally a disk need only be formatted
once, when it is first received. The formatting process is a function
of the disk drive; =so no program is required for it.

If you have a formatted disk that you can use for saving prograns,
then you can continue now with the remainder of this section. However,
if you do not have a formatted disk, read the relevant selections of the
Disk Reference Manual for instructions on how to format a disk.

A disk need cnly be formatted in order to save programs on it.
However, in order to load a program from a disk which has merely been
formatted you have to tell the system exactly where the program is located
on the disk, in terms of disk sector addresses occupied. Though this approach
can be used (it is called Direct Addressing), your Wang 2200 system is
prepared to assume this burden by means of its built-in Catalog Mode
statements and commands.

Your Wang system can automatically maintain a list of files stored
on a disk. The list contains, together with the file names, the locations
that the files occupy. To load a particular program, you can refer
to it by name, and let the system do the rest.

The "list of files stored on a disk" is known as the disk
catalog; it is stored and maintained on the beginning sectors

63

of the disk. A cataloged disk thereby carries its own index with it. The
area of the disk that follows the catalog, in which the indexed progranms
are stored, is called the "catalog area".

Since in some cases a disk may contain a great many relatively short
files, while in other cases it may be occupied by just a few large files, the
proportion of the disk space to be devoted to the catalog itself, versus the
catalog area, is open to your specification. Before catalog operations can be
undertaken, the catalog and catalog areas must be defined.

CAUTION:

The operation of defining the catalog and catalog area
wipes out any previous catalog thereby denyint access to
all the information previously stored in the catalog area.
Therefore, do not establish a catalog unless you are sure
that the disk you use contains nothing important.

The SCRATCH DISK statement is used to establish, a catalog
(catalog proper, and catalog area) on a disk. For our purposes we can
consider the general form of the SCRATCH DISK statement as

F

SCRATCH DISK LS = expression 1,7 END = expression 2

LY

K

In addition to the fact that a system may have more than one disk
drive unit, each unit may itself be capable of handling two disks. (One
model, the 2270-3 can handle 3 disks, but in this section we will not discuss
procedures for using the 3rd or rightmost disk of that unit.) The R} synbol
in the general form of the SCRATCH DISK statement says that either F or R must
be in the statement but not both F and R. F or R is used to specify which
disk at the selected disk drive is to be operated upon by the SCRATCH DISK
statement.

If the selected disk drive is of the 2230 or 2260 series, then
F in the SCRATCH DISK statement signifies that the fixed, lower
disk, is to be operated upon. If R is specified, the removable, upper disk
is used.

In the Models 2270-2 and 2270-3, F specifies the leftmost
diskette port. For the Model 2270-2, R specifies the right port.
for the 2270-3 it specifies the middle port. If you are using the
2270-1 you must use F.

The symbol ‘IS = exgression 1,]is enclosed in brackets to
indicate that it is ortional. If used it specifies the number of
disk sectors to be reserved for the catalog index. For example
in the following statement:

10 SCRATCH DISK F 1S = 30, END = 1023

the LS=30 specifies that 30 sectors are to be reserved for the index. Each
sector of the catalog index holds 16 entries, except the first which holds 15.
Therefore, a catalcg index with 30 sectors can hold #79 file name entries. If
the :ls = expression I; is omitted, 24 sectors are automatically reserved for
the catalog index. 'The maximunm number of sectors which can be reservad for
the index is 255.

et

The "END = expression 2" portion of the statement must always
be included. Expression 2 specifies the sector address for the end
of the catalog area. The number specified cannot be
larger than the highest sector address for the particular disk in
use. The diskettes used with the 2270 series disk drives have 1024
sectors on them, addressed as sector 0 to sector 1023. For the rigid
disk drives, the sectors and sectcr addresses are given below.

Disk Sectors per Lowest Sector Highest Sector
Model Disk Address Address
2230-1 2400 0 2399
2230-2 4800 0 4799
2230-3 9792 0 9791
2260 19,584 0 19,583

For some operations it may be desirable to have sectors available beyond
the end of the catalcg area. All operations described in this volunme,
however, take place within the catalog area.

If you have a formatted but otherwise empty disk, you can establish a
catalog on it by entering and executing a one line program such as:

10 SCRATCH DISK R END = 1023

Saving and lIoading Froqrams on a Cataloged Disk

With a formatted, cataloged disk in hand, you are ready to begin
saving programs on the disk. A program to be saved on disk and listed in
the disk catalcg mtst have a name. The name can be up to eight characters
long and must uniquely identify the program file. For example you might
want to call the 1lst inventory example (Example 2.1) “INVT1".

If the inventcry pregram is in memory, it can be saved to a cataloged
disk by keying a line such as:

¢SAVE DC F "INVT1" (EXECQC)

In this ccmmand the DC specifies that it is a disk catalog mode
operation. The F specifies the disk location, in the manner discussed
above for the SCRATCH DISK statement; R could be used instead. The
characters enclosed in quotation marks are the name.

¥hen (EXEC) is depressed, the program is saved in the next available
sectors in the catalcg area, and the name of the program is entered in the
catalog index, together with the program file's starting and ending sector
addresses. All of this happens very rapidly; the :_ reappears when the
operation is complete.

Programs can be saved without regard to where they are actually recorded
on the disk. The automatic cataloging system will ensure that they are
indexed, and recorded in previcusly unoccupied sectors.

To load a prcgram which has been saved on a disk, first
clear memory, then key a line such as:

:LOAD DC F "INVT1" (EXEC)
The significance of all the parts of this command is the

65

same as in the SAVE statement, except LNAD reverses the operation. The
system automatically searches the catalog index for the program name, then
loads the program intc memory from the specified sectors.

Listing a Disk Catalog

The contents of a disk catalog index can be listed on the
CRT for inspection, ty executing

F
¢ LIST DC
R
where F or R specify the disk location.

The result is a list such as this:

FIXED CATALGG

INDEX SECTORS = 00024

END CAT. AREA = 01023

CURRENT END = 00055

NAME TYPE START END USED
TEST p 00024 00028 00005
CHECK®6 P 00029 00038 00010
A/P PRINT P 00039 00042 00004
BINOM p 00043 00047 00005
FACTRL P 00048 00051 00004
INVTRY P 00052 00055 00004

Figure 4,2 A Disk Catalog Listing

The INDEX SECTORS and ENL CAT. AREA show the number of sectors
allocated to the index and the highest sector address in the catalog area.
These are the values established by the SCRATCH DISK instruction. The COURRENT
FND is the address of the last sector to have been filled with live
information. It changes whenever a new file is added. Below this appears the
list of cataloged files. The P under TYPE indicates that the named file is a
program file. Data files are indicated by a D. The START, END and USED
columns give the sector addresses of the first and last sector of the named
file, and the number cf sectors occupied by it.

Reusing Obsoclete Files

If you try to save a program onto a disk with the same name as a
program which is already on the disk, the system will not save the progranm,
and will report an error, (ERR 79 FPILE ALREADY CATALOGED). If you wish to
save a program in place of a program already saved, either because the progranm
you wish to save is a new version of the 0ld program, or because the old
program is no longer of value, you must first mark the old program as
obsolete. This is done with a SCRATCH statement. For example, if you key

:SCRATCH F "INVTI1" (EXEC)
the system will mark the program file called INVT1l as "scratched", which
simply means that it is obsolete. If you then LIST the catalog index, the

notation "SP" appears in the "TYPE"™ column, indicating that the file is a
scratched program file. A scratched file cannot be loaded.

66

CAUTION:

Do not confuse the SCRATICH statement with the SCRATCH
DISK statement. SCRATCH DISK establishes a new catalog
and catalog area, and renders inaccessible all files
previously saved on a disk.

Once a file has been scratched, the space it occupies can be reused.
For example, after scratching file "INVT1" you might wish to save in its
place a nevw version, which you wish to name "INVT2". You can do this as
follovws

:SAVE DC F ("qurlﬂ) NINYT2"

flame of) fane of new
scratched file file to replace

scratched file.

If you wish, the name of the new file can be the same as the name of the
scratched file it replaces.

In order to replace a scratched file with a new file, there must be
enough room in tke 0ld file space to save the new file. If you modify a
program by adding more statements to it, you may find that it will not fit
into the space occupied by the 0ld file. 1In this case you will have to
create a completely new file for it. RAlternatively, if, when you first save
a program, you anticipate that it may have to be modified several times before
it is in a final form, you can save it on the disk and specify that extra
sectors be allocated to the file space, to allow room for future modifications.
Por example this statement

:SAVE DCF (4) "INVTL™

saves the program currently in memory onto the disk in the next available
sectors, and includes in the file 4 extra sectors. If this file is
subsequently scratcted, a program could be saved over it which would require
as much as four sectors in addition to those required by INVT1. This allovws
a program to be modified and expanded, and saved back into the same area as
was occupied by it prior to modification. Any number of additional sectors
may be specified for a file, provided that the resultant file fits into the
catalcg area.

£7

Review of Section 4-3

Though there are two different kinds of disks and disk drives available
with Wang systems, they are identical from the point of view of
prcgramming.

A disk device provides direct access to the information stored on it.

In a process called "formatting" the recording area of a blank disk is
divided into many small units called sectors. Each sector is assigned
an identifying number called an address.

Your Wang system will automatically maintain a list of files saved

on a disk together with locations occupied by each file. Hovwever,

the catalog index and catalcg area must first be established on a disk
with the SCRATCH DISK instruction.

To save a program on a cataloged disk the SAVE DC command is used.
It has the follcwing general form:

F
$SAVE DC "name"
R

wvhere F or R specifies the individual disk at the selected address,
which is to te used, and "name" is the name of the program file, (up
to 8 characters enclosed in quotation marks.)

To load a progran from a cataloged disk the LOAD DC command is used
it has the following general form:

F
:LOAD DC "name"
R

where F or R specifies the individual disk from the selected address
which is to ke used, and "name” is the name given to the progran
during the SAVE DC operation.

A list of the ccntents of a disk catalog index can be obtained by
executing a LIST DC command, the general form of which is:

F
:LIST DC
R

where F or R specifies the individual disk from the selected disk
address.

A program file can be marked as obsolete (scratched) by executing a

SCRATCH statement. The SCRATCH statement has the following general
form:

F
SCRATCH }"name"
R

where F or R specifies the individual disk at the selected address,
and "name" i§ the name of the file to be scratched.

68

Addit ional parameters can be included in the SAVE DC command to specify
that the program to be saved is to replace a scratched program already
on the disk, or to specify a number of sectors to be reserved in
addition to those required to store the program. With these additional
parameters SAVE DC is written as follows.

F
SAVE LCC (expli?ession) "name"
R
fexpression giving number of extra sectors®
F .
SAVE DC ("old file") "new file"

!)

fhane of scratch@ fane for progranm®

file to be in memory to be
replaced bty '"new saved.
file".

€9

CHAPTER 5: SELECT STATEMENTS ANC THE USE OF A PRINTER

5-1 INTRODUCING DEVICE SELECTION

In the examples we have considered thus far, whenever a PRINT statement
has been executed the output has appeared on the CRT. If you have a orinter,
you may be wondering how you can get your results to appear on it instead.
Before we can answer this we must make explicit some things which so far we
have heen able to take for granted.

For our purposes here, consider your system as consisting of a central
processor (CPU) and a collection of input and output (I/0) devices. A CRT and
a printer are output devices; a keyboard an input device. Tapes and disks can
act as both; they input to the CPU, and also receive output from it. Each I/O
device in your system has a three-character address that identifies it for the

CPU. An address

is assigned to a device by your Wang Service Representative

at the time the device is installed. Thereafter, the address may be
considered a permanent characteristic of the device.

Certain BASTIC statements and commands cause the CPU to send information
to an output device, or receive it from an input device. These instructions
can be called I/0 instructions. PRINT and INPUT are examples of I/O
statements. Similarly, LIST is a command which initiates an I/O operation.
All I/0 operations are grouped into classes and, whenever the CPU is to
perform an I/0 operation, it first checks to see what device address has been

selected for the
operation at the

class of I/O operation involved. TIt then performs the I/O
selected device address.

How have we been able to get along so far without selecting I/O

devices? During
selects a device
different device
it has selected.
are known as the

Master Initialization (power on) the CPU automatically
address for each class of operation. Unless you select
addresses yourself, the CPU will use the device address

These addresses, which are selected by Master Initialization,
default addresses.

The default address for PRINT operations is 005, the address of the

CRT. Therefore,
go to the CRT.

The SELECT

the PRINT statements in our programs have caused output to

The LIST default address is also 005.

Statement

To cause PRINT output to appear on a printer, you must first execute
a SELECT statement that substitutes the address of your printer for the
currently selected PRINT address. For example, you might put at the
beginning of your program

10 SELECT PRINT 215

Thereafter, when
at address 215.

any BRINT statement is encountered, the results will appear
(Address 215 is the normal address assigned to a 2221, 2221w,

2231W, 2231 or 2261 printer.) If, at some later point in the program, you want
PRINT output ti again appear on the CRT, you can write a statement such as:

120 SELECT ERINT 005

This restores the CRT address, as the address for PRINT operations.

The SELECT

statement can apgear in a program with a line number, as

10

shown above, but it alsc can re executed as if it were a command, without
a line number. For example, if you key

2 SELECT PRINT 215 (EXEC)

the address 215 is substituted for the currently selected address for
PRINT operations. This occurs immediately upon depressing (EXEC); the
statement itself is not saved in memory.

To produce a printed listing of a program you must first select the
printer for LIST operations. To do this key

$SELECT LIST 215 (EXEC)

Now, whenever you issue a LIST command, the output will appear at address 215.
Note that the printer can be selected for LIST operations and the CRT for
PRINT operations or vice versa. As separate classes of I/O operations, PRINT
and LIST are totally independent.

1/0 Classes

So far we have seen two different classes of I/0 operation, LIST
and PRINT. These are referred to as "classes of I/0O operations" because
more than one BASIC statement cr command may fall into a particular class.
For example, the LIST DC command, which lists the contents of a disk catalog,
causes output at the address selected for LIST operations.

Now you may te wondering how many different classes of I/0 operations
there are. In additicn to LIST and PRINT, there are Console Input (CI),
Console Output (CO), INPUT, DISK, TAPE, and PLOT. DISK and TAPE selection is
discussed in the chapters that deal with these operations; PLOT is outside the
scope of this manual.

The address specified for INPUT class operations is the address of the
device from which the CPU will receive data when an INPUT class statement is
executed. The default selection for INPUT operations is address 001, the
keyboard. Though other devices, such as a card reader, can be used with INPUT
statements, these devices are not discussed in this manual.

Recall, that the INPUT statement always initiates two I/0O operatioms.
It always outputs a question mark in addition to receiving entered data.
Purthermore, the received data itself is output; remember, it appears as it is
keyed in. The question mark, prompt, and entered data are output at the
address currently selected for Console Output (CO). The CRT, address 005, is
the default selection for Console Output. Therefore, the prompt, question
mark, and data from each of our example INPUT statements, have appeared on the
CRT.

Console Output is a class of I/0 operation which defines the output
"address for all command-generated messages (other than LIST) and for certain
BASIC statements which generate operator messages. Included in this latter
category for examrle is the question mark of the INPUT statement; in the
former the

READY

of RESET. A complete list of CO class output is given in Appendix D.
The default address for Console Input (CI) is 001, the keyboard.

7|

Console Input is a class of input operations that takes place whenever
the colorn (:) is displayed, such as inputting statement lines and commands.

Line Length

For Console Output, PRINT, and LIST class I/O0 operations a line length
can be specified with the SELECT statement. For example, if your systenm is
equipped with a 2221%¥ printer, which has line length of 132 characters, you
might wish to write a statement such as

210 SELECT PRINT 215 (132)

This will select address 215 for PRINT operations and specify the line

length of the device as 132. The effect of specifying 132 is that during

a PRINT statement the system will issue a carriage return control when the
next print element will cause the total line length to exceed 132 characters.
During Master Initialization the line length is set to 64, the width of the
CRT. Unless a line length is specified in a SELECT statement, the line
length remains at its previous value.

Summarz

The general form of the SELECT statement, insofar as we have considered
it here, is

SELECT select parameter :,select parametef:

CI device address h

co device address :(length):

LIST device address _(length)]

PRINT device address :(lenqthﬂ
where select parameter = INPUT device address }

DISK device address

TAPE device address

PLCT device address J

and
length = an integer specifying the desired line length € 256.

Notice that a single SELECT statement can effect more than one selection.
For example, you can write

10 SELECT PRINT 215 (132), CO 215 (132)

which selects address 215 for PRINT and CO operations, with a line length
of 132 characters.

NOTE:

If you select a non-existent device for CI or CO class
operations, or an invalid (non-input) device for CI,
your system becomes locked out. It must then be Master
Initialized, which will clear all program text and
variables.

Standard device addresses for the peripherals discussed in
this manual are given below:

7?7

I/0 DEVICE CATEGORY STANDARD ADDRESS
KEYBOARD 001,002,003, 004

CRT 005,006,007, 008

TAPE CASSETTE DRIVES 104,10B,10C,10D,10E,10F
LINE PRINTERS (Models 2221, 215,216

2231, 2261, 2221V)

OUTPUT WRITER (Model 2201) 211,212

DISK DRIVES 310,320,330

Normally the first address shown is assigned to the first device of that
category. For example if a system contains only one keyboard and one
CRT they are normally assigned addresses 001 and 005 respectively.

Selected addresses remain selected until replaced in any of three
vays:

1) Another SEIECT statement is executed for that class of
I/0 operations.

2) The system is Master Initialized. This reselects all the default
addresses.

3) CLEAR (EXEC) is executed. This selects the current Console Input
(CI) device for INPUT class operations, and the current Console
Output (CO) device for PRINT and LIST class operations. The other
I/0 class operations, which have been introduced in this section,
remain unchanged.

5-2 USING A PRINTER

In the last section we introduced the I/0 addressing scheme of a Wang
2200 system. In this section we want to briefly consider some of the more
important characteristics of printers. If your system is equipped with a
Model 2221w, 2221, 2231, 2231W or 2261 printer read the section below dealing
with the 2221W printer. A separate section is devoted to the 2201 Output
Writer.

Using The 2221% Printer

As we discussed in the last section, the 2221W printer must
be selected for output before it can be used. Normally, in a system with
one printer, the 2221W is assigned address 215; therefore, to select the
printer for LIST and ERINT operations you can execute a statement
such as

¢SELECT PRINT 215 (132), LIST 215 (132)

This SELECT operation readies the printer only from the programming
standpoint. Physically, paper must be mounted, the printer power must be
turned on, and tke manual SELECT switch on the printer must be depressed to
ready the printer to receive output. Do not confuse the functions of the
SELECT switch on the printer with the SELECT instruction. The printer cannot
print unless the SELFCT switch is on (illuminated), but, its being on or off
has nothing to do with whether the address of the printer has been selected
for any class of I/0 operations. For information about physically readying
the printer for operation, see your printer reference manual. One programming
note, though: you shculdn't select a line length greater than the width of

7>

the currently mounted paper.

Once a printer is selected for LIST operations, if you enter a progranm,
and key

¢LIST (EXEC)

the program listing is printed cn the printer, instead of appearing on the
CRT. It appears exactly as it appears on the CRT, except that a line of more
than 64 characters can he continued on a wider line, instead of being broken.

There is one major difference between the way a 2221V type printer
outputs PRINT statements, and the way the CRT does. To appreciate this,
enter and execute the following program.

10 SELECT PRINT 005
20 N=N+1

30 PRINT 24NW;

40 IF¥F N« 20 THEN 20

the result appears as follows on the CRT.

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
163848 32768 65536 131072 262144 524288 10u8576

Now change statement 10 to
10 SELECT PRINT 215 (132)
Fxecute the prcgram with full-width paper mounted. Nothing is printed.

Nothing is printed because the printer doesn't print each character as
it receives it. It waits until the CPU tells it that an entire line is
complete, meanwhile keeping the characters it receives in a buffer. The
buffer is simply a rlace for tempcrarily storing characters until the signal
to print the line is received. The signal it awaits from the CPU is a carriage
return code.

Now, looking back at our example, we see that since line 30 ends with a
semicolon (3), and the line length does not exceed 132 characters, a carriage
return is never issued by the CPU; hence, the buffer contents are never
printed.

To print the buffer, which still contalns the output from this porogranm,
add this line to your program

50 PRINT
and key RUN 50 (FXEC).

Statement S0 issues a carriage return code. This code says to the
printer "print the ccntents of the buffer and advance the paper one line". 1In
this case, the tuffer contents had been there since the last execution of the
program. If you rerun the program with RUN (EXEC), the addition of statement
50 will now let the program function as it shoulad.

As a programmer it is your responsibility to ensure that the output from
a PRIVT statement is actually printed. Problems are most likely to occur when
PRINT statements with trailing element separators are executed within a loop,
such as in the above example. By contrast any PRINT statement without a

7¢

semicolon or comma at the end will always print the buffer.
Now change the example program to print in zone format

10 SELECT PRINT 215 (132)
T 20 N=N+1

30 PRINT 2%VW,

40 IF N<€ 20 THEN 20

50 PRINT

The output from this appears in 8 zones across the width of the printer. Just
as with the CRT, the zones are 16 characters wide, only now there are more of
them. If line 50 is omitted from the program above, two lines of output will
be printed, because the CPU automatically issues a carriage return when a line
is filled; however, without statement 50 to output the carriage return code,
the last line is nct printed.

The 2201 Outgput Writer

The 2201 Output Writer must be selected for output before it can be
used. Normally in a system with just one 2201, the 2201 is assigned address
211. Therefore, to select the 2201 for LIST and PRINT operations you can
execute a statement such as:

+ SELECT PRINT (157), LIST (157)

The carriage width of the 2201 is 157 characters; therefore, 157 is the
) raximum line length which should be used in a SELECT statement.

The select operation shown above readies the output writer only from the
programming standpoint. Physically, paper must be mounted, power must be
turned on, and the MANUAL/AUTO switch set to AUTO. For information about
physically readying the Output Writer to receive output, see the 2201
Reference Manual.

With the Output Writer selected for LIST operations, if you enter a
program and key

¢ LIST (EXEC)
your program listing is typed on the Output Writer.
The standard typing element on the 2201 is Prestige Elite 72. The

character set of this element causes three characters to print differently on
the Output Writer than they do on the CRT.

CRT OUTPUT WRITER
< C
>]
+ '

The 2201 Output Writer has a left margin control above the keyboard.
This can be used to set the left margin to any carriage position. However,
if it is set to any position other than 0, during AUTO operation the TAB{()
parameter will not tab to column positions as marked on the front of the 2201.
Rather, the position of the left margin barrier will function as column position
0, and TAB() operations will be displaced accordingly.

Review of Chapter 5

75

Every input cr output device in your system has a unigque "device
address". The three character device address is the device's
identification for the processor. '

Device addresses are set by your Wang Service Representative at the
time the system is installed. Conventional device addresses are:

CRT 005

Keyboard 001

Tape Cassette Drives 10a, 10B, 10C...10F
Printer 215

Output Writer 211

Disk Drives 310, 320, 330

Bach input or output operation must take place at a partiéular device
address.

For the purpcse of determining the device address for an operation,
input and output operations are grouped into classes. Each class has
a device address associated with it. When the processor must execute
an input or output operation it determines what class the operation
falls into, and executes the operation at the device address
associated with that class. The I/O classes are:

Console Input (CI) LIST
Console Output (CO) PRINT
TAPE PLOT
DISK INPUT

During Master Initialization, the processor automatically associates
device addresses with each I/0 class. At any time, the user nmay
change the device address associated with a particular I/0 class.
This is done by means of a SELECT statement. For example,

10 SELECT LIST 215

)

To cause output from the PRINT statement to appear on a printer rather
than a CRT, a SELECT statement such as

SELECT PRINT 215
must be executed.
On the 2221w, 2231w, 2231, 2221, and 2261 model printers, a line
is printed only when a carriage return code is received, or the line
is filled. Therefore, if PRINT statementsend with a comma or
semicolon, a blank ERINT statement may be needed to issue the carriage
return code.

Line length can be set by including a line length parameter in the
SELFCT statement. For examgle,

10 SELECT PRINT 215 (132)

132 is the line length.

76

CHAPTER 6 FUNCTIONS

6-1 INTRODUCTION

Wang 2200 systems have a built-in capability to evaluate a variety
of methematical functions. Each function is evaluated for a single given
quantity, called its "argument". For example, the function SOR() yields
the square root of its argument. If an argument of 25 is supplied, the
function

SOR (25)
is equal to 5.
Functions are not BASIC statements by themselves; rather, they can
be used within a BASIC statement wherever an expression can be used. The
argument value of the function is supplied by an expression. Therefore,
a function can appear within the argument of another function. For example,
LOG (2+TAN (R))

There is no limit to this ™nesting" of functions.

Additional functions, to supplement the built-in functions,
can be created in a program by using the "define function" statement, DEFFN.

The built in functions that find general use in both commercial and
technical agpplicaticns are discussed in Section 6-2. Most of the functions
discussed in Sections 6-3 and 6-4 are principally used in programming
technical applications. Section 6-5 introduces the DEFFN statement, and
should be of general interest.

6-2 THE INTEGER, ABSOLUTE VAIUE, AND SIGN FUNCTIONS

The Integer Function

The form of the integer function is:
INT (expression)

The INT function yields the whole number (integer) with the greatest value
less than or equal to the value of the expression. For example, INT(2.5) is
equal to 2; INT(l4.76) is equal to 14. Carefully examine the results of this
program: .

10 PRINT "LINE 10", INT(3.5), INT(2*%3.5), INT(3.5)%*2
20 PRINT "LINE 20", INT (-3.6)
30 PRINT "LINE 30", INT(8)

yields
LINE 10 3 7 6
LINE 20 -4
LINE 30 8

Notice in particular that INT(-3.6) is -4 not -3.

27

The Absolute Value Function

The form of the Absolute Value Function is:
ABS (expression)

The ABS function yields the absolute value of the expression. Absolute value
of Q is the value of Q if QO is zero or positive, and -Q if Q is negative.

For example,
10 PRINT ABS(-4.92), ABS(4.92)
20 PRINT ABRS (3%-4.2%2)
30 PRINT ARBS(0)
yields
4.92 4.92

25.2
0

The Sign Function
The form of the sign function is
SGN (expression)
SGN() is defined by
If Q» 0, SGN(Q) vields 1
If 0 = 0, SGN(Q) yields O
If 0 & 0, SGN(Q) yields -1
For example,

10 PRINT SGN(-3.1416), SGN(7%*8-56)
20 PRINT SGN(11370.2)

yields

-1 0
1

Some Simple Uses of INT, ABS, and SGN Functions

In your ¥Wang system division is always carried out to the full 13 digits
of precision. Sometimes, however, you may want a whole number result
(quotient) and a remainder. For example, when dividing 19 by 3, you may want
an answer such as "6, remainder 1" rather than 6.333333333333.

The problems that require this type of result are often called problems
in "modulo arithmetic". To choose a very simple example suppose you want to
te able to enter some number of inches, and want to convert the entered number
to feet and inches. If you simply divide the entered number by 12, you will
obtain a whole number and decimal fraction, whenever the entry isn't a
multiple of 12. What you want is the whole number portion of this quotient,
and a whole number remainder. The following program uses INT to recover the
integer portion of the quotient, and then uses that result to calculate the
remainder.

79

Example 6.1 Using INT() To Obtain Quotient and Remainder

10 REM ILLUSTRATION OF USE OF INT FUNCTION

20 REM CCNVERT INCHES TC FEET/INCHES

30 INPUT "NO. OF INCHES", D

40 REM FEET = INT OF (D DIVIDED BY 12)

50 F=INT (D/12)

60 REM EXPRESSICN D-(12*F) IS THE REMAINDER IN INCHES
70 PRINT F; "FEET", D-(l2%F); "INCHES"

The conversion program shown in Example 6.1 requires that a non-negative
number of inches be entered.

In general, to obtain a whole number gquotient, for quotients that may
be either positive or negative, a means of simply truncating the decimal
fraction is needed. INT() alcne won't work. PFor example, if you divide 19
by -3, the quotient is -6.333233333333. However, INT (-6.333333333333)
equals -7, because INT yields the largest integer less than or equal to the
value. A means of simply cutting off the .333... is needed, regardless of
whether the value is positive or negative.

To do this truncation, take the absolute value of the quotient, Q
ABS (Q)
This yields a positive value. Then take the INT of this positive quantity
INT (ABS(Q)) .

Since the INT() argument is always positive, we can be sure that INT() simply
cut off the decimal fraction. Now the original sign of Q must be restored to
the value INT (ABS(Q)). The SGN{) function can be used. The expression
INT(ABS(Q)) can simply be multiplied by SGN(Q). SGVN(Q) is -1 if Q is minus.
Multiplying the positive value INT(ABS(O)) by -1 simply changes the sign. I€f
Q is positive SGN(Q) equals +1; multiplying by +1 will leave the value
unchanged. Truncated Q, call it ¢1, is as follows:

70 REM ASSIGN TRUNCATED VALUE OF Q TO Q1
80 Q1 = INT (ABS(Q)) *SGN (Q)

The following program illustrates our generalized results.
Example 6.2 Integer Quotient and Remainder Using INT(), ABS() and SG¥{)

10 REM ILLUSTRATION OF INT, ABS, AND SGN FUNCTIONS

20 REM

30 REM FOR AN ENTERED DIVIDEND AWND DIVISOR

40 REM RETURNS WHOLF NUMBER OUOTIENT AND REMAINDER

50 REM SIGN CF THE DIVIDEND IS THE SIGN OF THE REMAINDER

60 REM k¥kxk D = TIVIDEND

70 REM *%%k* DO = DIVISOR

80 REM *¥*x* C = CUOTIENT

90 REM ***x* Q1 = TRUNCATED QUOTIENT
100 REM *%*%x R = REMAINDER

110 REM

120 REM

130 INPUT "DIVIDEND, DIVISOR", D,DO
140 0=D/DO

150 REM TRUNCATE THE QUOTIENT

160 Q1=INT(ABS(Q)) *SGN ()

79

170 REM CALCULATE REMAINDER
180 R=D-(DO0*Q1)

190 REM CUTPUT RESULTS

200 PRINT

210 PRINT "DIVIDENL", D
220 PRINT "DIVISOR", DO
230 PRINT "OQUCTIENT",Cl
240 PRINT "REMAINDER",R
250 PRINT "PROOF",R+Q1l*DO

* ¥ ABS N IF...THE

In Section 3-5 we mentioned the possibility of exploiting the logic of
arithmetic in an exrression tc test "multiple" conditions in an IF...THEN
statement, and gave as an example:

SO0 IF W*X*Y*Z = 0 THEN 480

This is the equivalent of saying "If W or X or Y or Z equals O then 480."
Suppose, though, we wanted to effect a branch only if all the variables are
zero, i.e., "If W and X and Y and Z equal 0." ¥V¥ith the Absolute value
function and addition we can conveniently simulate the "and" connective,

as follows:

50 IF ABS (W) +ABS (X) +ABS (Y) +ABS (Z) =0 THEN 480

If vwe want to effect a branch to 480 on the condition, "J=4 and K=6*Q", we can
write the single statement

IF ABS(J-U) +ABS (K-6%0)=0 THEN 480

Suppose we want to test a variable X, to see if it lies within the range
-3&€ X €3, and branch to 200 if it is within this range. We could write

40 IF -3 »=X THEN 60
50 IF X< 3 THEN 200
60 REM OUTSIDE RANGE

200 REM WITHIN RANGE

However, using the ABS function we can perform this test in one
statement:

40 IF ABS(X)< 3 THEN 200
S0 REM OUTSIDE RANGE

200 REM CK

We are able to test in this fashion because the midpoint of the
range lies exactly at zero. However, any continuous range can be
"moved" so that its midpoint is 0, and then tested in this manner with
the ABS function.

For example, suppose the conditions are the same as above except that
the range is 1 <=X <« =6. The midpoint of this range is 3.5. In either
direction from this wmidpoint, 2.5 units away, lies a range boundary, (i.e.,
3.5 +2.5 = 6, 3.5 -2.5 =1). Therefore, for X-3.5 the boundaries are +2.5
and -2.5 with 0 as midpoint. Cur test becomes

¥o

40 IF ABS (X -3.5)< = 2.5 THEN 200
S0 REM OUTSIDE RANGE

200 REM CK

In general, if the acceptable range of X is L€ X &£ U, then the
statenment

50 IF ABS (X- (U+L)/2)<(U-1)/2 THEN 200

effects a branch to 200 if X is within the range.

6-3 9T and The Randcm Number Function

The value9r, to 13 significant digits,. is permanently stored in the
Wang 2200 system and may be incorporated into any expression by depressing
the key marked M or keying #PI. BRegardless of how it is entered it always
appears on the screen as #PI. For example,

10 PRINT #PI, U4*#PI
produces
3.14159265359 12.56637061436
The Rapdom Number Functicn

The random number function produces random values between 0 and 1.
The form of the function is:

RND (expression)

In the RND function, there are only two significant argument values, zero
and non-zero.

The RND() function may be thought of as a means for extracting a randonm
number between 0 and 1 from a fixed "list"™ of such numbers. Each time RND()
is executed, with any non-zero argument, the next number on the "list" is
supplied. Thus, the first time RND() is executed after Master Initialization,
with a non-zero argument, it yields the first random number in the list; the
second time it yields the second, etc. The value of the argument is
irrelevant to the value vielded by RND(). As long as the argument is
non-zero, RND{() gets the next numter in its "list".

If the value of the RND() argument is zero, the "zeroth" randonm
number is produced, the "1list" pointer is reset, and the next non-zero
argument RND() yields the first random number in the list.

The following program illustrates the operation of RND(0). The values
produced by lines 10-30 presume that RND() has not been executed after
to Master Initialization.

10 PRINT END(1)
20 PRINT RND(1)
30 PRINT RND(1)
40 PRINT END(0)
50 FRINT RND(5)

8/

60 PRINT RND (5)
70 PRINT END(11)

Executicn produces:
« 22762279575
39869185804
« 391328921446
. 89459771698
« 22762279975
- 39869185804
391328921446

- Notice that the first three values are identical to the last three,
which follow RND(0). <RND(0) has reset the "list",

RND (0) is useful in debugging programs that use RND() since it allows
the same results to be produced each time the program is run.

Using RND{() To Produce Random Integers
To produce a random integer R such that
X& R <Y
a statement of the fornm
100 R=INT ((RND (1) * (Y+1-X) +X)

can be used. For example statement 80 generates a random integer, R, between
1 and 50:

80 R = INT((RND(1)*u49)+1)

6-u THE TRIGONOMETRIC, IOGARITHMIC, AND SQUARE ROOT FUNCTIONS

The trigonometric, logarithmic, and square root functions are shown
in the table telow. .

Function Meaning

SIN (expression) Find the sine of the
expression

COS (expression) Find the cosine of

the expression

TAN (expression) Find the tangent of
the expression

ARCSINkexpressicn) Find the arcsine of
the expression

ARCCOS (expression) Find the arccosine of
the expression

ARCTAN (expression) Find the arctangent

32

of the expression

10G (expression) Find the natural
logarithm of the
expression

EXP (expression) Find the value of e

raised to the value
of the expression

SOR (expression) Find the square root
of the expression

For all the trigonometric functions the argument is treated as
radians, unless degrees or grads has been selected in a SELECT statement.
To SELECT degrees execute:

$SELECT D
prior to calculations, or include SELECT D as a program statement before
calculations. Degree measure is then assumed for all trig functions until

a SELFCT statement selects radians or grads, or the system is Master
Initializead.

"R" and "G" in a SELECT statement specify radians and grads respectively.

In addition to "ARCTAN", the notation ATN (expression) may also be used
to specify the arctangent function.

For any value, V, V8.5 is the equivalent of SOR(V); however, SOR(V)
executes in slightly less time and is more readable.

6-5 THE DEFFN STATEMENT

The "define function" DFFFN, statement allows you to define, within a
program, additional functions of one variable beyond those discussed in the
preceding sections. Defined functions may be used anywhere in the progranm,
exactly the way the built-in functions are used.

For example you might want to define the functions, hyperbolic sine,
sinh, and hyperbolic cosine, cosh. This can he done as follows:

Example 6.3 Defining SINH and COSH With a DEFFN

1010 REM DEFINE HYPERBOLIC SINE (SINH)
1020 DEFFN S(X) = (EXP(X) - EXP(-X))/2
1030 REM DEFINE HYPERBOIIC COSINE (COSH)
1040 DEFFN C(X) = ((EXP(X) # EXP(-X))/2

The letter that follows the keyword DEFFN, "S" and "C" in the example is
the name you give to the function. Any letter or digit can serve as a
function name. To use a defined function in the program in which it appears,
you refer to it by name. For example, FNC(8) would be the hyperbolic cosine,
as defined by line 1040 above, at the argqument value 8. FNS(25) is the
hyperbolic sine of 25 defined by line 1020. In each case the letter following
WFN" is the name of the functicn.

When the system encounters an FN reference to a defined function, it

83

first evaluates the argument (any expression may be used) then finds the
proper DEFFN and uses the argument value as the value of the dummy variable
in the DEFFN. In the above example the dummy variable is X.

The DEFFN statement can appear anywhere in a progranm,
without regard to where the references to the function appear. ¥When
encountered in the normal sequence of execution, the DEFFN statement has no
effect; it only comes into play when the function it defines appears in
another statement.

In effect, the DEFFN statement saves you the trouble of constantly
reentering frequently used expressions, and saves the memory space that
these duplicate expressions would occupy.

The general form of the DEFFN is as follows:

DEFFN 2 (v) = expression
¢
Keyword Function Dunmy
Name Variable
where: a is any letter or digit

v is any valid numeric variable form, i.e., A, Z, AO0 29, etc.

The general form of the reference to a defined function is:

FN a (expression)
2 2
,.‘—h o . .
Function ‘Expression whose value is given to the)
Name dummy variable in the DEFFN statement.

The variable V in the DEPFN statement form is called a dummy variable
because it is simply a place holder. Evaluation of the function has no
effect on a true variable of the same name, used elsewhere in the progranm.
Notice that in Example 6.3 the same dummy variable, X, is used in
both DEFFN's.

The expression in the DEFFN statement may contain another defined
function, provided that the other function does not refer back to it. The
system can evaluate up to five levels of defined functions nested within
defined functions.

Some of the operations described in Section 6-2 can be incorporated
into DEPFN statements. For example you might wish to define the truncate
function (see lines 150, and 160 cf Example 6.2)

90 REM TRUNCATE FUNCTIONWN
100 DEFFN T(X) = EEE(ABS(X) *SGN (X)

. . O\.}»L\m,-w,<%7 Y e, et OIS
Many applications reqéire that values be rounded to two decimal places.
The following function accomplishes this:

Example 6.4 A DEFFN for Rounding to 2 Decimal Places

70 REM ROUNT TO TWO CECIMAL PLACES
80 DEFFN R(X) = SGN(X)*INT (ABS(X) *100+.5) /100

With this DEFFN in a program, to round any value in a variable, V,
you can write a statement such as:

8¢y

60 V = FNR(V)
or if the value of the variable is simply being printed you could write

470 PRINT FNR (V)

85

Review of Chapter 6

Functions can be used within BASIC statements wherever expressions can
be used.

Functions are evaluated at a single given quantity, called the

"argument". Any expression may be used to specify an argument.

Functions may be nested in the arguments of other functions. There
is no limit to this nesting.

The value % may be used in an expression by keying W or #PI.
After Master Initialization all trigonometric arguments are considered
to be in radians. The unit of measure can be changed at any time
with a SELECT statement.

SELECT D selects degrees

SELECT R selects radians

SELECT G selects grads
The DEFFN statement is used to define functions of one variable for
use in a program. For example, this statement defines a function
named "R", which rounds a value to 2 decimal places.

80 DEFFN R(X) = SGN (X)*INT(ABS(X)*100+.5) /100

This defined function can be used anywhere an expression can be used.
It is used in this form

FNR (expression)

where R is the name of the function.

%6

LN

CHAPTER 7: LOOPS

"7-1 THE PARTS OF A 100FP

A block of statements that is executed repeatedly is called a "loop".
Loops are one of the most important and widely used program structures.
The inventory program, the factorial program, and the powers-of-two program
(Examples 2.1, 2.2 and 3.2) all contained loops.

Unlike the loops in factorial and powers-of-two programs, the
inventory program locp never ends. It has no built-in "exit"; to end the
program you must key RESET. In this chapter we will be considering the ’
more common type of loop, that has an "exit" built in. Let's look at a
povers-of-two program again to see what makes up a loop.

Example 7.1 A loop To PFrint Povers of Two

110 REM 1LOOP BEGINS
120 PRINT 24N;

130 N=N+1

140 IF W&=20 THEN 120
150 REM LOCF ENDED
160 PRINT "LONE"

Keying RUN (EXEC) sets ¥ to zero. Statement 120 does all the "useful
work" of the loop, which simply consists of printing the value 24V,
Statement 130 changes the value of N, so that the next time through the
loop a new value will be printed. 140 asks, "Repeat the loop?" If the
answer is "no", it lets the normal sequence of execution prevail,
thereby providing an exit from the loop.

In general, four components of a loop can be distinguished, though not
all loops exhibit all of them. The functional parts of a loop are:

1. Set up: cperations that take place before the loop actually begins,

but which are necessary if the loop is to execute properly. This
includes, principally, setting any loop counters to their proper
initial values, In Example 7.1, RUN(EXEC) did this job.

2. Body of the lLoop: consists of all the processing which is to be
repeatedly performed. (Line 120 in FExample 7.1).

3. Modification of a Key Variable: At least one key variable, to
be tested at "Test/Exit", is assigned a new value. Frequently this
takes the form of adding a quantity to the key variable's old
value; in which case the key variable is called a "counter."
In Example 7.1 line 130 modifies the key variable N.

4. Test/Exit: the key variable, or variables are tested to determine
whether the loop shculd be repeated or exited. (Line 140 of
Example 7.1.)

Let's look at a program that uses a loop, and clearly shows all four
loop components. Suppose we want to see how varying the interest rate
affects monthly mortgage payments, for a given mortgage amount and repayment
term. We would like the calculations to be performed for 5%, 6%, 7%...12%
interest rates. The formula for calculating monthly payment is:

82

I
M = {Eja(k:o)I)-ﬁ

A EYY

The program shown in Example 7.2 achieves the desired results. The four
parts of a loop are identified by REM statements with asterisks. Enter and
execute the program. (If your system doesn't have a printer, eliminate
statement 160.)

Example 7.2 Monthly Payments as Interest Varies From 5% to 12%

110 REM ($MORT1) MONTHLY PAYMENT FOR INTEREST 5% TO 12%
120 REM OFERATOR ENTERS VALUES FOR PRINCIPAL, TERM

130 INPUT "ENTER PRINCIPAL"™,P

140 INPUT "ENTER MORTGAGE TERM IN YEARS", T
150 REM PRINT HEADINGS

160 SELECT PRINT 215 (80)

170 PRINT ,, "INTEREST","MONTHLY"

180 PRINT "PRINCIPAL"™, "TERM","RATE","PAYMENT"
190 ERINT

200 REM #*%%% TLOOP SET-UP ks

210 1=5

220 REM #**%% BODY OF LOOP *%*x%

230 M=P* (I/1200)/(1-(1+I/1200)4(-12*T))

240 REM ROUND M TO 2 DECIMAL PLACES

250 M2 = SGN (M) *INT (ABS (M) *100+.5) /100
260 PRINT "$":;P, T;"YEARS", I; "%n, ngu. M2
270 REM *%%% MODIFY KEY VARIABLE k%%
280 I=I+1

290 REM **%% TEST/ REPEAT LOOP? %%

300 IF I<= 12 THEN 230

310 REM LOCP COMPLETE

320 PRINT

330 ERINT "---=- DONE —----- "

340 SELECT ERINT 005

In the body of the loop, statement 230 uses the formula given above to
calculate the monthly payment and assigns the calculated amount to M.
250 then rounds M to 2 decimal places using the formula given in Section
6-5. These two operations could have been combined into one; the
resultant exgression could have been placed as the last print element in
260. However, the combined formulas would have been cumbersome and
confusing. The following is an example of the program's output:

INTEREST MONTHLY
PRINCIPAL TERM RATE PAYMENT
$ 20000 30 YEARS 5 % $ 107.36
$ 20000 30 YEARS 6 % $ 119.91
$ 20000 30 YEARS 7% $ 133.06
$ 20000 30 YEARS 8 % $ 1u46.75
£ 20000 30 YEARS 9 % % 160.92
$ 20000 30 YEARS 10 % $ 175.51
$ 20000 30 YEARS 11 % $ 190.46
$ 20000 30 YEARS 12 % $ 205.72
—-=-== DONE =-=---

In Examples 7.1 and 7.2 the key variable is a kind of counter.

88

It "counts" the number of times the loop has been processed. 1In general, if
a fixed quantity (positive or negative) is added to a variable each tinme
through a loop, and the value cf this variable determines when processing

is complete, then the variable is called a "counter". Loops controlled by
counters are so frequently used, that BASIC has a pair of statements designed
to make it easy to program them. These statements are FOR...TO and NEXT.

7-2 CONTROLLING LOOES WITH FOR...TO AND NEXT

The FOR...TO and NEXT statements are always used together, and make
programming counter controlled loops an easy, straightforward operation.
The program shown in Example 7.3 performs identically to the Print
povers of 2 program shown in Example 7.1 It uses FOR...TO and NEXT to
control the 1loop.

Example 7.3 Powvwers of Two Using FOR...TO and NEXT

110 REM LOOE BEGINS

120 FOR N = 0 TO 20
130 PRINT 24N;
140 NEXT N

150 REM 100P ENDED

160 ERINT "DONE"

FOR...TO and NEXT mapk the boundaries of the loop. FOR...TO specifies
the counter variable, assigns its initial value, and specifies the range
of values over which the loop is to be repeated. NEXT represents the end
of the loop. NEXT decides whether or not to repeat the loop. 1If the loop
is to be repeated, NEXT adds 1 to the counter variable, and branches back to
the statement following FCR...TO.

Let's look at the step-by-step execution of the loop in Example 7.3.
The FOR...TO statement at line 120 of the program does this:

l. It designates N as the variable that contains the counter.
2. It assigns zero to N. Zero is N's initial value for the 1loop.

3. It says this loop to be repeated as long as N is less than or
equal to 20. It saves this information in a special part of
memory for use by the NEXT statement.

Statement 130 makes up the body of the loop. Of course, in other
programs the processing that takes place inside a loop could require many
statements. An unlimited number of statements may appear within a FOR...
TO/NEXT loop. (A FCR...TO/NEXT loop may contain branching statements, and may
even contain other loops within itself. We'll look at these two possibilities
in Section 7-4.)

Despite its simple appearance, the NEXT statement completely
controls the repeated of the loop. The keyword "NEXT" is always followed
by the variable that is being used as the loop counter. The variable serves
as a place to keep the counter, and as a name pointing to the loop's
beginning. Thus, the "N" in NEXT N says, "This loop has its counter in N
and begins at the FOR ¥=... TO... statement.

When the system executes the NEXT statement of Example 7.3 it does
this:

29

It evaluates N+1.

1. If N+1 is less than or equai to 20, the value N+1 is assigned to
N and a tranch to line 130 is made. V¥ote that the branch is made
to tle statement which follows the FOR...TO statement.

2. If the sum N+1 is greater than 20, NEXT N decides "The looping is
complete"., Since the data saved by step 3. of the FOR...TO
statement is no longer needed, NEXT clears it from the "special
part of memory" where it was saved. NEXT then exits the
loop by letting the normal sequence of execution prevail. (Notice
that when the loop ends the value N+1l is not assigned to
N; N retains the last value it had which was less than or equal to
20.)

We can see that the single statement NEXT N in Example 7.3 achieves
the same result as statements 30 and 40 of Example 7.1l. NEXT N can execute
only because the FOR...TO statement has saved the maximum value of the
counter, and marked the beginning of the loop. WNEXT can never be used alone;
the system must always have previously executed a FOR...TO.

You may notice that FOR...TO and NEXT didn't eliminate any statements in
this povwers of two program. This is true, but only because the initial value
of ¥ is 0, which let Example 7.1 depend upon RUN (EXEC) to do the set-up.
Usually, this is not the case. Example 7.4, which uses FOR...TO and NEXT in
the monthly payment problem, illustrates the real convenience of these
statements. However, an important feature of FOR... TO is that it says
clearly to anyone lccking at the program listing, "A loop begins here, and is
executed this many times."

¥Yow look at how the problem of Example 7.2 is solved in Example 7.4
using FOR...TO and NEXT. Once again, we've marked off the parts of the
loop with asterisked REM statements.

Example 7.4 Monthly Payment Problem with FOR...TO and WEXT

100 REM ($MORT2) MONTHLY PAYMENT FOR INTEREST 5% to 12%
120 REM OFERATOR ENTERS VALUES FOR PRINCIPAL, TERM

130 INEUT "ENTER PRINCIPAL",P.

140 INPUT "ENTER MORTGAGE TERM IN YEARS"™, T

150 REM PRINT HEADINGS

160 SELECT PRINT 215 (80)

170 FRINT ,, "INTEREST", "MONTHLY"

180 PRINT "PRINCIPAL"™, VWTERM"™, “RATE", "PAYMENT"

190 EFINT

200 REM **%* LOOP SET-0P *%*x*

210 FOR I = 5 TC 12

220 REM #**%% BODY OF LOOP *k*x*

230 M=P* (I/1200) /(1-(1+4I/1200)4 (-12*T))

240 REM ROUND

250 M2 = SGN(M)*INT (ABS(M)*100+.5) /100

260 PRINT wgw;™, T; "YEARS", I; “%n, ngn. M2
270 REM #*%**%x MODIFY KEY VARIABLE AND TEST / EXIT ***x
280 NEXT I

310 REM LOOF COMPLETE

320 PRINT

330 PREINT "—-—-- DONE ----- "

In Example 7.4 the statement FOR I = 5 TO 12 designates the variable I
as the counter, and assigns it an initial value of 5. It also saves in a

qo

special part of memory the information, "The following loop is to be
reexecuted until I is greater than 12." The FOR I = 5 TO 12 statement sets the
stage, both for first time through the loop, and for the successful operation
of the NEXT I statement.

The body of the loop hasn't changed at all from Example 7.2 to BExample
7.4, but the REM's and spacing have been altered slightly to accord with
conventional indentation.

The operation of testing the key variable and modifying it are now
performed by the single NEXT I statement. This replaces lines 280 and 300
of Exanmple 7.2.

Reversed Direction in The FOR...TO Statement

Suppose that in Example 7.4 we accidentally reversed the FOR... TO
statement so that it reagd,

210 FOR I = 12 TO 5

This statement is acceptable to the system, but as it stands it doesn't
make much sense. By repeatedly adding 1 to an initial value of 12, the
counter would never get to 5. The normal processing of FOR...TO and NEXT will
cause this "loop" to be executed once. The FOR statement assigns 12 to I, and
saves the information for NEXT that the loop is to be repeated until I is
greater than 5. The body of the loop will process normally, with I=12. When
the NEXT I statement.is encountered, it tells the system, "If I + 1 is greater
than 5, looping is complete; continue with the normal sequence of execution."

Of course, since I was set to 12 at the beginning, I + 1 is immediately

greater than S. Thus, the "loop" is executed just once.

on the other hand, suppose that you really want the counter to assume
decreasing values from 12 to 5 in steps of -1. This is a plausible operation,
and one which is easily performed by adding the STEP specification to the
FOR...TO statement. STEP is discussed in Section 7-3.

%%k Exit Values of The Counter Variable

The programs shcwn in 7.3 and 7.4 do not do exactly what 7.1 and 7.2
do, though in terms cf the purpose of 7.1 and 7.2 they are the same. To
appreciate the difference, add to Examples 7.1 and 7.3 the line

170 PRINT ¥

Now execute the programs. You will find that 7.1 prints "DONE" followed by
21, though 7.3 prints DONE followed by 20. The reason for this is that NEXT,
used in 7.3, first compares ¥N+1 to 20, and only if the loop is to continue,
that is, only if N+1<=20, does it assign N+l to N. By contrast 7.1 first
assigns the newv value, then tests if, for the new N, N&=20. To do exactly
what the NEXT does in 7.3, 7.1 would have to look like this:

Example 7.5 Exact Duplication of NEXT Operation

110 REM LOCE BEGINS

120 PRINT 2 N;

130 IF ¥+1 > 20 THENW 170
140 K=N+1

150 GCTO 120

160 REM LOOF ENDED

170 PRINT "LONE"

i1

Questions For Review

How many times is statement 30 executed in this program?
10 REM PRINT SUM OF INTEGERS 6 TO 16
20 FOR K=6 TO 16 :
30 T=K+T
40 NEXT K
50 PRINT T
ansvwer: 11 tinmes
How many times is statement 20 executed in the above program?
ansver: once
If statement 20 in the above program were changed to:
20 FOR K=-16 TO -6
how many times will statement 30 execute?
ansvwer: 11 times
If statement 20 were changed to
20 FOR K=-6 TO -16
how many times will 30 execute?
answer: once
What would be printed if we added the 1line
60 PRINT "VALUE OF K="; K

to this program? answer: VALUE OF K = 16

2,

7-3 STEP and the General Form of the FOR...TO Statement

STEP

In the example programs of the last section, the NEXT statement added
1 to the counter, each time through the loop. Though this is the most common
programming requirement, often it is desirable to have some other value
added to the counter each time through. This can be accomplished by adding a
STEP specification to the FOR...TO statement. When a STEP specification
is added, the value that follows the keyword "STEP" is added to the counter
each time through the lcorg.

Example 7.6 is the same as Example 7.4, except that the FOR...TO
statement at line 210 has been replaced by:

210 FOR I=12 TO 5 STEP-1
Example 7.6 Illustration of STEP

110 REM ($MORT6) MONTHLY PAYMENT FOR INTEREST 12% TO 5%
120 REM CPERATOR ENTERS VALUES FOR PRINCIPAL, TERM

130 INPUT "ENTER PRINCIPAL"™,P

140 INPUT "ENTER MORTGAGE TERM IN YEARSY, T

150 REM EFINT HEADINGS

160 SELECT PRINT 215 (80)

170 PRINT ,,"INTEREST","MONTHLY"

180 PRINT "PRINCIPAL"™, "TERM","RATE","PAYMENT"

190 PRINT

200 REM *%%% LOOP SET-UP *%*k%

210 FOR I = 12 T0 5 STEP -1

220 REM #*%%%x BODY OF LOOP *%k%x

230 M=P* (I/1200) /(1-(1-I/1200) p (-12*T))

240 REM ROUND

250 M2 = SGN (M) *INT (ABS (M) *100+.5) /100

260 PRINT "$";P, T;"YEARS", I; "gn, ngns M2
270 REM *%*%x%x MODIFY KEY VARIABLE AND TEST / EXIT ***x
280 NEXT I

310 REM LOOP COMPLETE

320 PRINT

330 PRINT f'===== DONE =——===t

The FOR...TO statement does the loop set-up. It basically says this:
"For the first time through, set I at 12. Then, before each repetition of
the loop, NEXT should subtract 1 from I. If I-1 is less than 5, it should
discontinue lcoping." Thus, I, interest, assumes the successive values
12, 11, 10, 9, 8, 7, 6, 5. When executed this program produces the following
results:

INTEREST MONTHLY
PRINCIPAL TERM RATE PAYMENT
$ 35000 20 YEARS 12 % $ 385.38
$ 35000 20 YEARS 11 % $ 361.27
$ 35000 20 YEARS 10 % $ 337.76
$ 35000 . 20 YEARS 9 % $ 314.9
¥ 35000 20 YEARS 8 % £ 292.75
$ 35000 20 YEARS 7% $ 271.35
$ 35000 20 YEARS 6 % $ 250.75

3

$ 35000 20 YEARS 5% $ 230.98
----- DONE -----

¥hat has changed in the operation of FOR...TO/NEXT with the addition
of the STEP parameter?

1. The FOR...TO statement saves the STEP value -1 in the special
part of memory for use by NEXT. (Without STEP, NEXT will assume
the value to be added is +1.)

2. Since the sign of the STEP value is negative, the value after
the keyword "TO" will be approached from the high side, as the
loop is executed. That is, I approaches 5 in the following
manner: 12, 11, 10, 7, 6, 5. Therefore, NEXT I will test
if I+(-1) is less than 5 to see if the looping is complete.
(Recall that in the examples of the last section (which had an
implied step of +1) NEXT I tested if I+l was greater than the
value which follcwed the keyword "TO".)

Notice that NEXT gets all its signals, so to speak, from the
FOR...TO statement; line 280 is the same in Examples 7.4 and 7.6.
POR...TO...STEP does all the setup work for the loop; NEXT does all the
processing.

Fractional STEP Values

Now lets look at another use of the STEP function. Suppose, instead .
of the mortgage table produced by Example 7.4, we would like to)
calculate the monthly payment for each 1/4 of 1% increase in interest
from 7% to 9%. Changing line 210 is again all that's needed. The following
substitution does the job:

210 FOR I=7 TO 9 STEP .25
(If you save this prcgram don't forget to change the REM statement
at line 110. REM's should always be accurate for the program version in
which they appear.)

The results of the modified program look like this:

INTEREST MONTHLY
PRINCIPAL TERM RATE PAYMENT
$ 30000 20 YEARS 7% $ 232.59
$ 30000 20 YEARS 7.25 % $ 237.11
$ 30000 20 YEARS 7.5 % $ 241.68
$ 30000 20 YEARS 7.75 % $ 246.28
$ 30000 20 YEARS 8 % $ 250.93
$ 30000 20 YEARS 8.25 % $ 255.62
$ 30000 20 YEARS 8.5 % $ 260.35
$ 30000 20 YEARS 8.75 % $ 265.11
$ 30000 20 YEARS 9 % $ 269.92
----- DONE -—=-=--

The General Form of The FOR...TO Statement

The general form of the FOR...TO statement is

¢

FOR v =
where v

Yariables and Ccmplex Bxrressions In The FOR...TO Statement

Thus far, all of the examples have used constants to specify the range of
the loop, and the step value; however, as can be seen from the above general
form, any expression can specify these values. The FOR...TO statement
evaluates the expression, and sets up a loop with the resultant values.

expression TO expression S_STEP expression}
= a numeric variable.

For a simple application of this, we can put variables into
the FOR...TO statement of our mortgage problem. If we then let the
operator enter the values of these variables, the program is considerably
more flexible. This program is shown in Example 7.7.

Example 7.7 Using Variables in the FOR...TO Statement

110 REM ($MORT7) MONTHLY MORTGAGE PAYMENT - ANY INTEREST RATES
120 REM OPERATOR ENTERS VALUES FOR PRINCIPAL, TERM

130 INEOUT "ENTER PRINCIPAL™,P

140 INPUT "ENTER MORTGAGE TERM IN YEARS", T

150 REM OPERATOR ENTERS STARTING RATE, INCREMENT, ENDING RATE
160 INFUT "ENTER STARTING INTEREST PERCENTAGE"™, A

170 INPUT "ENTER THE INTEREST INCREMENT", C

180 INPUT "ENTER ENDING INTEREST PERCENTAGE", B

190 REM EFINT HEACINGS

200 SELECT PRINT 215 (80)

210 ERINT ,, "INTEREST","MONTHLY"

220 PRINT "PRINCIPAL™, "TERM","RATE","PAYMENT"

230 PRINT

240 REM *%%%* TL0OP SET-UP k%%

250 FOR I = A TO B STEP C

260 REM *%%% BODY OF LOOP k%%

270 M=P* (I/1200) /(1- (14I,/1200) 4 (-12*T))

280 REM ROUND

290 M2 = SGN(M) *INT (ABS (M) *100+.5) /100

300 PRINT "$":P, T;"YEARS", I;"%", wgH. M2
310 REM *%%% MODIFY KEY VARIABLE AND TEST / EXIT #*%%x
320 NEXT I

330 REM LOOP COMPLETE

340 PRINT

350 PRINT "----- DONE =—==—=- "

The values of A, B, and C are entered at lines 160 to 180 and used in
the FOR...TO statement at line 250.

In a similar manner FOR...TO and NEXT can be used in a slightly
modified version of the factorial problem. In Example 7.8 the upper value
is entered into N, which is then used as the TO expression.

Example 7.8 Printing a Factorial Table Using FOR...TO and NEXT

110 REM FACTORIALS FROM 1! TO N! USING "FOR...TO" , "NEXT"

120 INPUT “COMPUTE P! FOR P=1 TO* P=%, N
130 k=1 '

140 FOR P=1 TO W

150 LET K = P*K

160 PRINT "pP="; P, W"pi=r; K

170 NEXT P

180 PRINT "k¥kkk DONE *kkixn

95

The following are examples of FOR...TO statements that use more
complex expressions. The numter of times the loop is executed
depends uron the values of the variables at the time the FOR...TO
statement is executed.

FOR K = 10G (0O/N) TO 2*LOG(QO/N+1) STEP LOG(0/100)

NEXT K

FOR N = INT (ABS(El) *10+.5)/10 TO E1+10.5 STEP .5

NEXT N

Modifying FOR...TO Values Within The Loop

When using variables in FOR...TO statements, it must be remembered
that the FOR...TO statement is only executed once, at the beginning of
the loop, not each time through the loop. Therefore, the values of the
T0 and STEP expressions are fixed for the entire loop processing, even if
statements within the loop assign new values to the variables in these
expressions. This is illustrated in Example 7.9.

Example 7.9 Illustration of The Fact That STEP Value is Fixed
110 T=2

120 PRINT "START, T = ";T
130 FOR K=0 TO 8 STEF T

140 PRINT "K-";K
150 T=T+1
160 NEXT K

170 PRINT "END, T=";T
The output frcm this program is:

START, T = 2

K= 0
K= 2
K= 4
K= 6
K= 8
END, T= 7

T is 2 when the FOR...TO statement is executed. Despite the fact that T
changes each time thzough the loop, the step value is fixed at 2.

If the numeric variable that contains the counter is changed by a
statement within the loop, loop processing is affected. The program in
Example 7.10 loops endlessly, because statement 130 nullifies the effect
of the NEXT statement on the cocunter.

Example 7.10 An Endless FOR...TO/NEXT Loop
110 POP N=5 TO 15 STEP 3
120 PRINT 2x*N,
130 N=N-3

96

140 NEXT N

POR...TO/NEXT loops in which the counter variable is altered by
statements within the loop, easily become quite confusing. It is probably
best to avoid such techniques.

Branching Into The Middle of a FOR...TO/NEXT Loop

It is illegal to branch into the middle of a FOR...NEXT loop without
first executing the FOR...TO statement. An error is signalled. It is easy
to see why this cannot be executed. Since NEXT depends upon information
saved by FOR...TO, a statement such as NEXT X cannot execute unless it finds
the FOR X=...TO information that it needs.

Since NEXT depends upon information established by the FOR...TO
statement, an attempt to execute NEXT X produces an error if POR X=...TO
has not previously been executed. Therefore, a branch into the middle
of a FOR... TO/NEXT loop is illegal.

17

T-4 NESTED LOOPS AND BRANCHING WITH LOOPS

Nested loops

FOR...TO/NEXT loops can be used within FOR...TO/NEXT loops. When
loops are used in this manner they are said to be "nested."

To see hovw nested loops might be used, let's consider a new version of
our monthly mortgage payment problem. Suppose now, that in addition to
calculating the monthly payment for varying interest rates, we would like to
calculate it for a varying term as well. We would like the program to start
with a 20 year terr ard calculate the payment for 7%, 7.5%, 8%, 8.5%, 9%.
Then it should calculate it at each of these percentages for a 25 year ternm,
then at a 30 year term, then 35, then 40 year terms. The output should look
like this if a $35000 principal is entered.

INTEREST MONTHLY

PRINCIPAL TERM RATE PAYMENT

$ 35000 20 YEARS 7% $ 271.35
$ 35000 20 YEARS 7.5 % $ 281.96
$ 35000 20 YEARS 8 % $ 292.75
$ 35000 20 YEARS 8.5 % $ 303.74
$ 35000 20 YEARS 9 % $ 314.9

$ 35000 25 YEARS 7 % $ 247.37
$ 35000 25 YEARS 7.5 % $ 258.65
$ 35000 25 YEARS 8 % $ 270.14
% 35000 25 YEARS 8.5 % $ 281.83
$ 35000 25 YEARS 9 % $ 293.72
$ 35000 30 YEARS 7% $ 232.86
$ 35000 30 YEARS 7.5 % $ 244.73
$ 35000 30 YEARS 8 % $ 256.82
$ 35000 30 YEARS 8.5 % $ 269.12
$ 35000 30 YEARS 9 % $ 281.62
$ 35000 35 YEARS 7 % $ 223.6

$ 35000 35 YEARS 7.5 % $ 235.98
$ 35000 35 YEARS 8 % $ 248.59
$ 35000 35 YEARS 8.5 % $ 261.4

$ 35000 35 YEARS 9 % § 274. 4

$ 35000 40 YEARS 7% $ 217.5

$ 35000 40 YEARS 7.5 % $ 230.32
$ 35000 40 YEARS 8 % $ 243,36
$ 35000 40 YEARS 8.5 % $ 256.58
$ 35000 40 YEARS 9 % $ 269.98
————— DONE -=-——-

Obviously the interest rate goes through a complete cycle for each
value of the term. These results can easily be obtained by placing a
FOR...TO/NEXT loop, that varies the interest rate, within another FOR...
TO/NEXT loop, that varies the term. ©Note that in addition to incrementing
the term, the outer loop must also output a blank line preceding the
next group of calculations. Example 7.11 produces these results.

Example 7.11 Nested Loops In The Mortgage Problem
15

110 REM ($MORT8) ILIUSTRATION OF NESTED LOOPS
120 REM OPERATOR ENTERS VALUE FOR PRINCIPAL

130 INFUT "ENTER PRINCIPAL",P

140 REM PRINT HEADINGS

150 SELECT PBRINT 215 (80)

160 PRINT ,,"INTEREST","MONTHLY"

170 PRINT "PRINCIPAL"™, "TERM","RATE","PAYMENT"

180 ERINT

190 REM ####%####% OUTER LOOP INCREMENTS THE TERM #####3##8R44%%
200 FOR T=20 TO 40 STEP 5

210 REM '

220 REM

230 REM ***x INNER LOOP UP'S THE INTEREST RATE ¥**x

240 REM k&% AND PERFORMS THE PROCESSING *ok ok %

250 FOR I = 7 T0 9 STEP .5

260 M=P*(I/1200) /(1-(1+I/1200)4 (~12*T))

270 M2 = (SGN (M) *INT (ABS (M) *100+.5) /100

280 PRINT "$";p, T3"YEARS", I; "%v, ngns M2
290 NEXT I

300 REM *x%kXkxkkkkkk TNNER LOOP ENDED 3%k %k i %k ik % % 5%k %k sk %k
310 REM

320 REM

330 PRINT

340 NEXT T

350 REM ###44# 3444844884 OUTER LOOP ENDED #####84 4448404884848
360 PRINT

370 PRINT "——--- DONE ----- "

In Example 7.11 only the principal is entered by the operator.

Statement 200 sets up the outer loop. It sets the term, T, equal to 20,
for the first time through the outer loop. It also specifies that the
outer loop is to be executed until T+5 is greater than #40; that is, the
step value is 5 and the upper bound is 40.

Statement 250 now sets up the inner loop. It says I, interest, is to
vary from 7% to 9% in steps of .5%. The body of this loop, statements
260-280, hasn't changed from the examples of the last section.

NEXT I causes a branch to 260 if I+.5 is less than or equal to 9. When
I+.5 is greater than 9, it lets the "normal sequence of execution"
prevail.

330 is the first executable statement after NEXT I. It outputs a blank
line that separates different term values; then, NEXT T is encountered.
NEXT T increments the term value, in T, by 5, and effects a branch to
line 210. It does this as long as T+5 is less than or equal to 40.

After NEXT T branches to 210, the first statement to be executed is 250
FOR I=7 TO 9 STEP .5. Thus, each time through the outer loop, the inner
loop is set-up by 250, and executed 5 times by 290 NEXT I.

As a practical matter lcops can be nested within loops indefinitely.

That is, there is no 1limit to the number of loops that may be contained
within any given lcop.

Branching apnd FOR...TO/NEXT Loops

We have already pointed out that a branch into the middle of a FOR...
TO/NEXT loop will cause an error at the NEXT statement. The NEXT statement

a9 |

depends upon information supplied by FOR...TO and without it cannot functiom.
For example, this fprogram segment will report an error when statement 90 is
executed, after the branch from 30 to 70.

20 PRINT J*4
30 GOTO 70

60 FOR I=1 TO 10 STEP 2

70 02=(14/T) *I
80 PRINT Q23
90 NEXT I

Recall that when looping is completed, and the NEXT statement is about
to let the normal sequence of execution prevail, it first clears from that
"special part of memory" the information that had teen saved there by the
FOR...TO statement. This is dcone simply to make room for future FOR...TO
information. This implies that a program should not repeatedly branch out of
the middle of a FOR...TO/NEXT loop without allowing for a normal, NEXT
statement, loop termination. Repeated execution of FOR...TO statements, that
are never terminated by NEXT statements, eventually causes a "table overflow"
error, (ERR 02). .

Example 7.12 shows a program that branches out of a FOR...TO/NEXT
loop, without allowing normal NEXT statement termination of the loop.

Example 7.12 A Branch Out of a FOR...TO/NEXT Loop That Causes a Table
Overflow Error

110 REM BRANCH THAT AVOIDS NORMAL "NEXT" STATEMENT TERMIVNATION
120 REM EROGRAM TO PRINT PRIME NUMBERS 1 TO 1001

130 PRINT 1; 2; 233

140 N=23

150 REM TRY DIVIDING N BY EACH ODD INTEGER
160 FOR T = 3 TO SOR(N) STEP 2

170 REM DOES T DIVIDE N EVENLY?
180 IF INT(N/T) = N/T THE¥V 230
190 NEXT T

200 REM N IS PRIME

210 PRINT N

220 REM N NOT PRIME. TRY NEXT ODD NUMBER
230 N = N+2

240 IF N = 1001 THEN 160

This program is supposed to print the prime numbers between 1 and 1001.
However, each time a number proves to be non-prime (it's divided
evenly by ancther number), line 180 effects a branch out of the FOR...TO
loop; N is incremented (line 230) and the FOR...TO statement is
reexecuted (branch from 240 to 160). Reexecuting the FOR...TO
statement saves information in memory for another loop. This is in
addition to the information for the last loop that was never cleared
by a NEXT statement loop termination. Eventually, the memory space
alloted for FOR...TO information fills, and a table overflow error
interrupts execution. 1In this program this occurs before all the
primes between 1 and 1001 have been found, and therefore the program
must be corrected.

(00

g

If a loop must have another exit as well as a "counter" exit, then
there are two alternatives. Either forego FOR...TO/NEXT by setting up a
counter and counter-test using LET and IF...THEN as in Example 7.2, or use
FOR...TO/NEXT and, at the "second way out", add an operation that forces
NEXT to terminate the loop. This latter approach is illustrated in Example
7.13.

Exanmple 7.13 Fotcing A "NEXT" Termination

110 REM FORCING A "NEXT" TERMINATIOW
120 REM PROGRAM TO PRINT PRIME NUMBERS 1 TO 1001

130 PRINT 1; 2; 3;

140 N=3

150 REM TRY DIVIDING N BY EACH ODD INTEGER
160 FOR T = 3 TO SQR(N) STEP 2

170 REM DOES T DIVIDE N EVENLY?
180 IF INT(N/T) = N/T THEN 222
190 NEXT T

200 REM N IS PRIME

210 PRINT N;

215 GOTO 230

220 REM N NCT PRIME. TRY NEXT ODD NUMBER
222 REM **%x%x%x%x*x FORCE A "NEXT" TERMINATION *kkkkdkkkikkkikkkkkikk

224 T = SQR(N)

226 NEXT T ;

228 REM %%k 3ok s % ok ok ok 3k gk ok ok B 3k ok 3k o ok 3k & 3k ok ok ok ok 3k ok ok ok ok gk o ok sk ok ok ok 3k sk ok oK ok i ok ok % Xk ok
230 K = N+2

240 IF N&= 1001 THEN 160

In this examrle lines 224 and 226 are executed only if line 180 effects
a branch out of the FOR...TC/NEXT loop. 224 assigns the "TO" value
SQR(N) to T. Since T is then at the upper limit of its range, NEXT T
at line 226 will always "terminate the loop" and clear the FOR...TO
information.

If loops are nested, one inside another, a branch to the NEXT statement of
an outer loop clears the FOR...TO information 4f all inner loops. This
fact permits a better solution to the problem of Example 7.12, than that
shown in Example 7.13.

Example 7.14 ©Ncrmal Termination of An Inner Loop By An Outer Loop

110 REM TERMINATING AN INNER LOOP BY BRANCHING TO AN OUTER LOOP
120 REM PROGRAM TO PRINT PRIME NUMBERS 1 TO 1001

130 PRINT 1; 2;3;

140 FOR N = 3 TO 1001 STEP 2

150 FOR T = 3 TC SOR(N) STEP 2

160 IF INT(N/T) = N/T THEN 190
170 NEXT T ’
180 PRINT N

190 NEXT N

In this example an outer FOR...TO/NEXT loop is used in place of
statements 140, 230 and 240 of Example 7.12. Now, the branch at line
160 is not a source of trouble, since execution of the outer loop's
NEXT statement (line 190) clears the FOR...TO information for the
inner loop.

ol

CHAPTER 8: INTRODUCTION TO ALFHANUMERICS

8-1 ALPHANUMERIC VARIABLES

In Section 3-1 we said that a numeric variable is a place to keep a
number. Numeric variables are used to hold numeric quantities, which we may
multiply, divide, add, subtract or evaluate in a function. In addition to
numeric quantities, though, there is another kind of information that we may
wvant to process. Typical of this other information is names, addresses,
social security numbers, product descriptions, and part numbers. This kind of
information is called alphanumeric information, since it may comnsist of any
combination of alphabetic and numeric characters, punctuation, and symbols.

Alphanumeric information never enters into ordinary arithmetic
operations (+, -, /, *, #, etcetera). For example, it wouldn't make much
sense to say "Take the square root of Jones'! address and multiply it times
his last name". Nevertheless, we may want to process it. We may wvant to
enter it, update it, delete it, transfer it, save it, sort it, segment it,
or print it.

With the statements we have examined thus far, our ability to process
alphanumeric information has been very limited. Alphanumeric informatiom has
appeared in only one form, the literal string. We've seen examples of literal
strings, such as "EEORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS" and
Nkkk%k DONE ****% only to say, "This is alphanumeric information."

Though our experience with alphanumeric information is limited, we ')
can make one generalization. The system must always be able to distinguish
alphanumeric information from everything else. Usually the way alphanumeric
information identifies itself is by being enclosed within quotation marks.

The quotation marks aren't part of the information per se. They are there
only to say, "This is alphanumeric information."

Thus far, all the variables we have been using have been numeric
variables. Numeric variables can only be assigned valid numeric guantities
They can never hold alphanumeric characters, even if the alphanumeric
characters outwardly resemble a numeric quantity. For example, as noted in
Section 3-2, if we try to enter

10 K = "165"

the result is a syntax error telling us that a numeric variable cannot be
assigned an alprhanumeric literal string.

In BASIC, though, there is a kind of variable that can be assigned an
alphanumeric literal string. Variables of this sort are called "alphanumeric
variables". Just as there are 286 numeric variables" in BASIC, there are also
286 alphanumeric variables. They are named in a manner similar to the numeric
variables, except that every alphanumeric variable name ends with a dollar
sign, $. Thus, the alphanumeric variables are A$, B$, C$...2% and AOS, AlS,
A2$,...19%,8B0%,B1%,...27%,28%,29%. N

Alphanumeric values can be assigned to alphanumeric variables in
statements that are similar to those that assign numeric quantities to
numeric variables. For example, these are all valid assignment statements.

-~

60 D2% = "154 STATE ST."
170 LET AO$ = "A4078-R"

410 J8$ = ngn
900 L1%,J3$,P98 = "N/AM
91 V$ = "CREDIT"

140 0% = A9%

Notice that the keyword "LET" is optional; that multiple assignments are
possible (line 900). In line 140 the variable Q% is assigned the value of
the variable A93.

When a literal string is used in an assignment statement, the literal
string is always enclosed by quotation marks. The quotation marks do not
become part of the value of the alphanumeric variable.

Alphanumeric variables may never be used with arithmetic operators,
or where a numeric exgression is required. For example the following are
illegal uses cf alphanumeric variables:

10 a$
50 P2

c$ + D$
Cc8$

Alphanumeric variables cannot be assigned the value of an expression.
The following statements are illegal

20 A$ = 250
40 FOR A$ = 2 TO 20

We may now exrand the general form of the assignment statement to
include alphanumeric operations. This expanded general form is:

[LET) numeric variable [,numeric variable...] = expression

literal string

in quotes
[LET} alphanumeric variable,[,alphanumeric variable...] =

alphanumeric

variable

o>

®
|

2 A CLOSER IOOK AT ALPHANUMERIC VARYABLES PRINT AND DIM

In Section 2-6 we noted that the RUN command sets all numeric variables
to 2ero, whenever it is used without a line number. Analogously, it sets
alphanumeric variables to all spaces. An alphanumeric variable which is
blank, that is all spaces, is treated by the system as if it contained just
one space. Therefore, we can say that, in effect, the initial value, after
RON, of every alphanumeric variable is one space.

To see this enter and execute the following program.

10 PRINT "ABC"; "DEF"
20 PRINT "ABC";AS$;"DEF®

The program prints

ABCLEF
ABC DEF

The single blank which appears on the bottom line is the result of printing
A$. A$ has a value of one space.

A numeric variatle can contain any valid numeric quantity. In Section
3-2 we said that such a quantity can have up to 13 digits, decimal point, and
. sign, and a signed 2 digit expcnent. Every numeric variable then, has a fixed
size "big enough" to hold any numeric quantity. By contrast, the size of
alphanumeric variatles is not fixed; however, it is automatically set to 16
characters, unless you specify a different size. We will see how to specify a
different size for alphanumeric variables later in this section.

If you try to assign more characters to an alphanumeric variable than
its size will allow, the additional characters at the right are simply
ignored. For example, enter and execute:

10 D$ = "0123456789ABCDEFGH"
20 PRINT DS$

The result,
0123456789ABCDEF

shows that statement 10 assigned to D$ only the first 16 characters of

the literal sting. Since the size of D$§ is 16, the 17th and 18th
characters, "G" and "H", are ignored. Later we will see additional means of
assigning values to alphanumeric variables; however, regardless of the
method used, extra characters beyond the variable's maximum size are
ignored.

Now. let's see what happens if you assign to an alphanumeric
variable fewer than its maximur number of characters. Enter and
execute the following program:

20 H$ = “JOHN C. ADAMS"
30 PRINT H$

40 H$ = YHELP"

50 PRINT H$

55 L$ = wATH

60 H$ = LS

70 PRINT HS$

loY

Execution produces

JOHN Q. ATAMS
HELP
AT

Notice from this example that when an alphanumeric variable is assigned
a new value (lines 40 and 60), the new value completely replaces the o0l4d
value, despite the fact that the o0ld value is longer than the new value.
That is, the result of executing line 50 specifically was not
"HELP Q. ADAMS". The "O. ADAMS" has been replaced in H$ by spaces. The sanme
is true for the assignment made at line 60 where the "LP" of "HELP" is
replaced by spaces.

The example above does nct reveal, though, how alphanumeric variables
are printed in regard to spaces. We can add literal strings to the PRINT
statements to give us an answer. Change the program as follows:

20 H$ = "JOHN Q. ADAMSW
30 PRINT HE:; "sgen

40 H$ = "EELP"

50 PRINT H$; "gggn

55 L$ = wATH

60 H$ = 1S

70 PRINT H$; m"EEE™

The ampersands are added so that we can see any spaces which may be output.
The program now prints

JOHN Q. ALCAMSEEE
HELPEES
ATEES

This result may seem paradoxical. We just said that line 40 of these two
programs replaces "Q. ADAMS" in H$ with spaces, but when we add a second
print element to line 50 these spaces don't show up. The same thing

is true for lines 60 and 70.

The answer to this is quite simple: trailing spaces in alphanumeric
variables are not considered to be part of the value of the variable.
Therefore, when an alphanumeric variable is printed, trailing spaces are
omitted. Trailing spaces are spaces which extend from the last non-space
character to the end of the variable. Since L$ and H$ are both 16 characters
long, if you could look into the memory of your Wang system after step 20, you
can imagine seeing scmething like this

E;he last non-space character

H$ Jlo|nln]lalol.]alafp]|a]ln|s]alala
' 'f?ﬁd’%aces not con-

sidered part of value of HS

trailing spaces not con-

J X sidered part of value of L$

LS [rfrlalalalalaJalalalaTalaTaJlaTa]
k1 st nenzspace 105

charac

After step 40 H$ looks like this:

HS Ele|Lle [AlaTalalalalalalalalalal

-
p——trailing spaces not part of value.
last non-space character

In summary, then, when alphanumeric variables are used as print
elements; trailing spaces are never printed.
In the program belcw note, the differing effects, in regard to spaces, of
printing a literal string, and printing an alphanumeric variable which has
been assigned the value of the literal string.

10 PRINT "FIVE "; "DOLLARS™
20 A$ = "FIVE "

30 B$ = "DOLLARS"

40 PRINT A%$; BS

When executed this prcduces:

FIVE DOLLARS
FIVEDOLLARS

We can see frcm this example that when the literal string is printed (line

10) the trailing space is included. W®hen "FIVE " is assigned, though, the space
included in the literal becomes merely a trailing space. As the second

line of output shows, this space is effectively lost.

In a situation such as this you can overcome this seeming problem
simply by putting a literal space into line 40, as in

40 PRINT A$; " "; BS
or you can add a space to the front of "DOLLARS" as follows:
30 B$ = " DCLLARS™

Since the latter is not a trailing space, it will be printed when BS$ is
printed.

We opened this section by saying that if an alphanumeric variable
contains all spaces it is treated as if it contained just one. We can now
see the reason for this. The first space is considered to be a real
character, but all the spaces which follow the first are mere "trailing
spaces" which, as we have said, are ignored.

Dimensioning Althanumeric Variables

We have noted that the system automatically sets alphanumeric
variable size to 16 characters in the absence of contrary instructions.
It is possible to specify a different maximum variable size for any alphanumeric
variable by means of a dimensicn statement. The dimension statement has
several other related uses which we will encounter in future chapters.
Its use as a means of specifying alphanumeric variable length is simple and
straightforward.

(06

S’

In BASIC the word "dimension" has been abbreviated to the keyword
"DIM". To specify a size of 30 characters for the variable C$ we include
in the progiam, at a lower line number than any reference to C$,

20 DIM C$30

This statement fixes the maximum size of C$ at 30 characters for the
entire program. Once the size of a variable has been established, whether
autcmatically, at 16 characters by the system, or ty means of a DIM
statement, that size cannot be altered until all variables are cleared.

¥hen you key RUN (EXEC), the system first scans through the entire
program, in 1line number sequence, looking for variables and DIM statements.
When it encounters an alphanumeric variable for the first time, it either sets
aside 16 characters of memory space for it, or, if it is in a DIM statement,
sets aside the amount specified. Once it has established the size of a
variable, that size 1is fixed. If the system later in its scan encounters a
DIM statement which attempts to change the size, an error is signalled. This
means that DIM statements must precede any program reference to the
dimensioned variable, since otherwise the system will have already set the
size at 16 characters. The following program violates this rule and will
not execute.

10 PRINT "“ABC"; A$; "DEF®
20 DIM A3$10

In the DIM statement the size of the variable must be specified with a
_ number, not an expression. The number must be greater tham 0 and less than
) or equal to 64. sSixty-four characters is, therefore, the absolute maximum
size of any alphanumeric variatle.

It is possible, and often desirable, to dimension multiple variables
in a single DIM statement. Such a statement might look like this

20 DIM A$u40, AB8S$1, C7%25, C9$25

Ina multiple DIM statement each variable and dimension is separated
from the next by a comma. Any number of variables may be dimensioned in a
single DIM statement.

Notice that it is possible to specify a variable size less than 16
characters. This helps to conserve memory when less than 16 characters
will be assigned to the variatle.

Regardless of the size of a variable, it is operated on under the
same principles discussed in the opening part of this section. If you
attempt to assign more characters than the variable can hold, excess
characters are lost. Assigning a new value to a variable replaces the entire
0ld contents of the variable. Trailing spaces are not part of the value of
a variable.

te?

8-3 INPUT AND IF...THEN WITH ALPHANUMERIC VARIABLES

INRUT

The INPUT statement can be used with alphanumeric variables to permit
operator entry of alphanureric data. For example the following program
allows a name and address to be entered into # variables, with up to 30
characters for each line. It then prints the entered address.

10 DIM A$30, B$30, C$30, D$30
20 INPUT "NAME", AS

30 INPUT "ALCDRESS LINE #1", BS
40 INPUT "ADDRESS LINE #2", C$
50 INPUT "ADDRESS LINE #3", D$
60 PRINT AS

70 PRINT B3

80 PRINT C3

90 PRINT D$

Use of INPUT with alphanumeric variables is very similar to its use with
numeric variables. The literal string prompt is optional, and multiple
variables can be included in a single statement. The keyboard entry mandated
by the above lines 10 to 50 could have been accomplished with either of the
methods shown below:

10 bIM A$30,B$30,C$30,D$30
20 INPUT 2AS
30 INPUT BS
40 INPUT CS%
50 INPUT D$
60 PRINT AS

or
10 DIM A$30,B$30,C$30,D$30
20 INPUT A$,BS$,C$,DS
60 PRINT ASf

Alphanumeric and numeric receiving variables may be included in a
single INPUT statement. Thus, line 20 of the following program is a legal
INPUT statement:

10 DIM A$25
20 INPUT "ENTER NAME, HOURLY RATE", AS$,R

#hen 20 is executed the following will appear
ENTER NAME, HOURLY RATE?_

the operator can then make the two entries in either of the following ways
ENTER NAME, HOUFLY RATE? JOHN JONES, 6.45 (EXEC)

or
ENTER NAME, HOURLY RATE? JOHN JONES (EXEC)

1-%1

e

? 6.45 (EXEQ)

Often it is better to avoid multiple variable INPUT statements, due to
the increased probability of operator confusion.

If an operator enters more characters than an alphanumeric variable
is capable of holding, the overflowing characters are not assigned to the
variable; they are simply lost. Wo error is signalled. If any character
is entered, the entire old value of the receiving alphanumeric
variable is replaced.

When entering alphanumeric data on an INPUT instruction, an operator
need not enclose the entry in quotation marks. However, if guotation marks
are not used, leading spaces, entered by the operator, are not assigned to the
variable. Furthermore, without quotation marks, commas act as terminatorsg
that is, an entered comma is taken to mean, "That's all for the first
variable." (In the example shown above

ENTER NAME, HOURLY RATE? JOHN JONES, 6.45 (EXEC)
the comma separates the two values. It is not part of either.) Thus
if the operator wishes to enter BOSTON, MASS. 02109 for address line #3
in the first example, it must be entered with quotation marks as follows:

ADDRESS LINE #3? "BOSTON, MASS. 02109"

Without quotation marks only BOSTON will be assigned to D$; the rest of the

~entry will be lost.

IF...THEN

The IF...THEN statement can be used to compare alphanumeric values
and branch if a specified condition is true. 1In the program shown in Example
8.1 the operator can select, by entering the words "YES" or "NO", whether the
program results are toc appear on the CRT or be printed by the printer.

Example 8.1 Testing Alphanumeric Values With IF...THEN

100 REM TESTING ALPHANUMERIC VALUES WITH "IF...THEN"

120 INPUT "DO YOU WANT THE PROGRAM RESULTS TO BE PRINTED (YES/NO) ™,
130 REM TEST OPERATOR RESPONSE

140 IF A% = "YES"™ THEN 210

150 IF A$ = "NO" THEN 230

160 REM ENTRY INVALID

180 PRINT "INVALIL. REENTER.™

200 GOTO 120

205 REM "YES" ENTERED

210 SELECT PRINT 215 (80)

220 GOTO 250

225 REM "NO" ENTERED, BE SURE CRT IS SELECTED
230 SELECT PRINT 005 (64)

245 REM MAIN FRCGRAM BEGINS HERE
250 FOR I = 1 TO 60

260 PRINT 2¢1;

270 NEXT I

290 PRINT

With the IF...THEN statement it is also possible to compare alphanumeric
values that are saved in alphanumeric variables. For example, the following

(e

A%

are valid BASIC statements:

200 IF C$ = D$ THEN 450
240 IF Z9% = A8% THEN 710

Variables being compared do not have to be the same size. For -
example, the following is a valid sequence of statements:

10 DIM A$6, BS$2

40 IF B$ = A$ THEN 70

70 PRINT ASf

Whenever the alphanumeric terms being compared by an IF...THEN are of
different length, the comparison is made as if the shorter one were extended
with spaces out to the length of the longer one. To see how this works,
assign values in the example above as follows:

10 DIM AS$6, BS2

20 AS "OSCAR"

30 BS wosw

40 IF B$ = A% THEN 70
50 STOP "LINE 50"

70 PRINT AS

Intuitively we would say that A%, with a value of "OSCAR", and B%, with
a value of "0S", should not be considered equal. In fact this is the result
of the comparison at line 40; the branch is not taken.
The system, noticing that B$ is dimensioned smaller than A%, obtains
the value "0S" from B$ and temporarily extends it to the size of A$. The
values it then has to compare are as follows

[olsfclajriaj

Ol sla, a,0,0)

{ J)

T
| {temporary

extension

The first two characters of these values are the same. However, when the
system looks at the third characters, a C and a space, it finds them not the
same, and concludes that the relationship "equals" is not true. The branch is
not taken. Despite the "temporary extension" of BS$ described here, the real
size of B$ hasn't changed and remains at 2 characters after the IF...THEN
statement is complete.

The other IF...THEN relational operators,&,»,»=,{=, can also be used
with alphanumeric ccmparisons. PFor example suppose that parts are stored in
two warehouses. All the parts stored in the first warehouse are given part
numbers which begin with the letters A-M. Part numbers for the second

(o

warehouse begin with the letters N-Z. The following program segment tests an
entered part number to determine in which warehouse the part belongs.

10 DIM C$6

410 INPUT "PART NUMBER", C$
420 REM SECOND WAREHCUSE?

430 IF C$D)="N" THEN 490

430 REM GOES IN FIRST WAREHOUSE

490 REM GOES IN SECOND WAREHOUSE

What happens if the operator enters L4906A at line 4107
At the IF...THEN statement, the system finds that the literal
string "N" is shorter than the variable C$. Therefore, it takes the value of
the literal and temporarily extends it with spaces to the size of C$. It is
then ready to compare the two values, which now look like this:

(Liut9jof6TA] cs$

Ix |,A\A | A& 8, literal string "N"
emporary
extension

The comparison now takes place character-by-character until an
inequality is found, (just as you would proceed if you were alphabetizing
these two terms). It finds an inequality right away: L is less than ¥.
Since this relationship violates-the specified condition for the branch,
C$»="N", the branch is not taken.

Now suppose that N2079 were entered instead. The set-up for the
comparison would be

I 2[0]719[A] cs

Mla,a, - Y-V~ N : literal string "n"

When the first characters are compared they are equal, so the systen
compares the next two characters. Space has a lower value than all letters,
numbers, and most of the special characters on the keyboard. Therefore, when
comparing the second characters the system finds the inequality 2» space.
This inequality, 2 > space, immediately signifies that C$> "N"; therefore, the
branch is taken.

Alphanumeric comparisons take place character by character until
unequal characters are found. The relationshir of the first pair of unequal
characters determines the relationship of the entire two values. This
method is exactly how cne proceeds when alphabetizing. '

Other than to say that spaces have a low value we haven't specified the

relative ordering of all the keyboard characters. This relative ordering is
given in Table 8.1.

15}

LOWEST

SPACE

= e

+ T 2N AR
——

-

NN XEdeSrRNQUOU O BMHAWUHTAOMOAONDO

NHXE<AHNPDO YO ZERHRGUHITIQOHEO QWY

NN e OCONONEWNHON ¢

(

HIGHEST

Table 8.1 Relative Ordering of Keyboard Characters

The following program will allow you to experiment with the system's
alphanumeric ordering. Try entering different values, and observe the
results.

110 DIM A$€4,BS6U

120 PRINT

130 INPUT "ENTER VALUE FOR AS$",AS$
140 INPUT "ENTER VAIUE FOR B$", BS
150 PRINT

160 IF A$<>» B$ THEN 190

170 PRINT AS$; " -EQUALS- "; BS
180 GOTO 120

190 IF A$ » BS THEN 220

200 PRINT A$; "™ -IS LESS THAN- "; BS
210 GOTO 120
220 PRINT A$; " -IS GREATER THAN- "; BS$

230 GOTO 120

With the ability to compare alphanumeric values, a simple sort can be
performed to rearrande three values into "alphabetical order," (or, more

2

generally, the order specified by Table 8.1l.) Example 8.3 accomplishes
this in a very simple way. Efficient sorting, however, requires subscripted
variables, which are introduced in Chapter 11.

Example 8.2 A Simple Alphanumeric Sort

110 REM SOERT

120 CIM A$20,B%$20,C$20,D%20

130 INPUT "ENTER THREE VALUES. EACH 20 CHAR. MAX.", A$,B5,C$
140 REM TEST #1

150 IF A$ < B$ THEN 210

160 REM SWITCH A$ ANLC BS

170 D$=2%

180 AS=ES

190 E$3=D$

200 REM TEST #2

210 IF E$< C$ TBEN 270

220 REM SWITCH B$ ANL C$

230 D$=B%

240 BE$=CS%

250 Cc$=D$

260 REM TEST #3 - (REEEAT OF TEST #1 WITH POSSIBLE NEW VALUES)
270 IF A$ <€ B$ THEN 320

280 REM SWITCH A3 AND BS

290 D$=AS%

300 A$=BS%

310 BES$=DS$

320 PRINT AS$,BS$,CS

us

2.
3.

10.

Review _of Chapter 8

Alphanumeric values may consist of any combination of alphabetic and
numeric characters, punctuation and symbols.

Alphanumeric values cannot enter into arithmetic operationmns.

Alphanumeric variable names are the same as numeric variable nanmes,
except that a dollar sign, $, is added. E.g., A%, C$, F2§, X8%, etc.

Alphanumeric values may be assigned to alrhanumeric variables in many
of the same ways that numeric values are assigned to numeric variables.
For example,

10 B$ = "TEST #1l4.5"
10 INPUT “EMPLOYEE NAME", WN$

Alphanumeric variables are 16 characters long, unless set to a different
size in a DIM statement.

A DIM statement can specify a length of 1 to 64 characters for an
alphanumeric variable. For example,

DIM C2%64, D$2

If you attempt to assign more characters to an alphanumeric variable
than its length can accommodate, the excess characters at the right
are ignored.

If a new value assigned to an alphanumeric variable is shorter than
the variable, any old value is completely replaced by the new, which
is padded with spaces at the right.

Trailing spaces are not considered to be part of the value of an
alphanumeric variable.

Alphanumeric values may be compared in an IF...THEN statement. Values
are temporarily padded with spaces at the right, so that they are the
same length. Then, the comparison takes place character by

character until unequal characters are found. The first pair of
unequal characters determines the relationship of the entire two values.
If no unequal characters are found, the values are equal.

nY

CHAPTER 9: TLEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

In this chapter we are going to look at a number of Wang 2200 System
features, and a few EASIC statements. Many of these features
and statements are uvsed in debugging programs. This use will
be highlighted here; however, there are many uses for some of these features,
and the discussion is not meant to imply that program debugging is the only
use.

9-1 THE STOP STATEMENT AND THE CONTINUE COMMAND

The STOP statement is a general purpose BASIC statement. When the
system encounters a STOP statement, it stops executing the program, and
outputs the word "STOP" at the device selected for Console Output (normally
the CRT). The colon and cursor (:_) are displayed on the line below the word
"STOP"., A STOP statement can consist of simply the keyword STOP. However,

a character string, in quotation marks, can follow the keyword. 1If a
character string is added, the system outputs the character string on the
same line as "STOP™.

In general, after a STOP statement has interrupted execution, the
operator can continue execution at the next program line by keying
CONTINUE (EXEC).

Example 9.1 illustrates a simple use of the STOP statement. The progranm
shown in 9.1 prints, in hardcopy, the factorials from 1 to N. It is similar
to Example 7.8, except for the addition of the printer selection statement,
and the STOP statement which warns the operator to ready the printer.

Example 9.1 A Simple Use of The STOP Statement

110 REM SIMELE USE OF "STOP"™ STATEMENT TO PAUSE FOR OPERATOR
120 INPUT "CCMPUTE P' FOR P=1 TO P=%, N

122 STOP “READY PRINTER.(8 1/2 X 11 PAPER)"

125 SELECT PRINT 215 (80)

130 K=1

140 FOR P=1 TO N

150 LET K = P*K

160 PRINT "p="; P, WDPt=ws K
170 NEXT P

180 PRINT Mkkkkk DONE Hkkkkn

During execution of this program, the following appears on the CRT.

: RUN
COMPUTE P! FOR P=1 TC F=? 8

STOP READY PRINTER. (8 1/2 X 11 PAPER)

At this point the operator can ensure that the printer is ready, and then key
CONTINUE (EXEC) to resume normal execution.

In some cases the STOP statement is not the best choice for providing a
program pause, as shown in Example 9.1. Often the INPUT statement is a hetter
choice. The cclon which appears below the word STOP signifies that the systen
is ready to accept any operator ccmmand or action which would be available
before execution began. This means, for example, if an operator accidentally

Us

keys one or more digits fcllowed by (EXEC) or by CONTINUE (EXEC), the digits
are interpreted as a line number. The result could be the destruction of a
program line. PFurthermore, any such change in a program text prevents the
CONTINUE command from resuming execution. By contrast, the system status of
an INPUT statement, when the question By contrast, the system status at an
INPUT statement, when the question mark is displayed, is much more
restrictive. Accidentally keying a digit or character, at worst, produces an
ERR message. Program text cannot be changed.

In some circumstances, however, the brcader opportunities offered at a
STOP interruption are needed. Program debugging is one such circumstance.

For example, if a particular loop in a program doesn't
seem to be doing what you want it to do, you can temporarily insert a STOP
statement immediately before the FOR... TO statement that sets up the loop.
Then, execute the prcgram with whatever values are causing a problem. When
the STOP is reached, the program will output STOP and the colon. You can
then use some of the techniques described in the next sections to determine
the cause of the failure.

You may want to add a message to the STOP statement such as

58 STOP "LINE 58"

This identifies the ST0P, if you have more than one, and tells you what
line to delete vwhen you want to take out the STOP.

The CONTINUE command cannot be used to resume execution after a
STOP if any of the following has occurred while execution was stopped.

1. A text or table overflow has occurred (ERR 01, ERR 02)

2. A variable has reen added to the program which was not previously
part of it.

3. A CLEAR or RENUMBER command has been issued. (Section 9-4 introduces
the RENUMBER command.)

4. The RESET key has been derressed.

5. The program has been modified.

9-2 IMMEDTATE MODE OPERATIONS

In Chapter 5 vwe mentioned that the SELECT statement can be used as a
command, without a line number, as well as a BASIC program statement. For
example, whenever the colon is present you can key

*:SELECT LIST 21% (EXECQ)
to select a printer for program listings. The use of BASIC statements in this
fashion, as if they vwere commands, is known as immediate mode operation;
so called because the prescribed action takes place immediately upon keying
(EXEC), rather than being saved in memory for future execution.

Your Wang system has been designed so that a variety of BASIC statements
can be used in the immediate mcde. Por example, key

:PRINT 4/3.7, SQR(4,2.7) (EXEC)
"Hé

The results appear immediately in the first two zones of the CRT:
1.081081081081 1.0397504898

Inmediate mode operations can be useful in debugging programs, and handy
whenever a quick and simple calculation needs to be performed. They are legal
whenever the colon is displayed. For example, if you insert a STOP statement
into a malfunctioning program, as discussed in the last section, you can check
the values of any program variables by executing immediate mode PRINT
statements.

The program in Example 9.2 is supposed to calculate the sum of the
first N odd integers by adding them up, but it has a bug. The sum it
produces is incorrect.

Example 9.2 Program With Bug
110 REM PRCGRAM WITH BUG - SUM IS INCORRECT

120 PRINT "“CALCULATE SUM OF FIRST N ODD INTEGERS"
130 INPUT "ENTER N", N

130 s =1

150 IF N = 1 THEN 200
160 FOR I = 2 TO W
170 L = D+2

180 S = S+D

190 NBXT I

200 PRINT "SOM="; S

If we enter a value of 5 for ¥, this program calculates the sum of
the first 5 odd integers as 21. (The answer should be 25, since the sum of
the first N odd integers is always ¥*.) We can insert a STOP statement,
such as 185 STOP "1IINE 185", to let us check variatle values as progranm
execution progresses.

With the STOP statement inserted, executicn produces the following
output:

CALCULATE SUM CF FIRST N ODD INTEGERS
ENTER N? 5

STOP LINE 185

We can now execute an immediate mode PRINT statement to check the
values of D and S. Fcr example, key

PRINT "Dp=*"; D, "S=%"; S
The display appears as:

STOP LINE 185
:PRINT "D="; D, "S="; §
D= 2 s=3

From the values of D and S we can see that, at this point, the progranm
has already run intc trouble. Line 170 is supposed to set D egqual to the
next odd integer; here, D is even.

-2

Notice that the line :PRINT ("D="; D, "S=%"; S is not entered into
memory. Since it has no line number, it is executed immediately.

We can let the program run through the loop once more if we wish by keying
CONTINUE (EXEC). Again "STOP IINE 185" appears, and again we can inspect the
values of D and S with an immediate mode PRINT statement as shown below.

STOP LINE 185
: PRINT D,S
4 7

Now we have a good idea of what the problem is: D should have been
assigned the value 1 before the loop began; then, adding 2 to it repeatedly
will always give the next odd number. We can change line 140 to assign 1 to
D, as well as S, by keying 140 S, D = 1. If we delete line 185 and list the
program, it now loocks like this:

Example 9.3 Dehugged Version of 9.2

110 REM EXAMPLE 9.2 WITHOUT BUG

120 PRINT "CALCULATE SUM OF FIRST N ODD INTEGERS"
130 INPUT "ENTER N", N

140 s, D =1

150 IF N = 1 THEN 200

160 FOR I = 2 TO N
170 T = D+2
180 S = S+D
190 NEXT I

200 PRINT "suM="; S

In order to run the program we must now use the RUN command. The
CONTINUE command cannot be used since the program has been altered.

The PRINT statement functicns exactly the same way in the immediate mode
as it does in a program, (or "program mode", as it is sometimes called.) You
can evaluate a large expression, for example, just as you would in a program
statement. The only difference is that all immediate mode PRINT operations
occur at the addresses selected for Console Input and Console Output.
Therefore, a PRINT statement executed in the immediate mode will output to
Console Output (normally the CRT), even if a statement such as SELECT PRINT
215 has been executed. The assignment statement (LET) can be used in the immediate mode.

If it is used to change the value of a variable used in the program, then
CONTINUE can be used to resume execution after a STOP. If a new variable is
established by an immediate mode assignment statement, CONTINUE cannot be
used. DIM may be used in the immediate mode. INPUT and IF...THEW may not be
used in the immediate mode. Section 9-5 introduces the use of FOR...TO/NEXT
in the immediate mocde.

9-3 ITHE HALT/STEP KEY, TRACE, SELECT P

The HALT/STEP Key

As its name implies, the HALT/STEP key has a dual purpose. Depressed
once, it waits until execution of the current program statement is complete,
then halts execution and displays the colon (:_) symbol. This is its "halt"

e

-

function. The effect is just as if the currently executing statement were
followed by a STOP statement, except that the word STOP is not displavyed.

If you want to temporarily stop program execution, the HALT/STEP
key is the ideal choice. After HALT/STEP you can use CONTINUE to
resume execution, just as you would after a STOP statement. The same
limitations on the tse of CONTINUE apply with programs interrupted
by HAILT/STEP, as with ones interrupted by STOP.

In addition to allowing the use of CONTINUE, HALT/STEP is preferable
to RESET since, unlike RESET, it lets the current statement finish execution
before interrupting the program. This is of major importance during
tape and disk operations, when an instantaneous interruption can easily
leave half-written, unintelligible information on the tape or disk.

Keyed once, HAl1/STEP stops program execution. Keyed a second tinme,
or keyed after STOP has interrupted execution, HALT/STEP lists and executes
the next program statement, and halts again. Thus, it lets you "step
through" the program executing one statement at a time, and displaying the
statement as it is executed. This can be very useful in finding program
bugs.

Fxample 9.4 Program With Bug
110 REM PREOGRAM WITH BUG - SUM IS INCORRECT

120 PRINT "CALCULATE SUM OF FIRST N ODD INTEGERS"
130 INPUT "ENTER N", N

140 s = 1

150 IF N = 1 THEN 200
160 FOR I = 2 TO N
170 L = D+2

180 S = S+D

185 STOP "LINE 185"
190 NEXT I

200 PRINT "SUM="; S

Example 9.4 reproduces the program with a bug (Example 9.2); however,
a STOP statement has teen added at line 185. When executed, this program
produces output such as this: B
-
READY
tRUN
ENTER N? 5

STOP LINE 185

Keying HALT/STEP displays and executes the next statement, and then
restores the colon. The result looks like this:

STOP LINE 185

-

190 NEXT I

The HALT/STEP key lets you "step through" the program, one statement at
a time, displaying each statement as it is executed. TIf HALT/STEP is
keyed repeatedly from the position shown above, the results look like this:

iwa

170 D

D+2

i80 S S+D

185 STOP ®LINE 185"

STOP LINE 185

190 NEXT I
170 D = D+2
180 S = S+D

185 STOP WLINE 185"

STOP LINE 185

A program executed in this manner works exactly as it would
if executed normally. At any point the normal execution can be resumed with
the CONTINUE ccmmand (provided that no action has been taken which would
otherwise invalidate the use of CONTINUE). HALT/STEP output occurs at the
device selected for Console Output.

TRACE

While HALT/STEP is an important debugging feature in that it lets you
follow the sequence of executicn, its power can be considerably enhanced
through the use of the TRACE mode. When the system is executing a program in
TRACE mode, each time a variable is assigned a value, the variable name and
its new value are printed. Fach time the "normal sequence of execution" is
altered, the message "TRANSFER T0 line number" is printed showing the line
number branched to.

The system is put into trace mode by executing the BASIC statement
TRACE. TRACE may te executed as an immediate mode statement, or it may be
included as a line-numbered program statement. The system remains in trace
mode until a CLEAR command is executed, RESET is keyed, or TRACE OFF is
executed.

To see how TRACE works, execute the program of Example 9.4, and when
it reaches the STOP, key TRACE (EXEC). Output looks like this:

:RUN
CALCULATE SUM OF FIRST N ODD INTEGERS
ENTER N? 5

STOP LINE 185
: TRACE

Now, if you key HAIT/STEP, TRACE and HALT/STEP together produce the
following output

190 NEXT I
I= 3
TRANSPER TO 170

In this display you can see that HALT/STEP has listed line 190 and executed
it. Since the system is in the TRACE mode, the effect of NEXT I is displayed:
I is assigned the value 3 and a kranch to 170 is made.

Repeatedly keying HAL1/STEP produces this:

170 L = D42
D= 4
180 S = S+D
5= 7

185 STOP "IINE 185"
STOP LINE 185
190 NEXT I

I= 4
TRANSFER TO 170

170 L = D+2
D= 6
180 S = S+D
s= 13

Trace can be turned off ty keying
:TRACE OFF (EXEC)

If it is turned off in this way, the CONTINUE command allows normal program
execution to be continued from the next statement.

TRACE and HALT/STEP together provide the most powerful means of
observing program operation. Trace mode can be used by itself, though,
letting the system execute instructions at normal speed. This can be
especially useful if a printer is available to record the output from the
trace. Output generated by trace mode always appears on the Console Output
device; therefore, to use a printer you must first execute a statement such as

:SELECT CO 215

With the STOP statement removed and a printer selected for PRINT and CO
output Example 9.4 produces the following output:

: RUN
CALCULATE SUM OF FIRST N ODD INTEGERS
ENTER N? 5

S=1

el

ANSFER TO 170

ANSFER TO 170

w

ANSFER TO 170

NODZUVUHANANZEIFZIWWNON

VHULUODHHWOHEBHULOHXEHWOH
[T - IO (T~ A O (I T I I |
o

S

]
N
[

Used in this fashion TRACE allows you to easily review a malfunctioning
program. The symbol »is used in trace output when a NEXT statement
terminates a loop.

SELECT P

If a printer is not available, you may wish to slow down
execution to make the trace output easier to read on the CRT. The system
can be instructed to pause for a specified time after each line of output.
This is done by executing a statement such as

:SELECT P 1

In this statement the P stands for "pause", and the 1 says that the systen
is to pause 1 sixth of a second after each line of output. A statement
such as

:SELECT E 5

causes a 5/6 second pause, and is usually better for observing trace output.
The maximum pause value which may be used is 9 for a 9/6, or 1.5, second
pause. The digit used always specifies the pause time in sixths of a
secchnd.

Once a pause has been selected it remains selected until another
pause is selected or the system is ¥aster Initialized. VNo pause, or "pause
off" may be selected ky executing

¢ SELECT F

n¥

. 9-4 THE RENUMBER, CLEAR P, AND CLEAR V. COMMANDS

RENUMBER

N RENUMBER is a powerful command that rapidly assigmns new line numbers to
a program, or portion of a program, in memory. It preserves program function
by inserting the appropriate new line number in all statements that refer to a
specific line. For example, the program at the top of Figure 9.5 has been
renumbered at the bottom. Notice the changes made to the branch addresses at
lines 12 and 14 of the top program.

Example 9.5 The Effect of RENUMBER

PROGRAM EEFORE RENUMBERING.
10 INPUT W

12 IF INT(N/2) = N/2 THEN 15
13 PRINT "NUMBER IS ODD"

14 GOTO 16
15 PRINT “NUMBER IS EVEN"®
16 STCP

PROGRAM AFTER RENUMBERING.
10 INPUT N

20 IF INT(N/2) = N/2 THEN 50
30 PRINT "NUMBER IS ODD"

40 GOTO 60
) 50 PRINT "NUMBER IS EVEN"
/ 60 STOP

The general form of the RENUMBER command is:

RENUMBER ‘r_line number] {,line number] [, integer]

The first line The new line The increment
to be renumbered. number that betvween the new
A1l lines with the first re- line numbers.
numbers greater numbered line 0 tinteger1 100
than or equal to is to receive. (If omitted,
this number are (If omitted, the the increment
renumbered. nevw number of the is 10.)
(If omitted, the first renumbered
entire program line equals the
is renumbered.) increment between

the new line

numbers.)

The renumbering shown in Example 9.5 was effected with the simple
command

: RENUMBER
" with no additional parameters. The entire program was renumbered with an
increment of 10, and a new starting line number of 10.

Now look at scme other ways the original program, shown at the top of
' Example 9.5, can be renumbered. Example 9.6 shows the original program
listing and the listing which results from executing
:RENUMBER 10, 200

123

Example 9.6 The Effect of RENUMBER 10, 200

:LIST

10 INPUT W

12 IF INT(N/2) = N/2 THEN 15
13 PRINT "NUMBER IS ODD"

14 GOTO 16

15 PRINT "NUMBER IS EVEN"

16 STOP

: RENUMBER 10,200

:LIST

200 INPUT N

210 IF INT(N/2) = N/2 THEN 240
220 PRINT "KUMBER IS ODLC"
230 GOTO 250

240 PRINT "NUMBER IS EVEN"
250 STOP

In Example 9.6, 200 is specified as the new line number for the first
line to be renumbered. 1In this case the same effect could have been achieved
by omitting the first line number parameter, in a command such as RENUMBER,
200. The comma preceding 200 indicates that the first parameter is omitted.

In Example 9.7 all three RENUMBER parameters are used. The renumber
command RENUMBER 13, 15, 2 says "Renumber the lines starting at line 13;
change linpe 13 to line 15, and from there increment each line by 2."

Example 9.7 Using All The RENUMBER Parameters

s LIST

10 INPUT N

12 IF INT(N/2) = N/2 THEN 15
13 PRINT "NUMBER IS OLD"

14 GOTO 16

15 PRINT “NUMBER IS EVEN"

16 STOP

: RENUMBER 13,15,2

¢ LIST

10 INPUT N

12 IF INT(N/2) = N/2 THEN 19
15 PRINT YNUMBER IS QDD"

17 GoTo 21
19 PRINT "NUMBER IS EVEN"
21 STOP

RENUMBER is a ccmmand only. It cannot be part of a progranm.

CLEAR P
The CLEAR P command offers a means of clearing from memory all or part
cf the program text, without disturbing any variables. Its general form
is
CLEAR P [1ine nunber [,line number]]

If CLEAR P is executed with no line numbers specified, then the entire
program text is cleared. If a single line number is used, as in

134

:CLEAR P 220

all lines, from the indicated line through the highest numbered line,
are cleared. If two line numbers are specified, as in

:CLEAR P 220, 1100

all program lines from the indicated first line through the indicated second
line, inclusive, are deleted. CLEAR P is not programmable.

CLEAR V
The CLEAR V ccmmand clears all variables from memory, but leaves the
program text intact. It has no ortional parameters, and used by simply
keying
:CLEAR V (EXECQ)

It is a command only, and may not be programmed.

9-5 MULTISTATEMENT LINES

Thus far, in all our example programs, each BASIC statement has been.
given a line number; or, in ancther way of looking at it, each numbered line
has had only one statement on it. However, your Wang system allows any
nunber of statements to appear on a single line, provided that the maximum
line length of 192 keystrokes is not exceeded. Statements are separated from
one another by colons, and are executed sequentially, left to right, through
the line. The use of multistatement lines can allow a program to occupy
less memory space, and to execute somevwhat faster.

Branch statements such as GOTO and IF...THEN can only cause a branch to
a line number, which means to the first statement on a line; not to the
second, third or fourth statement on a line. There is no way to branch into
the middle of a line with a branch statement that branches to a line number.
Therefore, if you want to branch to a statement with a GOTO or IF...THEN, the
statement to be branched to must be the first statement on a line. There are
additional restrictions on the use of multistatement lines with some BASIC
statements. WNone of the statements discussed in previous chapters have any
such restrictions. Vhen statements with such restrictions are introduced, the
restrictions will be noted.

Using multistatement lines the original inventory program (Example
2.2) could have been written on two lines. It is shown in Example 9.8
revritten in this fashion.

Example 9.8 Multistatement lines Used For The Inventory Progranm
(Example 22)

10 LET 1I=42500:PRINT "OPENING INVENTORY="; .I
20 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T:LET I=I
+T:PRIFT :PRINT "TONS ON HAND ="; I:IF I»= 100 THEN 20:PRINT "R
EORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS":GOTO 20

In Example 9.8, line 10 contains two BASIC statements. The first one
LET I=42%00

is the statement that originally appeared alone on line 10. At the end of

[3&

this statement a colen appears. This colon was entered as the line was being
keyed in, to indicate the beginning of the second statement. The second
statement is taken from line 20 of the original program. During eXecution,
the system will execute the twc statements on line 10 just as if they were on
two separate lines as before.

The INPUT statement, statement 30 of the original program, must be
branched to from later statements in the program. Therefore, this statement
must appear on a new line despite the fact that line 10 has not received 192
keystrokes of information. Line 20 now receives all the remaining statements.
Bach statement is separated from the next by a colon. Notice that the branch
statement IF...TEEN is embedded in the multistatement line; it is only
the statement which it branches tc which must be the first statement on a
line.

If execution is stopped, with a STOP statement or the HALT/STEP key,
in the middle of a multistatement line, CONTINUE continues execution with the
next statement in the line. If HALT/STEP is used to step through a
multistatement line, the entire unexecuted portion of the line appears on the
CRT with the statement which is executed next in the leftmost position.

The use of multistatement lines can make a program much more difficult
to read. This is cbvious from a comparison of Examples 2.2 and 9.8. Even
when the number of statements per line is reduced to 2 or 3, readability is
sometimes igpaired. Therefore, in this manual we avoid the use of
multistatement lines in examples, and suggest that it may be a good idea for
you to do the same. One form of multistatement line generally adds to program
clarity. This is the use of a REM as the second statement on a two statement
line. Por exanmrle,

10 LET I = 42500:REM IVITIAL BALANCE

Since multistatement lines do offer some advantages, such as reduced
memory usage and increased execution speed, a special utility program is
available from Wang lLaboratories which "compresses" a program by, among
other things, building long multistatement lines wherever doing so is
consistent with maintaining executability.

Multistatement Lines In Immediate Mode

A multistatement line can be executed in the immediate mode, that is,
without a line number, by simply separating the statements with a colon.
Since immediate mode statements are executed and lost when (EXEC) is keyed
they are rarely more convenient than writing a short program. If they fail to
execute due to a syntax error, they must be completely reentered. Hovever,
when program execution has been stopped, and CONTINUE is to be used, a
multistatement immediate mode operation can occasionally prove useful. In a
multistatement immediate mode cperation FOR...TO and NEXT can be used.

The following multistatement line can be executed in the immediate mogde.
It calculates and prints the value of 25 factorial.

:P=1 <:FOR I=1 TO 25 :P=P*I :NEXT I :PRINT P

The FOR...TO and NEXT statements execute just the way they would if this were
written:

10 pP=1

20 FOR I=1 TO 25
30 P=P*I

136

)

40 NEXT I
50 PRINT P

9-6 THE END STATEMENT

The END statement ends program execution, and displays the message:

END PROGEAM
FREE SPACE = XXXXX

where XXXXX is the approximate amount of memory (in bytes) which
remains unallocated to program text or variable space at the time that
the END statement is executed.

The message appears on the Console Output device, (normally the CRT). After
an END statement has been executed, the CONTINUE key cannot be used to
resume execution.

The END statement is optional. Your Wang system ends program execution
whenever, in the ncrmal sequence of execution, it can find no higher numbered
line to execute.

The END statement can be executed in the immediate mode. Then, its
only function is to report on the amount of memory free space. Section 9-7
discusses in more detail the way memory space is used by your Wang system and
the significance of the END statement's free space report.

9-7 MEMORY USAGE BY PROGRAM TEXT AND VARIABLES

In Chapter 8 we said that an alphanumeric variable would automatically
be given a maximum length of 16 characters unless a DIM statement specifies
a different maximum length. When speaking about the length of an alphanumeric
variable it is customary to speak in terms of character capacity, being the
number of alphanumeric characters which the variable can hold. 1If an
alphanumeric variable is dimensioned to a length of 840 characters, then the
system automatically allocates to the variable enough memory capacity to holad
40 alphanumeric characters.

The amount of memory capacity allocated to store a single alphanumeric
character exactly corresponds to the fundamental unit of memory of the 2200
system. Outside of the specific context of storing alphanumeric characters,
this unit of memory capacity is called a "byte". Thus,

to store one alphanumeric
character.

The memory capacity allccated
= one byte

At the level of raw capacity, if your 2200 system is equipped with 8K
of memory, meaning exactly 8192 bytes of memory, then its character storage
capacity vould be 8192 characters. However, in fact, memory must be used
for many things other than simply storing characters. This means that the
effective capacity is somewhat less than the raw capacity.

In every 2200 system approximately 700 bytes are used by the system
itself, and are not directly available to the user. The system uses this
memory in a variety of ways including the storage of FOR/NEXT data and
other information. The rest of memory is available for your program text

i*7

and variables.

Your Wang 2200 system automatically converts each BASIC keyword and
function name to a special code, before storing it as program text in memory.
Each of these special codes occupies just one byte of memory. This feature
of your Wang system greatly reduces the amount of memory required for program
storage, and increases the speed of execution as well.

If you wish to know how much memory is available while you are
keying in a new program, you can simply execute an END statement in the
immediate mode, at any time. However, your program will probably need.
memory capacity for variables as well as for the program text itself. Thus,
even if the prcgram text fits intc your system, it will not be executable
unless there is enough merory capacity for the variables also.

When the system receives a RUN command it quickly searches through
the entire program text, allocating the proper amount of memory space for
each of the variables it encounters in the program text. Only after it
has established space for every variable does it actually begin to execute
the program statements. If there is not enough memory capacity for the
program text and the required variable space, the system signals an ERR 02
indicating the overflow. Thus, if you want to know how much actual memory
capacity is left over after program text and variables are accounted for, you
must first issue a RUN command, and then execute an END statement.
For example, you could temporarily put an END statement at line 1 of your
program. When you key RUN (EXEC) the system will set aside memory space for
all of the program variables, and then begin execution with the END
statement.

Each alphanumeric variable used in a program requires the number of
bytes of its dimensioned length (16 bytes if a DIM statement is not used)
plus five bytes of special control information, which lets the systen
find the variable when it needs to do so. Each numeric variable requires
eight bytes plus five bytes of control information, which lets the systenm f1nd
the variable. This is summarized in Table 9.1.

Table 9.1 Memory Space Required Per Variable

Space Usable Space for Total
Type by Value Control Information Space
_ = :
Numeric 8 bytes 5 bytes 13 bytes
Alphanumeric DIM length 1-64 bytes 5 bytes 6-69
(16 if no DIM statement) bytes

o5

10.

11.

Review of Chapter 9

The STOP statement stops program execution, displays the stop message
and the colon.

Depressed once during program execution, the HALT/STEP key stops
execution at the end of the currently executing statement. Depressed
a second time, it lists and executes the next program statement.

After program execution has been stopped with STOP or HALT/STEP, it may
be resumed by keying CONTINUE (EXEC), (provided that certain actioms
which prohitit continuation have not occurred after the progranm

was stopped.)

Many BASIC statements can be executed immediately by being entered
without a line number. These "immediate mode" operations can be useful
as a debugging aid, and as means of performing quick calculations.

Trace mode outputs a message each time a branch is effected and displays
the result of each assignment. A pause can be selected by means of
SELFCT P.

The RENUMBER command renumbers the lines of a program, or portion of a
progranm.

CLEAR P allows all of the program text, or a portion of it, to be cleared
without disturbing variables. CLEAR V clears variables without
disturbing program text.

Any number of statements can appear on a single program line, up to the
maximum line length of 192 keystrokes. Statements must be separated
by colonms.

The END statement ends program execution, and displays the amount of
memory that is unused by program text and variables.

The amount of space allocated to store a single alphanumeric character
is called a "“byte".

BASIC keywords cccupy just one byte of memory in your Wang systen.
Alphanumeric variables require as many bytes as their defined character
length (1-64) plus five control bytes. Numeric variables require eight
bytes plus five control bytes.

14

Chapter 10 The ON Statement, With GOTO

10-1 SIMPLE USE OF ON...GOTO

A single IF...THEN statement provides two alternative execution paths in
a program. Either the normal sequence of execution prevails or a branch is
effected to a specified line number. If more than two alternatives are
involved, IF...THEN statements can be stacked to provide for all of them. An
example of such stacking is shown in Example 10.1l. Asterisk REM's have been
inserted to highlight the IF...THEWs.

Example 10.1 A Program Segment With Stacked IF...THEN's

530 REN CHOOSE JOB CATEGORY

540 EFINT , "l1l. CARPENTER", "4. ROOFER"

550 PRINT , "2. LABORER", "5, FOREMAN"

560 PRINT , "3. ROD IAYER", "6. NON-UNION"

570 PRINT

580 INFUT "ENTER NUMBER TO CHOOSE JOB CATEGORY", C

590 REM ERANCH TO UPDATE CATEGORY DATA
600 REM *XEkRkkxRAkkhhRRARRR AR RRKEEKKKKKKK KKK KKK KK

610 IF C = 1 THEN 730
620 IF C = 2 THEN 760
630 IF C = 3 THEN 810
640 IF C = 4 THEN 850
650 IF C = 5 THEN 880
660 IF C = 6 THEN 940

670 REM %% % skokokkodofokok 3 ok ook ook ok kool ok ok ofokogok ook ok koK Rk kox x
680 REM SELECTION INVALID

690 ERINT "INVALIT. REENTER."

700 PRINT

710 GOTC 540

720 REM UPCATE CARPENTER HOURS

730 HlL = D + H1

740 GOTO 970

750 REM UPDATE LABORER HOURS, INSURANCE, VACATION FUND
760 H2 = D + H2

770 19 = I9 + (D*.052)

7380 V9 = V9 + (D*.1175)

790 GOTC 97C

970 REM NEXT OPERATIOW

In this example the operator enters a selection number, 1-6, to choose a
worker's job category. The entry is made at line 580 and goes into
variable C. The six IF...THEN statements then test C for each possible
valid entry, and branch to the proper routine. If an invalid entry is
made, none of the IF...THEN branches are taken; the normal sequence of
executicn produces a reenter message, and a branch back to the beginning
of the operation.

30

“eare”

Example 10.1 is a simple case of a common programming requirement: the
value of an expression, in this C, must determine which of many possible
branches is to be taken. The BASIC language provides a single statement to
make programming this kind of branching a simple and concise operation. This
statement is the ON statement. The ON statement has two forms, ON...GOTO, and
ON...GOSUB. Though their operation is similar, we will not take up ON...GOSUB
until Chapter 13.

In Example 10.2 a single ON...GOTO statement is substituted for the six
IF... THEN's of Example 10.1l. If the value of C is 1, the ON...GOTO statement
effects a branch to the first listed line number, 730, If C is 2 it branches
to the second line number, and so on, up to 6 which effects a branch to line
940. If C is less than 1, or equal to or greater than 7, the OW...GOTO
statement lets the normal sequence of execution prevail; this leads to the
reenter message.

Example 10.2 ON...GOTO Substituted for The Stack of IF...THEN's in
Example 10.1

530 REM CHOOSE JOB CATEGORY

540 PRINT , "1l. CARPENTER", "U4. ROOFER"

550 PFINT , "2. LABORER", "5. FOREMANM

560 PRINT , "3. ROD LAYER"™, "6. NON-UNION"

570 PRINT

580 INFUT "ENTER NUMBER TO CHOOSE JOB CATEGORY", C

590 REM ERANCH TO UPDATE CATEGORY DATA
600 REM kakok ko ok deote ootk kol ok ok A ok ook ok ook ok kol ok ok ok ok kok %

610 ON C GoOTO 730, 760, 810, 850, 880, 940
620 REM Adoksokok kokokokok dokokok ook ok ok ok oKk ok kokookok o ok fokok ok

680 REM SELECTICN INVALID

690 PRINT "INVALID. REENTER."

700 EFINT

710 GOTO 5140

720 REM UPLCATE CARPENTER HOURS

730 Hl = D + Hl

740 GOTC 970

750 REM UPDATE LABORER HOURS, INSURANCE, VACATION FUND
760 H2 = D + H2

770 19 I9 + (D*.052)

780 v9 V9 + (D*.1175)
790 GOTO 970

970 REM NEXT OPERATIOCN
The general form of the ON statement with GOTO is
ON expression GOTO line number [,line number...]

The square brackets and ellipsis indicate that line numbers beyond the first
are optional, and may be added without limit.

The ON...GOTO statement first evaluates the expression following "ON'.
If the integer value of the exgression is 1, a branch is taken to the first
line number following GOTC. If the integer value of the expression is 2, a
branch to the second line number is effected. 1In general, if the integer

i3/

value of the expression is n, a branch is effected to the nth 1line number
following "GOTO", If n is greater than the number of lines specified, or if n
is less than 1, no branch is taken; the normal sequence of execution prevails.

Differences Between Stacked IF...THEN's AND ON...GOTO

ON...GOTO, in Example 10.2, may be a good functional substitute for the
six IF...THEN's of Example 10.1. However, there is one difference which you
should be aware of, and may want to counteract. In Example 10.1 if a
non-integer value, such as 2.5, is entered, no branch is taken since 2.5 does
not equal any of the acceptable values. An entry of 2.5, therefore, yields a
"RE-ENTERY message. In Example 10.2 the ON...GOTO statement uses only the
integer portion of the expression; it treats an entry of 2.5 as if it were 2.
An entry of 2.5 effects a branch to line 750. Thus, in Example 10.2 any entry
in the range 1 € C<7 causes a branch, whereas in Example 10.1 only the values
1, 2, 3, 4, 5 or 6 cause a tranch.

In many circumstances this sort of difference. However, if necessary,
the difference can easily be eliminated from Example 10.2. Example 10.3 adds
a test for a non-integer entry to the program in 10.2. The new test is
highlighted by asterisks. If a non-integer is entered, this test effects a
branch to the reentry routine and, therefore, Example 10.3 functions
identically to Exasple 10.1.

Example 10.3 Testing For A Non-Integer Expression Before ON...GOTO

538 REM CHOOSE JOB CATEGORY

540 PRINT , "1. CARPENTER", "“4. ROOFER"

550 FRINT, "2. LABORERY, "S. FOREMANW"™

560 PRINT, "3. ROD LAYER", "6. NON-UNION"®

570 PRINT

580 INFOT "ENTER NUMBER TO CHOOSE JOB CATEGORYI", C

581 REM %%k dkokok ko i ok ok sk Bk o e e ok ok e e sk o sk e ke sfe o o o s oo ske ok

582 REM NON-INTEGER ENTRY?
584 IF INT(C)€> C THEN 690
585 REM ok 3 ok sk 3k ok o sk e s s o ok s e gk sk s ok ok sk ke de sk 3 ok e ok ok ok ok e sk ok o e ofe ok ok

590 REM ERANCH TO UPDATE CATEGORY DATA

610 oN C GOTO 730, 760, 810, 850, 880, 940
680 REM SELECTION INVALID

690 PRINT "INVALID. REENTER."™

700 ERINT

710 GOTO 540

720 REM CPDATE CARPENTER HOURS

730 HL = D + H1

740 GOTO 970

750 REM UPDATE LABORER HOURS, INSURANCE, VACATION FUND
760 H2 = D + H2

770 I9 = I9 + (D*.052)

780 V9 = V9 + (D*.1175)

790 GOTO 970

970 REM NEXT OPERATICN

One preliminary word of caution is in order about the ON...GOTO
statement, thcugh. Later, after you have learned about subroutines and
subscripted variables, you will have two powerful tools for using the same
program statements to effect similar operations. With these techniques
available, when you find yourself using an ON...GOTO, you should ask, "Are

[KEN

these separate operations, which are being branching to, similar enough to be
combined into one." If you ask yourself this question, it should help you to
write better, more efficient, progranms.

10-2 USING MORE COMPLEX EXPRESSYONS IN ON...GOTO

In Example 10.2 the expression used in the ON...GOTO statement was a
simple numeric variable. However, since any valid exgression is allowed, more
complex forms can be used when needed.

Often the SGN function is handy for use with ON...GOTO. Suppose, for
example, that you want to do three different operations depending upon whether
K (or any expression) is less than, equal to, or greater than zero. SGN(K)
returns -1, 0, or 1 respectively for these conditions. SGN(K) + 1, then,
always yields 0, 1, or 2; this range is appropriate for use with ON...GOTO, as
follows:

Example 10.4 A Simple Use of SGN({) With OWN...GOTO

10 REM USING THE "“SGN" FUNCTION WITH "ONWN...GOTO"

120 ON SGN(K) + 1 GOTO 170,210
130 REM K < 0
140 REM OPERATION FOR K € 0 GOES HERE

170 REM K=0
180 REM OPERATICN FOR K=0 GOES HERE

210 REM R > 0
220 REM CPERATION FOR K>0 GOES HERE

The range of an expressicn over regular intervals can determine an
ON...GOTO branch by simply dividing the expression by the interval size, and
adding one if necessary. PFor example, if K is positive, to branch as specified’
on the intervals

0€ K< 800 branch to 900
800 ¢ KX 1600 " " 800
1600 € K<€ 2400 n " 700
2400 € K< 3000 " " 600
3000 € K no branch, execute next statement

this ON statement suffices:

490 ON (K/800) +1 GOTO 900, 800, 700, 600

133

Review cf Chapter 10

The general fcrm of the CN statement with GOTO is

ON expression GOTO line number {,line number...J
The OV...GOTO statement first evaluates the expression following the
keyword "ON", If the integer value of the expression is n, a branch is
effected to the nth line number following the keyword "GOoTO". If n is
greater than the number of lines specified, or if n is less than 1, no
branch is taken.

The SGN() function is often useful for producing an expression with values
in the range needed for ON...GOTO.

134

CHAPTER 11: LISTS

11-1 INTRODUCING LISTS DIM REVISITED

It is often desirable to arrange information in a list. In the original
inventory program, Example 2.2, there was just one product, coal. Suppose,
though, that there are six products for which we maintain an inventory. Ve
might want to maintain a quantity-on-hand list that looks something like this:

Quantity-On-Hand list

Tten Product Number Quantity in Units
1 X407 3455
2 D912 1200
3 T612D 120
u E711 145
5 A816A 192
6 c4l121 300

If we receive a shigment of 100 units of product E711l, to update the
quantity-on-hand list we go down the list to the 4th item, and update the
quantity value which we find there. 1In this case, we set the quantity to the
sum of the present quantity, 145, plus 100.

Suppose that we want to write a program to accomplish this simple task.
Make it even simpler for the mcment by assuming that the operator enters the
item number, 1-6, rather than the product number. This eliminates the need to
search through the list for the right product.

We will need six variables in which to keep the quantities. We can use
00-05. A simple program which updates these variables with entered quantities
is shown in Example 11.1.

Example 11.1 A Six-item Inventory Program Without List Variables
110 REM * A ROUTINE TO UPDATE ONE OF SIX INVENTORY BALANCES

120 REM * RITHOUT THE USE OF LIST VARIABLES
130 REM ACCEPT ITEM NUMBER

140 INPUT "ENTER ITEM NUMBER (1 - 6)", A
150 REM TEST ENTRY

160 IF A< 1 THEN 200

170 IF A > 6 THEN 200

180 IF A = INT(A) THEN 240

190 REM ENTRY INVALID

200 PRINT

210 PRINT "INVALID. REENTER"

220 GOTO 140

230 REM ITEM ENTRY OK. NOW ACCEPT TRANSACTION
240 INPUT "ENTER INVENTORY TRANSACTION AMOUNT (+ OR -)", B

250 REM ERANCH ON ITEM NUMBER
135

260 ON A GOTO 2z80, 320, 360, 400, 440, 480
270 REM UEDATE 00

280 PRINT "OLD BALANCE=", QO0, "NEW BALANCE=", QO0+B
290 00 = ¢O0 + E

300 GOTO 500

310 REM UEDATE 01

320 PRINT "OLD BALANCE=", Ql1, "NEW BALANCE=", Ql+B
330 0l = Cl + B

340 GOTO 500

350 REM UPDATE Q2

360 PRINT "OLD BALANCE=", Q2, "NEW BALANCE=", Q2+B
370 Q2 = Q2 + B

380 GOTO 500

390 REM UEDATE Q3

400 PRINT "OLD BALANCE=", Q3, "NEW BALANCE=", Q3+B
410 03 = Q3 + B

420 GOTO 500

430 REM UEDATE OU

4u0 PRINT "OLD BALANCE=", Q4, "NEW BALAWNCE=", QUu+B
450 Q4 = Q4 + B

460 GCTO 500

470 REM UPDATE Q5

480 PRINT "OLD BALANCE=", Q5, "NEW BALANCE=", Q5+B
490 05 = Q05 + B

500 REM NEXT CPERATION

510 GOTO 110

One of the most conspicuous features of this program is that from line
270 to 490 the same program steps are essentially repeated six times over.
The only difference between one of the six update routines and another is the
variable name. Whenever you see this kind of repetition in a computer program
you should lock for a way to improve the program by using a single set of
statements to perform the similar operationmns.

With the programming features of BASIC which we've covered thus far,
though, Example 11.1 is about the best we can do. What is needed is to be
able to keep a list of variables to contain the inventory quantities. Such a
list should allow us to refer to a specific variable on the list by saying in
effect, "I want the 1lst variable (or the 2nd, or the 3rd, etc.) in the
inventory quantity list." Furthermore, we should be able to say which variable
in the list we want ty means of an expression. That is, if J equals 4, we
should be able to say "Get me the Jth variable in the list Q1" and we should
get the Uth variable, since 84 is the value of the expression J.

BASIC offers just this capability. You can set up a list of variables,
and give the entire list a name. If you set up a list of six numeric
variables, the individual variables on the list might be known as:

01(1)
01(2)
01(3)
Q1(w)
01(5)
Q1(6)

The variables on this list may be referred to via
0l (expression)
provided that the value of the expression is greater than or equal to 1 and

J36

p—

less than 7. This means that, for example, if I=2, then 10 01(I)=50 will set
the second variable on the list to 50. In Q1(5) = 70 the constant 5 is used
to specify the 5th variable on the 1list. ’

Only the integer portion of the expression is used in specifying the
variable. Thus, Q1(2.2) is equivalent to Ql(2); it specifies the second
variable on the list; 01{11/2) is evaluated as 01(5.5) and specifies the 5th
variable on the 1list.

Dimensioning lLists

In order to use list variables, you must first tell the system to
set aside space for a list which contains the desired number of variables.
This is done with a dimension, or DIM statement. Thus,

DIM 01(6)

tells the system, "Set up a list of six numeric variables and call it Ql()."
(The symbol Q1 () is generally used to refer to the entire list, to avoid
confusion with the simple numeric variable Ql, which is completely separate
from the 1list Ql().) In the DIM statement an expression may not be used to
specify the number of variables on the list. An integer between 1 and 255
must be used. (255 is the raximum number of variables in any list.)

The names which can be used for lists are the same as the names which
can be used for ordinary variables, i.e., A-Z and AO0-A9, BO-B9, C0-C9, ...
Z0-Z9. However, whenever we refer to an entire list, we will use enmnpty
parentheses () to indicate that it is a list we are talking about, and not a
single variable. For example, RA2() refers to a list of numeric variables
beginning with A2(l) and extending to A2(n) where n is the number of variables
in the list. A2 refers to the ordinary numeric variable A2, which is
independent and not a part of any list. The ordinary numeric variable A2 as
well as the list AZ() may be used without conflict in the same progran.

Example 11.2 shows how, by using list variables for the quantity-on-hang,
the repetition in lines 280 to 490 of Example 11.1 can be eliminated. The new
statements are enclosed in REM asterisks.

Example 11.2 PRewriting Example 1l.1 Using List Variables

110 REM * THE OPERATION OF FIG 11.2 NOW USING LIST VARIABLES
111 REM * FOR THE QUANTITY BALANCES

112 REM **%%%%x% DIMENSION THE LIST **k&kk¥kkkkikkkx

115 DIM Q1 (6)

117 REM *Fk$5kk kb ook ko Rk ko kK ko ok ok koK ok ok

130 REM ACCEPT ITEM NUMBER -

140 INPUT "ENTER ITEM NUMBER (1 - 6)", A
150 REM TEST ENTRY

160 IF A< 1 THEN 200

170 IF A > 6 TREN 200

180 IF A = INT(A) THEN 240

190 REM ENTRY INVALID

200 PRINT

210 PRINT "INVALID. REEWNTER."

220 GCTO 140

230 REM ITEM ENTRY OK. NOW ACCEPT TRANSACTIOW
240 INPUT "ENTER INVENTORY TRANSACTION AMOUNT (+ OR -)", B

250 REM ek sk ok o ok o oje ok ek e o e ok ok e i ok ok e afe sk ol e ok ok ok ok ok ok ok dkok ok ok

255 REM UPDATE SELECTED ITEM
260 PRINT "OLD BALAWCE=", Ql1(A), “NEW BALANCE=", Ql(A) + B

i37

(.
270 0L(a) = 01(a) + B o)
280 REM % skok ok ok sk ok ok ok ok ok ok dk sk e 3 e sk o sk sk 3 o sk e e o 3 ok ok afe 3k ok ok ok ok ook R

290 REM NEXT OPERATION

300 GCTO0 110

At line 115 the list is established by means .of a DIM statement. -
Q1(6) in the DIM statement specifies that there are to be 6 numeric variables
in the 1list 01(). The same rules apply to using DIM statements for setting
up lists as for specifying alphanumeric variable length. That is, the DIM
statement must precede any reference to the variable in the progranm.
Furthermore, cnce the number of variables in the list is set by a DIM . -
~+atemant, anv attemnt +o change it with another . =t .+ . ment priuci:s a-
SRR ressage.

At line 140 the operator enters the item number into variable A, just as
in Example 11.1. 17he entry is then tested in lines 160 to 180 to ensure that
it is an integer within the acceptable range. At line 240 the transaction
amount is entered into B.

TLine 260 nfin*c "OLD RALANCF=" Foltowpﬂ by +he'va1no of tho variable
A B : cowilll ‘s S ° “* ' whichk
varlable, on the llst 01(), is belng referrpd to. s5ince A recelved the .
item number at line 140, Ql(3d) is the variable which contains the o0ld balance
for the selected item., The new balance is equal to the old balance, in

Ol(A), gLus tub transaction, in B; rneretoxe, the new balance 1s Ql(A) + B.

L B I R A I N N .

§umma¢v

Using list variables allows you .to select a variable from a list by
means of the value of an expressicn. Whenever variables are related by virtue
of similar operations which must be performed on them, you should consider
whether efficiency might be improved by using list variables instead of
individual variables. With list variables you can write one operation and
let the value of an expre551on specify the variable on which the operation is
to be performed.

v’

17~1 ATPHANTIMERTC LTSTC

Wang 2200 BASIC also permits alphanumeric list variables. The names of
such lists are the same as for lists of numeric variables, except that a $ is
inserted. For exanrle,

DIM A$(12)

tells the system tc set up a list known as A$(), containing 12 alphanumeric
variables. The variables are identified as A$(1l) through A$(12). Similarly, -

DIM C8$ (42)
sets up a list of 42 alphanumeric variables with the 1list named C8%(). It is
possible to use the same two characters to name different alphanumeric and .
numeric lists. For example,

DIM C8%(u42), C8(4)
sets up two ccmpletely separate lists, the first alphanumeric the second

numeric. Furthermore, the individual variables C8$ and C8 could also be
used without any conflict with these two lists; all four are totally

By

~

distinct.
When using a DIM statement with alphanumeric variables you must

carefully distinguish between a length specification, and the specification of
the number of variables in a list. For example,

DIM A2%4

specifies that the individual alphanumeric variable A2$ is to be long
enough to hold four characters. It might look like this in memory:

128 [AaTaTlalal

However,

DIM A2% (U4)
specifies that a list, A2%(), containing 8 alphanumeric variables is to be set
up. The length of each variable is 16 characters, since that is the length

the system always uses unless told otherwise. 1In memory, the result of DIM
A28 (4) would look scmething like this:

A28()) [alaTalalalalalalalalalalalalalal
228(2) (ATalalalalalalalalalslalalalala]
22%(3) [_QJAIAFAlglelelglelAIAIA[A|A|A|A|
223(4) [aJeolalolalaTalalalalalalalafaTa]

It is possible to set up a list of alphanumeric variables with the
maximum lengths of the variables set to other than 16 characters. For
example,

DIM A2$(84)6

sets up a list containing 4 alphanumeric variables in which each variable
can contain a maximum of 6 characters. In memory it would look something
like this:

228(1) [alalalalale]
128(2) [aJa]alalala)
225(3) [a|afalalala]
K28(8) JaJala]lalalal

11-3 LISTS AND FOR..,TO/NEXT 100PS

List variables make possible the use of FOR...TO/NEXT loops where
separate processing would otherwise be required. For example, suppose we want
a very simple program to assign the opening inventory data of Figure 11l.1 to
two lists. One list is alphanumeric, and contains the product number; the
other list is numeric, and contains the on hand quantity. Values are assigned

: s0 that corresponding variables receive corresponding values. That is, the

product number in the first variable of the product number list has its
associated guantity in the first variable of the quantity list, and so on. A
program to set up this list is shown as Example 11.3.

39

Example 11.3 Setting Up The Inventory Lists

110 REM SETTIING UP THE INVENTORY LISTS

120 CIN Ql(6), N$(6)8

130 FOR I =1 TO 6

140 PRINT "ITEM #"; I,

150 INPUT "PRODUCT NUMBER ", NS$(I)
160 PRINT ,

170 INPUT "OPENING BALANCE", 01(I)
180 PRINT

190 NEXT I

200 REM LIST COMPLETE

210 PRINT "LIST COMPLETE"

Line 120 of Example 11.3 dimensions the two lists. The numeric quantity
list is Ql(). The alphanumeric product number 1list is N$(). Note that the

maximum length of a product number is 8 characters, and both lists contain six

variatles.

The FOR/NEXT loop sets up a
1l to 6. At lines 150 and 170 the
which variable in each list is to
through the loop, N$(I) and Q1 (I)

variable on each list, since I equ

counter variable, I, whose value runs from
value of the counter variable determines
receive the entered value. The first time
specify the first variable on each list,
since I is equal to 1. The second time through they specify the second

als 2.

The entry of information into

successive pairs of variatles continues until NEXT I terminates loop processing.

We can now append to Example 11.3 a routine that allows posting of
inventory transactions. The complete program, with this appendage enclosed in

REM asterisks, is shown in Example

11. u.

Example 11.4 Adding Inventcry Posting To Example 11.3

110 REM SETTIING UP THE INVENTORY LISTS

120 DIM Q1(6), N$(6)8

130 FOR I = 1 TO 6

140 PRINT "ITEM #"; I,

150 INPUT "PRODUCT NUMBER ", N$ (I)
160 PRINT ,

170 INPUT "OPENING BALANCE"™, QI (I)
180 PRINT

190 NEXT I

200 REM LIST COMPLETE

210 PRINT "LIST COMPLETE"

220 REM % %ok ok e e ok ok ok 3 ok ok ok b e 3 o ok 3 ok ok ofe o she e e e ok s e e o ke ke e ke she e sk ok ok sk o ke ke ke oke e ok
230 PRINT

240 PRINT

250 PRINT "POST INVENTORY CHANGES®
260 PRINT

270 REM ACCEPT PRODUCT NUMBER

280 INPUT "ENTER PRODUCT NUMBER™, AS$
290 REM SEARCH LIST FOR PRODUCT NUMBER
300 FOR I = 1 TO 6

310 IF N$(I) = A$ THEN 380

320 NEXT I

330 REM NUMBER NOT FOUND

340 PRINT

350 PRINT "PRODUCT NUMBER NOT ON LIST. REENTER."
360 GOTC 280

i¥e

370 REM PRODUCT NUMBER POUND. SAVE I, THEN FORCE “NEXT" EXIT.

380 K =1
390 1=6

400 NEXT I

410 REM

420 REM PRINT OLD BALANCE, THEN ACCEPT TRANSACTION AMOUNT
430 PRINT "PROCUCT 4 ", AS, "OLD BALANCE ="; 01 (K)

440 PRINT

450 INPUT "ENTER INVENTORY TRANSACTION AMOUNT (+ OR -)", B
460 REM UPDATE INVENTORY BALANCE

470 O1(K) = OL(K) + B

480 PRINT "PRODUCT # "; AS$,"NEW BALANCE ="; 0Q1(K)

490 PRINT

500 REM

510 REM RESET VARIABLE VALUES AND RETURN TO MAKE NEXT ENTRY
520 A$ = n v

530 B=0

540 GOTO 280

550 REM kKo ik ok ok ok d ok o ok e ok e ok o s o ok ko ok e e ok sk e sk ok ok ok ok Aok ke ok ok ok ok ok ok ok ok ok ok ok

The key feature of this posting routine, versus Example 11.2, is that
the operator enters the actual product number, rather than the list iten
number. The program then searches down the list of product numbers, N%(), to
find the entered one. The search occurs at lines 300-320. I, the counter for
the FOR/NEXT loop, is again used to successively specify each variable in the
list. As soon as statement 310 finds a listed product number equal to the
entered one, it branches out of the FOR/NEXT loop to line 380. Since this
tranch out of the loop avoids the normal NEXT statement loop termination, the
program must force a NEXT termination, so that the information saved by
FOR...TO doesn't pile up in memory. This forced termination takes place at
lines 390 and #400. However, the program must first save the value of the
variable I. This value is the location on the list of the entered product
number. Obtaining this value was the purpose of the search. Therefore, line
380 saves the exit value of I in K.

Notice that if the FOR/NEXT search loop terminates without finding the
entered value, it leads to a "not on list" message and a reentry, at lines
330 to 360.

At line 420 the entered product number has been found, and its list
location is stored in K. 1Lines 430-450 print the product number and olad
balance, and request that the inventory transaction amount be entered. 470
updates the inventory balance, and 480 prints the results of the transaction.

Values of variables A% and B are cleared at 520 and 530, since otherwise
an accidental keying of (EXEC) would result in the previous values being
reprocessed.

) The simple search technique shown here is acceptable for short lists
of unsorted data. To search large quantities of data, more sophisticated

technigues should be used, and generally the data must be ordered in some

fashion.

FOR/NEXT loops and list variables are used together in a wide variety of
standard programming cperations. For example a loop can be used to set the
values of all list variables to a constant. This is illustrated in Example
11.5.

Example 11.5 Assigning A Constant To Each Variable In a List

¥

110 REM ASSIGNING A CONSTANT TO LIST VARIABLES

120 DIM C2(40)

130 REM ASSIGN VALUES

140 FOR I =1 TO 40
150 C2(I) = 10000
160 WEXT I

Another use of list variables and loops is illustrated in Example 11l.6.
The program sorts a numeric list A() into ascending order. The number of items
on the list is entered at line 200, but the program presumes that the list
itself is dimensioned, and has values in it ready to be sorted.

Example 11.6 Sorting The Values In A Numeric list

105 REM A NUMERIC SORT USING LIST VARIABLES

110 REM SORTING A LIST INTO ASCENDING ORDER

115 REM ** A DATA LIST IN A() MUST BE SUPPLIED **
200 INPOUT "ENTER NUMBER OF ITEMS ON LIST A()"“, N
210 FOR J = 1 TO WN-1

220 FOR K = 1 TO N-J

230 IF A(K) € = A(K+1l) THEN 280

2040 REM EXCHANGE VALUES OF A(K) AND A (K+l)
250 T = A(K)

260 A(K) = A(K+1)

270 A(K+1) = T

280 NEXT K

290 NEXT J

The sort consists of twc locps nested within one another, but all the
work is done by the inner loop. Assume we have an unsorted list A() of ten

items. Therefore, N, entered at line 200, equals 10. The first time
into the loops, J equals 1 and K equals 1. Line 230, then, looks at the first
tvo values on the list in A (1) and A(l+l). The object is to get the greater
of these two values into position A(1+1l), i.e., A(2). If the condition at
line 230, A(K)&= A (K+l) is. false, the values of these two variables must be
exchanged, so that the greater value is in A(K+l). Thus, if the condition in
230 is false, the normal sequence of execution prevails and lines 250-270 swap
the values of A(K) and A(K+l). 1If the condition is true, then the present
order is acceptable, and statement 230 simply branches over the statements
that swap the values.

Now suppose that it happens that, when we start our sort, the greatest
value of the entire list is in A(l). In other words, it is at the exact
opposite position from where we want it after the sort is complete. As a
result of the first time through the inner loop, as outlined above, this value
will be in A(2). It will have been exchanged with the value of A(2), since it
is greater. Now NEXT K sets K to 2, and statement 230 compares A(2) to A(3).
We know that now A(2) has the greatest value on the list, so the second time
through the inner loop it will be exchanged with A(3), and ends up in variable
A(3). The next time through A(3) and A(4) are compared and it moves to A (4).
The inner loor makes a total of nine comparisons (N-J=9):A(1l) and A{(2), A(2)
and A(3), A(3) and A(4), A(4) and A(5), A(5) and A(6), A(6) and A(7), A(7) and
A(8), A(8) and A(9), A(9) and A(1l0). At the end of all these the greatest
value has sunk to its correct position in A(10). The order of the others,
however, remains unchanged. At this point NEXT K terminates the inner loop.

NEXT J (line 290) increments J to 2 and starts the inner loop all over
again. Only this time we can omit comparing A(9) and A(10) since we know
A(10) has the greatest value. Therefore, in the second complete execution of
the inner loop K runs from 1 to N-2, to make 8 comparisons. At the end of

1~

these 8 times through the inner loop we know that the second greatest value
must have sunk to its correct po;ition, A(9).

Again the outer loop causes the entire inner loop to reexecute, but this
time 7 ccmparisons are made (N-3=7) and the 3rd greatest value is in its
proper position A (7).

This process regeats itself 9 times, (FOR J=1 TO N-1). On the 9th time
the 9th greatest value (which is the next-to-the-least value) has "sunk" to
A(2). This leaves the least value in A(l) and the sort is complete.

If you wish to test the sort program, the program in Example 11.7 can
precede the sort program to generate a list of random numbers to be sorted.
The numbers are integers retween 1 and 10000.

Example 11.7 Generating A list of Random Integers
10 DIM A (25)
20 FOR I=1 TO 25

30 A(I) = INT (RND(1)*10000+1)
40 NEXT I

11-4 A NOTE ON TERMINOLOGY

In this chapter we have been talking about variables such as A(2) and
N$(6) and have been calling them "list variables." The forms which
contain them and refer to them collectively, such as A() and N$(), ve have been
calling "lists." The term "list" is an unforbidding word in everyday usage
that accurately reflects the structure we are discussing. However, a variety
of other terms are so commonly used that you should be familiar with then.

In general any ordered arrangement of variable spaces in memory is known
as an array. If the location of any variable in the array can be specified by
means of a single value, the array is said to be one-dimensional. Thus the
lists we have been discussing are also knovn as one-dimensional arrays. For
example, N¥$() is an crdered arrangement of variables, and we can pick out any
variable on the list N$() by specifying a single value such as 5, as in N$(5).
In BASIC two-dimensional arrays can also be used. They are introduced in
Chapter 19.

Array variables are also sometimes referred to as "subscripted variables."
In the case of a list, the value which specifies a particular variable, for
example 4 in A2$(4), is called the "subscript." List variables are then
sometimes referred to as "singly subscripted variables", since just one
subscript is required for specification. This terminology is derived from
mathematical notation in which successive variables in a sequence are designated
with subscripts, for example, a,, a,, Agr Ayesce

Matrix algebra has also contributed a terminology of its own. 1In
connection with matrix operaticns what we have called a list will sometimes
be called a "vector." The term "matrix" without any qualification generally
refers to a two-dimensional array.

In contrast to list variables, such as C2(4) and A$(8), we have referred
to "ordinary" variables tc mean individual variables such as A, D$, Fu4$%, or
28. These "ordinary" variables are often called "scalar variables", when a
contrast with "array type variables" is to be drawn.

143

Review of Chapter 11

BASIC allows you to set up a list of variables and refer to each variable
on the list by giving the list name and an expression that specifies the
location of the variable in the list. For example,

P(T)
refers to the seventh variable down the list P{().
Lists can be alphanumeric or numeric.
To use a list, a DIM statement must appear on a lower numbered line
than any reference to a variable on the list. The DIM statement specifies
the number of variatles to ke in the list and, optionally, the length of
the alphanumeric variables in the list. For example

10 DIM A2$(16)5, B(50)

The maximum number of variables in a list is 255.

FOR. ..TO/NEXT loops can be used to perform a variety of common
list-processing tasks.

Lists are often called "one-dimensional arrays". In discussions of
matrix operations, and elsewhere, they are also sometimes called
"yectors." Ordinary variables such as A%, X, F2, etcetera are sometimes
called "scalar variables" to contrast them with vectors and matrices
(introduced in Chapter 19).

Y

CHAPTER 12: SUPPLYING CONSTANTS: DATA, READ, AND RESTORE

12-1 INTRODUCING DATA AND READ

Some programming tasks require that a program make use of a relatively
large number of constant values. For example, calculating withheld income
taxes may require that a state's set of income intervals and associated
percentages be available. 1A wholesale supplier may have 10 different fixed
sets of payment terms for customers. Each set may have a low balance finance
charge, a high balance finance charge and the cutoff point separating the two.
A single digit in the customer's permanent file indicate which terms apply to
the customer. Finally, a program performing calculations on the readings of a
scientific measuring device may have to use in its calculations the fixed
sensitivity characteristics of the machine, over intervals of its readings.
A1l of these examples require that a program have access to a fixed set of
numeric data. Analogous situations can exist for alphanumeric data. For
example, in a billing application a variety of invoice messages may be used,
based upon the past due status of the account.

Thus far, our ability to handle such situations is somewhat limited.
Three related statements of Wang BASIC considerably enhance our capabilities
in these situations. These statements are DATA, READ, and RESTORE. Let's
look at DATA and READ first.

DATA and READ are two statements that depend upon one another for
effective operation. In a prcgram, the DATA statement supplies values, but
the only way the program can make use of these values is by using the READ
statement to assign them to variables. Example 12.1 calculates the mean
average of a set of values supplied by a DATA statement.

Example 12.1 A Simple Use of DATA and READ Calculating An Average

110 REM CALCULATE THE AVERAGE ITEM VALUE (ARITHMETIC MEAN)
120 REM NUMBER OF ITEMS

130 DATA 10

140 REM ITEMS

150 DATA 26, 22, 28, 29.5, 32, 18, 20, 21.5, 22, 23
155 REM EFOGRAM BEGINS

160 REAT N

170 FOR I =1 TO N

180 READ D

190 E=E + D

200 NEXT I

210 REM CALCOULATE AND OUTPUT AVERAGE
220 PRINT "AVERAGE="; E/N

Notice in Example 12.1 that there are two DATA statements at the
beginning of the program. DATA statements do nothing, when encountered in the
normal sequence of execution. Their only function is to supply values to be
referenced by a READ statement. The remark at line 155 calls attention to
this fact, that the first executable instruction begins at line 160.

The READ N statement at line 160 reads the first data value in the
program and assigns that value to the variable N. The first data value is
always the first value in the lovwest line numbered DATA statement. Therefore,
READ N assigns the value 10 to N. READ N also automatically moves an internal
pointer to the next data value. The DATA statement at line 130 contains no
more data values, so the data pointer is set to the first value of the next

145

DATA statement, which is located at line 150.

At line 170 the newly assigned value of N is used as the "TO" value in
the FOR...TO statement. Thus, the loop set up by line 170 executes 10 times.
Line 180, within the loop, reads the value at the current data pointer
location, and assigns that value to the variable D. It then automatically
moves the pointer to the next data value., The first time through the loop, D
receives the value 26, since the first time line 180 is executed the pointer
is set to the first value in the DATA statement at line 150.

In order to calculate an average the program must add up all the values
to be averaged. This operation is performed at line 190. The variable E is
to contain the sun. '

NEXT I causes a branch back to the READ D statement, until this loop
has been executed 10 times. Each time through the loop READ D reads the data
value at the current pointer location, assigns the value to D, and moves the
pointer to the next data value. In this manner READ successively reads all
the values in the DATA statement at line 150. E is updated with each newly
read value.

When NEXT I terminates the loop, E contains the sum of all the DATA
values given in line 150. Line 220 calculates the average by dividing this
sum by N, the number of itenms.

During the last (10th) execution of the loop the READ D statement reads
the last value, 23, and sets the data pointer beyond this last value. Any
attempt to execute ancther READ statement, with the data pointer set beyond
the last value, results in an error (ERR 27 Insufficient Data). Therefore,
if you append this statement to the progran,

230 READ K

it produces an error. This is because the data pointer lies beyond the end of
the data values after the complete execution of the original program.

The RUN ccmmand, with or without a line number, always resets the data
pointer to the first data value. Therefore, Example 12.1 can be reexecuted
successfully by simgly re-keying RUN(EXEC).

It is not necessary that all data values be read. Since the first
data value specifies the number of values to be averaged, if line 130 is
changed to

130 DATA 6

the program will execute successfully, averaging only the first six values of
line 150. However, if line 130 is changed to

130 DATA 11

and no additional data values are provided, then the 1lth time through the
loop READ D produces an error (ERR 27 Insufficient data).

The READ statement proceeds from one value to the next without regard
to whether the next value is in the next DATA statement, or in the same DATA
statement. The fact that two DATA statements were used in this program is not
significant. The data could have supplied in a single DATA statement such
aS,

146

- 130 DaTA 10, 26, 22, 28, 29.5, 32, 18, 20, 21.5, 22, 23

For that matter it could have been supplied in eleven DATA statements, each
with a single value.

The first data value is always the first value in the lowest line
nimbered DATA statement. The system looks for DATA statements in line number
sequence. -Thus, if line 130 were numbered 151 instead the program would not
execute prope-ly. T[ATA statements may appear anyvhere in a program, before or
after the READ statements that read their data. Lines 130 and 150 could have
been numbered, for example, 9010 and 9020 respectively.

Values in DATA statements must be separated by commas. A comma must
not appear at the end of a DATA statement. Any number of values, up to the
paximum line length cf 192 keystrokes, may be included in a single DATA
statement.

DATA statements may contain numeric or alphanumeric data or both.
Alphanumeric values must appear as character strings in quotes. When the data
pointer is pointing tc an alphanumeric value, the next READ statement must
contain an alphanumeric variable to receive the value of the literal string.
An error results from any attempt to read numeric data into an alphanumeric
variable, or alphanumeric data into a numeric variable.

The general form of the DATA statement is:
DATA n [,n...J

a numeric constant
a literal string in quotation marks

Where n

Example 12.2 shows a program that reads alphanumeric data into an
alphanumeric variable.

Example 12.2 TATA and READ With Alphanumeric Values

110 REM REAL AND PRINT AN ADDRESS

130 DIM A3$25

140 FOR I =1 TO 3

150 READ AS

160 PRINT AS

170 NEXT I

180 DATA "WANG LABORATORIES, INC.", "836 NORTH STREET", "TEW

KSBURY, MA 01867"

Multiple VariablesIn A READ Statement

A single READ statement can read any number of successive data values
into specified variables. That is, a statement sequence such as:

40 READ 2%
50 READ C
60 READ D
can be replaced by
40 READ AS$,C,D

Multiple variables in a READ statement must be separated by commas. The
READ statement at line 130 of Example 12.3 assigns an address line to each

147

variable in AS$().
Example 12.3 Multiple Variables In A READ Statement

110 REM USING READ WITH MULTIPLE VARIABLES

120 DIM AS$(3)25

130 READ AS(l), A$(2), AS$(3)

140 FOR I = 1 TO 3

150 PRINT AS$(I)

160 NEXT I

200 DATA "WANG LABORATORIES, INC.","836 NORTH STREET",

"TEWKSBURY, MA 01876"
The general form of the READ statement is:

READ variable {,variable |

12-2 THE RESTORE STATEMENT

The RESTORE statement offers a means of moving the DATA pointer to any
DATA values. The statement, RESTORE, with no additional parameters, returns
the DATA pointer to the first DATA value.
If we add a line to Example 12.3 as follows,
170 coTO 130

the second execution of 130 yields an error, since the data pointer is beyond
the last data value. However, if we add

170 RESTORE
180 GOTO 130

the program will execute indefinitely. The RESTORE statement at line 170
moves the pointer tack to its original position, pointing to the first DATA
value.

A more practical, though simplified, program which makes use of RESTORE
is shown in Example 12.4. ‘

Example 12.4 A Simplified Withholding Tax Calculation

110 REM A SIMPLE WITHHOLDING TAX CALCULATION

120 INFUT "ENTER GROSS WAGES FOR WEEK", W
130 REM FIND AFPLICAELE TAX BRACKET

140 FOR I =1 T0 5

150 READ C, P

160 IF W< C THEN 210

170 NEXT I

180 REM W IS IN HIGHEST TAX BRACKET

190 P = .06F

200 GCTO 240

210 REM FORCE "NEXT" EXIT

220 I=25

230 NEXT I

240 REM P NOW CONTAINS CORRECT TAX RATE %
250 T=WX*P

260 PRINT "WITHHCLDING TAX = "; T

270 REM RESET DATA POINTER

I

280 RESTORE

290 REM 1LET OPERATOR ENTER NEXT WAGE
300 FRINT

310 GOTO 120

320 REM TAX DATA (CUTOFF, RATE)...
330 pATA 80.00, .005, 125.00, .01, 175.00, .025, 255.00, .035,
325.00, .045

At line 120 the operator enters the weekly gross wage. Lines 140 to 170
make up a look that carries out a search for the proper tax bracket. Each
time through the loop, line 150 reads an upper limit of a tax bracket and the
associated percentage for the bracket. Thus, the first time through the loop,
C is assigned the value 80.00 and P the value .005. If the wages for the week
are less than 80, then the tax rate is .005. Line 160 tests to see if the
wages are less than the tax bracket's upper limit. When 160 effects a branch,
P contains the appropriate percentage. If the loop terminates normally,
because the entered wage is $325.00 or more, then 190 sets P to the highest
tax rate, .065.

If line 160 effects a branch, then the POR...TO information must first be
cleared by forcing a NEXT statement exit. Lines 220 and 230 do this. Then,
the tax can be calculated by multiplying the percentage in P times the wage,
wl

After line 260 the work of the program has been done, but the DATA
pointer is no longer at the beginning of the DATA values. The RESTORE
statement at line 280 is used to move it back, so that another wage entry can
be successfully processed.

Using An Expression In The RESTORE Statement

An expression can be used with the RESTORE statement to move the DATA
pointer to a specific DATA value. IiIf the value of the expression is n,
RESTORE n moves the DATA pointer to the nth DATA value. Only the integer
portion cf the expression's value is used.

Example 12.5 Illustration of RESTORE With Expression

110 REM ILLUSTRATION OF "RESTORE"™ WITH EXPRESSION

120 INPUT "ENTER TWO SINGLE DIGIT POSITIVE NUMBERS", A,B
125 REM CUTEUT FIRST VALUE
130 RESTORE A

140 READ WS$

150 ERINT W$; " PLUS ";
155 REM CUTPUT SECONL VALUE
160 RESTORE B

170 READ WS

180 ERINT W$; " EQUALS ";
185 REM CUTPUT SUM

190 RESTORE A+B

200 READ W3

210 PRINT W$

500 DATA "“ONEY, "TWO", "THREE", "FOUR", "FIVE", "SIX", "SEVEN",
"EIGHT", "NINEY, "“TEN", "ELEVEN", "TWELVE", "THIRTEEN", "FOURTE

EN", YFIFTEEN", "SIXTEEN"

510 DATA "SEVENTEENY", "EIGHTEEN", "NINETEEN"

For two entered values, such as 5 and 6, Example 12.5 outputs a line
such as:

¥9

FIVE PLUS SIX EQUALS ELEVENW.

At line 120 the operator enters two single digit positive values into
the variables A and B. At line 130 the variable A is used as the expression
in a RESTORE statement. The RESTORE A statement moves the data pointer to the
Ath data value. Thus, if A is 5, the data pointer is moved to the fifth data
value, "FIVE"; if it were 9, RESTORE A would move the pointer to the 9th data
value "NINE"., Line 140 then reads into W$ the value at the current, newly
set, data pointer location. W$ is printed followed by the word "PLUS". Lines
160 to 180 repeat this prccess for the second word. In lines 190 the same
process is again repeated, but now.the RESTORE expression is A+B. RESTORE A+B
evaluates the expression A+B and, if we assume the result to be k, moves the
data pointer to the kth data value in the program.

The general form of the RESTORE statement is
RESTORE expression
Where 1 € value of expression £ 256
Example 12.6 shows a simple routine that prints one of several invoice
messages, depending upon the value of a variable D; where D is the age in days
of the oldest outstanding invoice.
Example 12.6 A Program That Prints Invoice Messages
110 REM PRCGRAM SEGMENT WHICH PRINTS INVOICE MESSAGES

120 REM ** ASSUME THAT D CONTAINS THE AGE IN DAYS OF THE
130 REM ** OLDEST OUTSTANDING INVOICE AND THAT D« 120

140 DIM M$30

520 REM OUTPUT MESSAGE
530 RESTORE D/30 +1
540 READ M$

550 ERINT , M$

560 REM NEXT OPERATION '
6000 DATA "THANK YOU FOR PAYMENT", "YOUR ATTENTION IS APPRECIATED",
"PAYMENT OVERDUE"™, "IMMEDIATE PAYMENT REQUESTED"

Example 12.6 assumes that D has been determined previously, and is
less than 120. If you want to try out this program segment, a simple INPUT
statement such as

150 INPUT “AGE IN DAYSY, D
will make it operational

The RESTORE statement at line 530 is the key to the operation. If there
is no outstanding invoice over 30 days old, then the account is current. With
a value of D less than 30, the RESTORE expression, D/30+1, has a value greater
than or equal to 1 but less than 2. For example if D is 15 D/30+1 is 1.5.

Any value in this range is treated by RESTORE as if it were 1, since RESTORE
uses only the integer portion of the value. Thus if D is less than 30 the
message "THANK YOO FOR PAYMENTY is read and printed. A value of D in the
range 30 € D<€60 yields a truncated expression value of 2, which causes the
second message to be output. Similarly 60-90 outputs the third message and
90-120 the fourth.

/5O

4.

Reviev of Chapter 12

The DATA statement contains values that are accessed by the READ
statement. When encountered in the sequence of execution, DATA
statements do nothing.

When ‘the RUN comnmand is executed, the DATA pointer is set to the first
DATA value, in the DATA statement at the lowest numbered program line.

The READ statement assigns to a variable the DATA value at the location

of the DATA pointer, and then moves the pointer to the next DATA value.

If more than one variable is specified in the READ statement, it repeats
this operation until all variables have been assigned DATA values.

The DATA pointer must point to an alphanumeric value at the time that an
alphanumeric variable is encountered in a READ statement, and to a
numeric value at the time that a numeric variable is encountered in a
READ statement. Otherwise, an error results.

RESTORE, without an expression, moves the DATA pointer to the first
DATA value. RESTORE with an expression, whose integer value is k,
moves the DATA pointer to the kth DATA value in the program.

The general forms of DATA, READ and RESTORE are:

DATA n [,n...J)
READ variable [,variable...]

RESTORE [exgpression]

where: n a numeric constant

a character string in gquotation marks

and,

1 € value of "expression" <£ 256

LY

CHAPTER 13:. INTRODUCTION TO SUBROUTINES

13-1 GOSUB AND RETURN

Frequently, identical or nearly identical operations must be performed
repeatedly within a program. A naive solution in such a situation is to
simply append to the program, again and again, the instructions needed to do
the job. Such an approach, however, is nearly always impractical, because it
rapidly exhausts the limited resources of computer memory and programmer time.
For this reascn, a variety of programming technigques have evolved that allow a
program to use the same instructicns over and over, to perform similar
operations. A loop is an example of such a technique. The simplest kind of
loop allows the same instructions to be used over and over again, when only
the values of variables change each time through. The use of list variables
can be another such programming technique. This allows the same instructions
to be used repeatedly when the variable itself is what must be changed on each
repetition. 1In this chapter we are going to look at another technique for
reusing the same instructions tc perform similar operations: the subroutine.

When the same operation must be performed at several different locations
within a program it may be a good candidate for being made into a subroutine.
For example, a program that prints a report should print the column headings
at the top of the first page, and every page thereafter. This requires the
program to maintain a count of the number of lines printed on a page, and to
compare the number printed with the full-page maximum, each time a line is to
be printed. 1If a line would overflow the page, the paper should be advanced
above the perforation and the headings reprinted.

If a program has several print statements that output a line, this
entire operation of testing the line count, and possibly printing the headings,
nust occur before each such PRINT statement. W®While it would be possible
to repeat the required instructions as many times as necessary within the
program, this is wasteful. A hetter approach is to take the instructions
required for testing the line count, and printing the headings, and locate them
outside of the main program, say, at a higher numbered line than
the end of the main program. Then, as the program is being written, each time
the program must perform the line count/headings operation, a branch

to these instructions is written. While it is possible to get this "subroutine"

with a simple GOTO, the problem is how to get back to the right place in the
main program once the subroutine is complete. That is, if the program is to
branch to the line-count/headings operation from several different locations
in the main program, how is the line-count/headings operation going to return
to the right place in the main program after it has done its work.

The BASIC language offers a simple solution to this problem, in the form
of two statements specifically designed for programming subroutines. In the
main program, when the line count/headings subroutine is to be executed a
branch is made to it, with the statement

GOSUB line number
where "line pumber" is the starting line number of the subroutine.

GOSUB works just like GOTO, except for one thing. GOSUB saves, in a
special part of memory, the location of the statement immediately following
itself.

At the end of the line-count/headings subroutine we write the statement

|57

A

o

RETORN

RETURN looks to the part of memory in which GOSUB saves its information, and
branches to the statement whose location was saved by the GOSUB. In the
process of doing this, it clears out the location information that was saved
by the last GOSUB. If a program tranches, with GOSUB statements, to the line
count fheadings subroutine from three different locations in the main progranm,
the single RETURN statement will always branch back to the statement following
the most recently executed GOSUB.

GOSUB and RETURN may not be used in the Immediate Mode. 1In addition,
GOSUB may not be the last statement in a progranm.

The diagram shown in Figure 13.1 shows the example situation, programmed
without the use of sutroutines. Notice that the block "TEST HEADINGS?" is
repeated three times, once before each PRINT line.

WITHOUT SUBROUTINES

o

PROCESSING y

LINE 10

LINE 420

/

LINE 426
TEST. HEADINGS?
LINE 500

PRINT
REPORT LINE

(PROCESSING}

Y

940 ‘\
TEST. HEADINGS?

930

1020 {
1030

PRINT
REPORT LINE

(PROCESSING}
aso

y

1460

[TEST. HEADINGS?|

r

PRINT
REPORT LINE

153

Figure 13.2 represents the program flow when the "TEST HEADINGS?"
routine has been made into a subroutine. The matching pairs of lines show the
branches effected by each execution of GOSUB, and followed by RETURN. For
example, GOSUB, when executed at line 420 causes RETURN to branch to line 430,
since 430 contains the next statement after 420. GOSUB from line 860 causes
RETURW to branch to 870, again because 870 is the statement following 860
GOSUB 3000. sSimilarly the GOSUB at line 1280 causes RETURN to branch to 1290.

MAIN PROCESSING

Y
LINE 10
PROCESSING
A
420 GOSUB 3000
430 PRINT REPORT
LINE
(PROCESSING)
SUBROUTINE
850 GOSUD 2000 7| LINE 3000
TEST. HEADINGS?]
RETURN
860 PRINT REPORT
LINE
(PROCESSING)
A
1280 GOSUB 3000
1200 PRINT REPORT]
LINE

. STOP

is?

A skeleton of the program we have been discussing is shown in Example
13.1. '

Example 13.1 A Skeleton of A Program Using Subroutines

10 REM PFCCESSING BEGINS

420 GOSUB 3000
430 PRINT AS, C, D$(F), 0(8)
440 REM FROCESSING CONTINDES

850 GOSUB 3000
860 ERINT T$, R, US(F), R(9)
870 REM PROCESSING CONTINUES

i280 GOSUB 3000
1290 PRINT E$, G, YS(F), S(9)
1300 IF Q &7 T THEN 10

1310 STOE "END OF PROGRAN™
3000 REM SUBROUTINE -- 1INE COUNT ,/ HEADINGS
3010 L=L+1

3090 RETUERN

Since the RETURN statement branches to the last location saved by GOSUB,
its operation depends upon this information. Therefore, an error results if
the system encounters a RETURN statement when there is no return location
information previously saved by a GOSUB. This problem is analogous to that of
NEXT in relation to FOR...TO. In general, when using subroutines, you should
be certain that every possible route to a RETURN statement will provide the
statement with the GOSUB information it needs.

The RETURN statement clears from memory the return location, saved by
the last GOSUB, as it branches to that location. This clearing operation is
important because it prevents useless information from accumulating in memory.
If a program repeatedly executes GOSUB.statements without executing
corresponding RETURN statements, for example by using an IF...THEN to branch
back to the main program, then eventually a table overflow error will occur,
as a result of the excess accumulated GOSUB information. There are two ways
to avoid this difficulty. 7You check that each time a GOSUB is executed a
RETURN is executed. If a subroutine has no statements which could effect a
branch out of it, other than RETURN, then there is no danger of avoiding the
RETURN. If, under some circumstances, the RETURN must be avoided by means of
a branch out of the subroutine, the RETURN CLEAR statement can be used to
- clear out the information saved by GOSUB.

13-2 RETURN CLEAR

|55

RETURN CLEAR always lets the normal sequence of execution prevail;
however, it clears from memory the return location information saved by the
last executed GOSUB. Example 13.2 illustrates the use of RETURN CLEAR.

Example 13.2 A Simple Use of RETURN CLEAR

110 REM EXAMPLE USING RETURN CLEAR
120 REM EROCESSING

170 GOsSUB 5000
180 REM NORMAL KETURNW POINT FROM SUBROUTINE IS HERE

270 REM RETURN FROM SUBROUTINE TO HERE ONLY IF X=2

4000 STOF "END OF PROGRANM"

5000 REM SUBROUTINE

5060 IF X=2 THEN 5080
5070 RETUEN

5080 RETURN CLEAR
5090 GOTC 270

In this program, in addition to the normal return point immediately
following the GOSUB statement (line 180), if X=2 the subroutine must return to
line 270 of the main program. line 5060, in the subroutine, tests for X equal
to 2. If X equals 2 it tranches around the normal RETURN statement, at line
5070, to line 5080. 5080 RETURN CLEAR clears out the return location
information saved by the last GOSUB, but makes no branch. 5090 then makes an
ordinary branch to line 270.

It is possible to branch to a subroutine from within a subroutine.
Such a procedure is known as nesting subroutines. Approximately 45 levels of
subroutines nested within subroutines are permitted. From within a subroutine,
a simple GOSUB statement, giving the line number of another subroutine is
all that is needed to use the cther subroutine. A RETURN statement always
branches to the location saved by the last executed GOSUB. So, if a subroutine
GOSUB's to another subroutine, when that other subroutine is complete, RETURN
branches back to the original subroutine. When the original subroutine is
complete, RETURN branches back to the main program. A RETURN CLEAR statement
wipes out only the location saved by the last executed GOSUB. Therefore, if
a RETURN CLEAR is executed in a nested subroutine, the RETURN at the bottom
of the nested subroutine will branch back to the statement after the second
previous GOSUB.

13-3 QN,,,GOSUB

In Chapter 10 the ON statement with the GOTO parameter was introduced.
In addition to ON...GOTO there is another form of this statement, ON...GOSUB.
ON...GOSUB works the same as ON...GOTO except that the location of the statement
following the ON...GOSUB statement is saved in a special part of memory for

Isd

_/'

use by the RETURN statement.

2.

Review of Chapter 13

The GOSUB statement causes a branch to a specified line number, and
saves the location of the statement following itself in a special part
of memory, for later use by the RETURN statement.

The RETURN statement is denerally placed at the end of a subroutine.
It causes a branch to the location saved by the last executed GOSUB,
and clears the return lccation information.

TheRETURN CLEAR statement simply clears the return location saved by
the last executed GCSUB. It does not effect a tranch.

The ON statement with GOSUB works the same as ON with GOTO except that
the location of the statement following the ON...GOSUB statement is
saved in a special part of memory for use by the RETURN statement.

Approximately U5 levels of subroutine nesting are permitted.

157

CHAPTER 14: THE DEFFN' STATEMENT

14-1 USING DEFFN' TO MARK SUEROUTINES

In the last chapter we looked at subroutines that were branched to
with the statement

GOSUB line number

where "line number" is the number of the first line in the subroutine.

If you are writing a program and wish to write a subroutine access with
GOSUB, you must know the line number of the beginning of the subroutine.

This can be somewhat inconvenient, especially if, in the process of writing
the program, you wish to renumber it. Renumbering may move the subroutine to
an unknown location, forcing you to look through the program listing to find
the subroutine, before writing the next GOSUB statement.

Wang BASIC lffers a multipurpose instruction DEFFN' that, in its
simplest use, allows you to mark the beginning of a subroutine, and give it
an identification number. For example, the statement

1100 DEFFN' 198

marks the beginning of a subroutine, and identifies it as DEFFN' subroutine
198. To branch to this subroutine the statement

GOSUB' 198

is used. This statement is like GOSUB except that it causes the system to
search through the program for the statement DEFFN'198, and when it finds
it, causes a subroutine branch to the DEFFN'198 location. Using DEFFN' and
GOSUB' you don't have to keep track of where a subroutine is in order to use
it.

The number 198, chosen as the identification number for this
subroutine, has no particular significance, other than to distinguish it
from other DEFFN' subroutines. It bears no relationship to the line number
of the DEFPFN' statement, or the processing accomplished in the subroutine.
The RETURN statement functions exactly the same for subroutines accessed
with GOSUB' as for those accessed with GOSUB. There is no special form of
the RETURN statement for use with marked subroutines.

The general form of the DEFFN' statement for simple marking of subroutines

is
DEFFN' integer
where: 0 € integer «€ 255

DEFFN' statements in which the specified integer is in the range 0-31 are
used to define Special Function Keys. This use is discussed in Section 14-3.

The general form of the GOSUB' statement for simple marked subroutines
statement is

GOSUB' integer

where 0 € integer € 255 and the integer corresponds to an integer in a

5%

DEFFN' statement. GOSUB' may not be the last statement in a program.

The DEFFN' statement and its subroutine may appear anywhere in a progranm,
either at a lower or higher numbered line than the GOSUB' statements that
reference it. However, the DEFFN' statement itself must always be the first
statement on a line. If encountered in the normal sequence of execution,
the DEFFN' statement does nothing; its only purpose is to be accessed via a
GOSUB' statement or a Special Function Key.

14-2 ARGUMENT PASSING

Often it is necessary to assign values to key variables before branching
to a subroutine. For example, if a program requires that several different
types of numeric values be entered from the keyboard, it may be worthwhile to
write a simple subroutine to handle all numeric entries. The subroutine
should display a specified prompt and test the value entered to determine
whether it is within an acceptalle range. Only if the value is acceptable
should it transfer control back to the main program. Such a subroutine is
shown in Example 14.1.

Example 14.1 A Numeric Entry Subroutine (Without DEFFN')

5000 REM A NUMERIC INPUT SUBROUTINE

5010 REM ** P§ THE PROMPT (64 CHARACTERS MAX) **
5020 REM ** [THF MINIMUM ACCEPTABLE VALUE

5030 REM ** O THE MAXIMUM ACCEPTABLE VALUE

5040 REM ** X RETURNED VARIABLE

(=2 000 T I I 1

5050 DIM P$64

5060 PRINT

5070 PRINT P$

5080 INPUT X

5090 IF X » U THEN 5120

5100 IF X = 1L THEW 5130

5120 PRINT "INVALID. REENTER"
5125 GOTO 5060

5130 RETURN

In order to use this subroutine the main line program must first assign
the operator prompt to P$, and the minimum and wmaximum acceptable values to L
and U respectively. Then, GOSUB 5000 can be executed to pass control to the
subroutine. (One cther thing should be noted, though. The DIM statement in
the subroutine must be moved to a lower line number than any in which a
reference to P$ occurs.)

Example 14.2 shows a segment of a main program that makes use of this
input subroutine.

Example 14.2 Passing Control To The Numeric Entry Subroutine

110 DIM ESE€L

410 P$ = "ENTER HOURLY RATE"
420 v = 25
430 L. = 2

440 GOsuUB 5000
450 PRINT "HOURLY RATE = "; X

5]

As can be seen from Example 14.2, three assignment statements must be
executed before passing control to the subroutine (lines #410-430). Since
one of the main purgposes of a subroutine is to reduce the total number of
statements needed for a program, the need to use three assignment statements
reduces the advantage of the subroutine. DEFFN' and GOSUB' offer a
convenient solution to this prcblem. GOSUB' can assign values to variables
specified in the DEFFN' statement as it passes control to the subroutine.

The DEFFN' statement must specify all the variables that are to be
assigned values when control is passed to the subroutine. For the
subroutine of Example 14.1, the DEPFN' statement might look like this:

DEFFN' 100 (P$,0,L)
In this statemenf, 100 is the number chosen to identify the subroutine.
Within parentheses are the three variables that are to receive values when
GOSUB' branches to this sutroutine.

In Example 14.2 the GOSUB' statement that would be used to make the
branch is

GOSUB'100 ("ENTER HOURLY RATE", 25,2)
This GOSUB' statement does the following:
1. Finds DEFFN' 100
2. Successively assigns each of items in parentheses
"ENTER HOURLY RATE"™
25
2
to each of the variables specified in the DEFFN' statement.

3. Branches to the subroutine.

Example 14.3 shows the rain program segment and subroutine, rewritten
using DEFFN' and GOSUB'.

Example 14.3 Program and Subroutine With DEFFN' and GOSUB!'

110 DIM P$64
410 GOSUB' 100 ("ENTER HOURLY RATE", 25, 2)
450 EFINT "HOURLY RATE = "; X

2050 REM END OF MAIN PROCESSING
2060 END

5000 REM A MARKED SUBROUTINE FOR NUMERIC INPUT (DEFFN' 100)
5010 REM ** P$ = THE PROMPT (64 CHARACTERS MAX) **

160

THE MININUM ACCEPTABLE VALUE
THE MAXIMUM ACCEPTABLE VALUE
RETURNED VARIABLE

5020 REM ** [,
5030 REM ** U
5040 REM ** X

5060 DEFFN' 100 (P$, U, 1)
5070 PRINT °

5080 PRINT PS$

5090 INPOUT X

5100 IF X > U THEN 5120

5110 IF X »= L THEN 5140

5120 PRINT "INVALID. REENTER"™
5130 GOTO 5070

5140 RETURN

Using DEFFN' and GOSUB' to assign values and branch to the subroutine has
eliminated lines 420 through 440 of Example 14.2.

With this sutroutine in the program, a single GOSUB' statement can be
used to initiate the processing associated with receiving a keyboard
numeric entry. For example, in this program there might be other calls to
this subroutine such as,

920 GOSUB'100 ("ENTER REGULAR HOURS"™, 40, 0)
1170 GOSUB'100 ("ENTER OVERTIME HOURS", 100, 0)

Any number of variables may be specified in a DEFFN' statement, but, for
each variable specified, the GOSUB' statement must supply an acceptable value.
This means not only that there must be an equal number of values as variables,
but also that alphanumeric variables must receive alphanumeric values, and
numeric variables must receive numeric values. Variables in the DEFFN'
statement, and values in the GOSUB' statement must be separated by conmnmas.

In the GOSUB' statement the value may be specified by any form that
would be legal on the right of the "=" in a LET assignment statement. This
means that any expression can be used to specify a value to be received by a
numeric variable. Alphanumeric values may be specified with a literal string
or an alphanumeric variable. For example, if the DEFFN' statement for a
subrout ine is

7000 DEFFN' 220 (K, N2(K), T$, PF)
a GOSUB' such as this is acceptable:
850 GOSUB' 220 (SGN(G)+2,3,A$,SOR(G+#PI))

The values supplied in the GOSUB' statement are often called "subroutine
arguments."

Example 1l4.4 shows a subroutine that rounds a value to a
specifiable number of decimal places.

Example 14.4 A Sutroutine To Round X to N Decimal Places

6000 REM A SUBROUTINE TO ROUND X, TO N DECIMAL PLACES

6010 DEFFN' 255 (X,N)
6020 X= SGN(X) *INT (ABS (X)*104N+.5)/104N)
6030 RETURN

¢/

14-3 DEFINING SPECIAL FUNCTION KEYS WITH DEFFN'

Across the top of your Wang 2200 System keyboard are 16 Special Function
keys. These keys may be defined by you, in a program, to perform a variety of
different types of tasks. Since each of the 16 keys may be depressed alone or
in conjunction with the SHIFT key, an effective total of 32 keyboard Special
Function keys is available. The special function keys are numbered 0 to 15
and 16 to 31, the latter range obtained by depressing SHIFT together with the
appropriate Special Function Key. The DEFFN' statement can be used to define
the Special Functicn Keys.

In the last two sections we have discussed the use of DEFFN' to mark
subroutines and assign subroutine arguments. We said that the DEFFN' statement
can identify the subroutine with any integer 0 to 255. For example

5000 DEFFN' 135

assigns the identification number 135 to the subroutine that begins at line
5000. With this statement in the program, the statement

400 GOSUB' 135

can be used to transfer control to this subroutine. However, if the

DEFFN' statement uses a number 0 to 31 to name a subroutine, the keyboard

Special Function Keys can also be used to initiate execution of the subroutine.

They can be used in this manner whenever the system colom (:) is displayed or

the system is awaiting a keyboard entry on an INPUT instruction. (DEFFN' subroutine
numbered 0 to 31 can also be accessed via a GOSUB' statement in the program.)

If the system colon (:) or the ? of the INPUT statement is displayed,
and a Special Function Key is depressed, the system searches through the
program text for a DEFFN' statement that has a number corresponding to the
number of the depressed key. For example, if Special Function Key 5 is
depressed, the system looks for a DEFFN' 5 statement; if Special Function Key
0 is depressed, it looks for DEFFN'0. When it finds the appropriate DEFFN'
statement it begins executing the subroutine that follows the. DEFFN', just
as if it had been sent there with a GOSUB'. 1If a Special Function Key is
depressed when the system colon is displayed, the RETURN statement at the
end of the accéssed subroutine simply causes the colon to be redisplayed.

If the Special Function Key is depressed at an INPUT instruction, the' RETURN
statement causes the INPUT instruction to be repeated; that is, the prompt
is redisplayed with the question mark, and the system awaits an entry.

The ability to access and execute subroutines upon keyboard selection
opens a wide range of programming possibilities. For example, a program may
be designed to execute with all angles given in radians. If an observation
happens to be recorded in degrees, it can be converted while the main
program is stopped at an INPUT instruction, by accessing a conversion subroutine
with a Special Function Key. Example 1l4.5 shows a segment of such a progranm
at lines 560 and 570, and a conversion subroutine accessable via Special
Function Key 11l.

Example 14.5 A Program With A Special Function Subroutine That
Converts Degrees To Radians

13-

560 INFOT "ENTER ANGLE T IN RADIANS", T

570 Z = TAN (T+#PI/6)

4000 REM CCNVERT DEGREES TO RADIANS SUBROUTINE

4010 DEFFN' 11

4020 PRINT "CONVERT DEGREES TO RADIANS"

4030 INPUT "ENTER DEGREES, MINUTES, SECONDS", D,M,S
5040 A =D +M/60 +5/3600

4050 A = A-INT (A/360) *360

4060 PRINT "ANGLE = ",A%*.0174532925; "RADIANS"

4070 RETURN

Whenever the main program requests an entry in radians, as
it does at line 560, the operator can, enter the value in radians;
hovwever, if the requested value happens to be recorded in degrees, the
operator can depress Special Function Key 11 to access the conversion subroutine.
The conversion subroutine requests the degree value, converts it to a radian
value and prints the radian value,

The RETURN statement then branches back to the INPUT statement from which the
subroutine was accessed, in this case line 560. The operator can then enter
the converted value that was printed by the subroutine.

In a similar manner subroutines can be designed which print subtotals,
print category totals, allow correction of erroneous entries, etcetera.
Having access to such subroutines from an INPUT instruction can be very
convenient.

Since execution of Special Function subroutines can be initiated
wherever the system colon (:) is displayed, up to 32 separate programs to
perform related or often needed calculations can be loaded into memory at
once, and accessed by Special Function Key. 1In such a case there might not
be any "main program", really. Each program would be set up as a DEFFN!
subroutine designed to perform a specific calculation. When the subroutine's
RETURN statement is executed, the system colon is redisplayed. Two calculations,
arranged in this fashion, are shown in Example 1l4.6.

Example 14.6 Special Function Key Access To Independent Calculations

110 REM TWO DEFFN' SPECIAL FUNCTION KEY SUBROUTINES

120 STOP "ACCESS SUBROUTINES WITH SPECIAL FUNCTION KEYS."
130 REM INITIAL INVESTMENT

140 CEFFN' 0

150 PREINT

160 PRINT "CALCULATE INVESTMENT AMOUNT NEEDED"

170 PRINT " TO ENABLE ONE TO WITHDRAW A GIVEN AMOUNT"
180 PRINT " M TIMES PER YEAR FOR N YEARS."

190 PRINT

200 INPUT "AMOUNT OF WITHDRAWAL"™, R

210 INPUT "ANNUAL INTEREST RATE (PERCENTAGE)", I

220 INPUT "NO. OF WITHDRAWALS PER YEAR", N

230 INPUT "NO. OF YEARS", N

240 1= I/M/100

250 J = (L+I)4(N*H)

260 PRINT "INITIAL INVESTMENT = $"; INT ((J-1)/(I*J)*R*100+.5)/100
270 RETURN

280 REM WITHDRAWAL FROM INVESTMENT

290 DEFFN'1

300 PRINT "CALCULATE THE AMOUNT THAT CAN BE WITHDRAWN"

I3

310 PRINT " FROM A GIVEN INITIAL INVESTMENT"

320 PRINT " M TIMES PER YEAR FOR N YEARS "

330 PRINT " AT INTEREST I, LEAVING NOTHING AT THE END."
340 PRINT

350 INPUT "INITIAL INVESTMENT", P

360 INFUT "ANNUAL INTEREST RATE (PERCENTAGE)",I

370 INPUT "NUMBER OF WITHDRAWALS PER YEAR", M

380 INPUT "NUMBER OF YEARS", W

390 1= I/M/100

400 R = P¥(I/((1l+4I)% (N*N)=-1)+T)

410 BRINT "AMOUNT OF WITHDRAWAL= $"; INT(LO00%*R+.5)/10
420 RETURN

Notice in Example 14.6 that each calculation begins with a DEFPN'
statement that defines a Special Function Key. Each calculation also ends
with a RETURN statement which simply redisplays the system colon. To
facilitate use of Special Function Keys, a removable labeling strip can be
inserted on the keyboard below the Special Function Keys.

The RUN ccmmand sets aside space for all variables used in a progranm.
It also resets the DATA pointer and checks for certain types of progranm
errors. These operations are not performed when execution is begun by
depressing a Special Function Key. However, variable space must be set aside
before any program can be executed. Therefore, whenever Special Function Keys
are used to initiate execution, the RUN command must be executed at least once
after lcading the gfrogram, so that variable space will be allocated. This is
the reason that the program shown in Example 14.6 has a STOP statement at line
120. When the program is first lcaded, whether from tape, disk, or keyboard,
RON is used to set up variable space. Immediately, STOP is executed, which
restores the colon. Thereafter, Special Function Keys can be used to initiate
execution of the desired calculations.

When a Special Function Key is depressed, a location is saved in memory
for use by the RETUFN statement, just as if the subroutine were accessed via
GOSUB'. This is true even if the Special Function Key is depressed while the
colen or ? is displayed. TFor this reason some means for eventually clearing
this information must be provided. If DEFPFN' Special Function Key routines
all lead to RETURN statements, then the RETURN statement will clear the return
location informaticn as it uses it. However, if a DEFFN' Special Function Key
access does not lead to a RETURN statement, the RETURN CLEAR statement must be
used to clear the return location information. Otherwise, repeated Special
Function Key accesses will pile up return information in memory, eventually
producing a table overflow error.

~ Used with the RETURN CLEAR statement, DEFFN' can provide Special Function
key access to a variety of entry points to a program. The program segment
shown in Example 14.7 illustrates this use.
Example 14.7 DEFFN' and RETURN CLEAR To Define Program Entry Points

110 REM USING SPECIAL FUNCTION KEYS AND "RETURN CLEAR"
120 REM TO DEFINE PROGRAM ENTRY POINTS

130 STOP "CHOOSE OPFRATIONS VIA SPECIAL FUNCTION KEYS"
140 REM ENTFY PCINT NUMEER 1

150 DEFFN' 1

160 RETURN CLEAR

490 GOTO 530

l6f

500 REM ENTRY POINT NUMBER 2

510 DEFFN' 2
520 RETURN CLEAR
530 REY PROGRAM CONTINUES HERE
990 GOTO 1030
1000 REM ENTERY POINT NUMEER 3
1010 DEFFN' 3
1020 RETURN CLEAR
1030 REM PROGRAM CONTINUES HERE

5000 REM EMERGENCY TERMINATION ROUTINE
5010 DEFFN' 31

5190 END

The program in Figure 1l4.7 is designed to be started from lines 150,
510, or 1010. The operator chooses where to begin the program by depressing
Special Function Key 1, 2, or 3. If Special Function Key 1 is depressed, the
entire program is executed. If 2 is depressed, lines numbered below 510 are
not executed while those numbered above 510 are. Notice that the GOTO
statements at lines 490 and 990 branch around the RETURN CLEAR statement.
This is done to aveocid the execution error that would result if RETURN CLEAR
were executed without there being any return information to be cleared.

Line 5000 begins an emergency program termination routine which is
accessible via Special Function Key 31. Such a routine can be especially
useful when tape or disk data files are being worked on, since these often
require special file closing procedures. If the operator always has
accessible a routine which closes files, and then stops program execution, the
likelihood that the system will be turned off without successfully closing the
files is greatly reduced.

If a DEFFN' statement that defines a Special Function Key has a list
of variables to be assigned values at the time of access; values may be
assigned by entering them, separated by commas, prior to keying the Special
Function key. Such a program is shown in Example 14.8.

Example 14.8 Argument Passing With A Special Function Key Subroutine
110 REM ILLUSTRATION OF ARGUMENT PASSING

112 REM WITH A SPECIAL FUNCTION KEY SUBROUTINE
120 REM CCNVERT DEGREES TO RADIANS

130 DEFFN' 11 (D,M,S)

140 A =D +M/60 +5/3600

150 A = A-INT(A/360)#*360

160 PRINT "ANGLE = ";A%*._0174532925; "RADIANS"
170 RETURN

In Example 14-8 a subroutine to convert degree measure to radian measure
is shown. Unlike the conversion subroutine in Example 14.5, the DEFFN!
statement of this subroutine requires that the three values for degrees,
minutes, and seconds be passed to it at the time of access. If a Special
Function key is used to access this subroutine, values for D, M, and S must

l6s

be keyed in before the Special Function Key is depressed. For example, to
access this subroutine, you can key

:25,1%5,20 (Special Function Key 11)

The values 25, 15 and 20 are successively assigned to each of the variables

D, M and S, and execution of the subroutine begins. The assignment of values

is the same regardless of whether the system is at an INPUT instruction or at

the system level with the colon displayed. Values to be assigned to alphanumeric
variables must be enclosed by guotation marks.

l4-4 DEFINING A SPECIAL FUNCTION KEY FOR CHARACTER STRING ENTRY

The DEFFN' can be used to associate a character string with a Special
Function key. When used in this fashion, depression of the specified Special
Function key causes the characters in the DEFFN' statement to be entered,
as if they had been entered one-~-by-one. For example, if this statement
appears in a progranm,

100 DEFFN'0O "FREIGHT CHG."

depressing Special Function key 0, at an INPUT instruction or when the colon
is displayed, causes the characters "FREIGHT CHGY" to become part of the
current text line. It must be emphasized that use of the DEFFN' statement to
define character strings is unrelated to its use in marking subroutines.
Character strings can be used with DEFFN' statements only when the DEFFN?
integer specifies a Special Function Key. Depressing the Special Function Key
associated with a DEFFN' character string merely causes the character string
to be entered, it does not initiate execution of any other statements.

If a Special Function Key is defined for character string entry, and is
. depressed while the system at an INPUT statement, the defined characters
appear on the screen as if they had been keyed in character- by-character. If
the (EXEC) key is then depressed, they are entered into the receiving variable
and processing proceeds. Thus if a program requires frequent keying of the
same characters, a DEFFN' statement can be incorporated which allows the
characters to appear with a single stroke of a Special Function key. Such an
entry is illustrated below.

ENTER DESCRIPTION OF ADDITIONAL CHARGES? FREIGHT CHG.
. [-

Key S.F. 0 Key (EXEC)
TO
ENTER
RESPONSE

Special Function Keys defined as character strings can also be useful
during programming. For example, if a DEFFN' such as

1 DEFFN'15 "LIST S 100, 9000"
is included in a program, a segmented listing of program lines 100 to 9000 can
be obtained by simply keying Special Function Key 15 followed by (EXEC). If
a program makes frequent use of a particular marked subroutine, a DEFFN'
statement such as

2 DEFFN* 0 "GOSUB' 243vw

will allow you to enter the characters

166

GOSUB' 243

into a program line by simply derressing Special Function Key 0.

lé7

Review of Chapter 14

The DEPFN' statement marks the beginning of a subroutine and gives the
subroutine an identification number. Optionally a list of variables may
be specified. Specified variables are assigned values when control

is passed to the subroutine.

The general fcrm of the DEFFN' statement for marked subroutine is:
DEPFN' integer {(variable f,variable...)]

where: integer = 0 to 31 to define Special Function Keys for
subroutine branching.
= 0 to 255 to mark GOSUB' accessable
subroutines.

variable = any alphanumeric or numeric variable to be
assigned a value when a branch to the
subroutine is made.

The GOSUB' statement initiates a branch to a specified DEFFN' marked
subroutine. 1Its general form is:

GOSUB' integer [(subroutine argument [,subroutine argument...])]

vhere: 0 <€ integer <€ 255 and is the integer in a DEFFN' statement.
"Subroutine argument" is a value to be assigned to the next
successive variable in the DEFFN' list of variables.
Values may be specified by a literal string, alphanumeric
variable, or expression.

A DEFFN' subroutine whose integer identification is in the range 0 to
31 can be accessed by means of the corresponding keyboard Special
Function key. If a Special Function key is depressed when the systen
colon or question mark is displayed, the system searches through the
program text for the DEFFN' statement, and initiates a branch to that
location. 4Upon execution of the RETURN statement, the system returns
to the program location from which the Special Function Key was
depressed; the colon or question mark is redisplayed.

The DEFFN' statement can be used to associate a character string with
a Special Function Key. Depression of the Special Function Key causes
all the characters to be entered as if they had been entered one-by-one.

The general fcrm of the DEFFN' statement for character string definition
is as follows:

DEPFN' integer "character string"

where: 0 < integer « 31

lbg

PN

PART IT: GAINING FROFICIENCY

CHAPTER 15: CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

[
(8]
[

1 INTRODUCING IMAGE AND PRINTUSING

The Image (%) and PRINTUSING statements are used together to precisely
control the format of printed ocutput. To use these statements, you first
write an Image statement in which you specify a print format. Then, when you
want to print a value according to that format, you use a PRINTUSING
statement. The PRINTUSING statement gives the line number on which the Image
statement can be found, and it gives the values that are to be printed.

PRINTUSING and Image statements are commonly used in applications
dealing with dollar amounts. Dollar amounts should be printed to at least two
decimal places, rarely more. The program and output shown in Example 15.1
shows simple numeric output from the PRINT statement compared with the output
from PRINTUSING and Image statements.

Example 15.1 Ccmparison of Qutput From PRINT and PRINTUSING
110 REM FIRST EXAMPLE COMPARING PRINT AND PRINTUSING

120 PRINT “PRINT OUTPUT",, "PRINTUSING OUTPUT"
130 FOR K =1 TO 7

140 READ N

150 ERINT N,,

160 PRINTUSING 180, W
170 NEXT K

180 % #&,%%3.44%
190 paTa 14500.00, 2.00, 2.50, 2.65, .10, .01, 1200.456456456

RON

PRINT OUTPUT PRINTUSING OUTPUT
14500 14,500.00
2 2.00
2.5 2.50
2.65 2.65
.1 , 0.10
1.00000000E-02 0.01
1200.456456456 1,200.45

The loop in this program simply reads the next data value and prints it,
first with PRINT, then with PRINTUSING. The PRINT statement formats output
according to its own fixed rules: trailing fractional zeros are never
printed, if the value is an integer the decimal point is not printed, all
significant fractional digits are output, if the value is less than .1 it is
output in scientific form, output is not aligned. By contrast the PRINTUSING
statement outputs according to a format specified in the program. In line 160

160 PRINTUSING 180, N

the "180" is the line number of the Image statement that contains the format
to be used. (The % sign is the keyword for the Image statement; the word
“"Image" is never used.) PRINTUSING must always refer to a line number that
contains an Image statement. The variable N in line 160 is the print element.
Each time line 160 is executed, PRINTUSING outputs N according to the Image
given in line 180.

l67

The Image specified consists of a space followed by a "format
specification." The format specification is the ’

R, .40
part of the Image.

In the format specification the # symbol is used to indicate that a
particular digit is to be printed. The decimal point (period) indicates the
location of the decimal, and specifies that it is to be printed. Commas
merely indicate where a comma is to appear.

ITn the PRINTUSING output, notice that exactly two digits to the right
of the decimal are always output. Digits to the right of these are simply
truncated (as in the last DATA value), but, if zeros occupy the first two
decimal positions, they are printed. Output is aligned at the decimal point,
and scientific notation is not used, regardless of the value.

Probably the easiest way to understand how the PRINTUSING and Image
statements work is to imagine that the system takes the image and replaces #
symbols with digits. When this process is complete, it outputs the "image" at
the current cursor location, not the original image, but the image with the
digit substitutions, (the original image is unchanged.)

A single Image statement can have several format specifications.
Example 15.2 shows an Image statement with four format specifications, and a
PRINTUSING statement with 4 print elements. All the print elements are the
same, but the output varies, since it is determined by the format
specifications.

Example 15.2 PRINTUSING and an Image With Four Format Specifications

110 REM AN IMAGE WITH 4 FORMAT SPECIFICATIONS

120 PRINTUSING 130, 123.45, 123.45, 123.45, 123.45
130 b S22 ¥R, AR 48 #RR. 448

¢ RUN

123 123.4 123.u45 123.450

In executing the PRINTUSING statement of line 120 the system takes the
first print element (123.45) and starts substituting digits from it into the
first format specification (###%#). Since there is no decimal point in the
format, the decimal location is implied immediately to the right of the format.
The digit "1" is substituted for the first # symbol, the digit "2" for the
second #, the digit "3" for the third. Now the system finds no more # symbhols,
so the remaining digits in the first print element are ignored. The systenm
proceeds to the second print element and starts transferring it into the
second format specification. It first aligns the decimal, then starts
substituting digits for # symbols. After replacing the 4 it runs out of #
syrbols; then it moves to the third print element and the third format
specification. PFinally it moves to the fourth print element and format
specification. In this last case after substituting the digits 1, 2, 3, 4
and 5, it finds another # symbol, but no more digits. Since this extra #
symbol is right of the decimal, the system puts a zero in its place. Now the
system has exhausted the print elements in the PRINTUSING statement, and
has an image in which digits have replaced # symbols. This image is output
in its entirety beginning at the current cursor location. As a result, the
spacing within the Image statement is exactly duplicated in the output. Since

170

)

=

no spaces precede the first format specification, the first digit is output
directly under the colon. It is important to understand that it is the
image which is output, after thée digit substitutions have been made.

In the last fcrmat of line 130 in Example 15.2, there is an extra # to
the right of the decimal. This # symbol is replaced by a zero during
PRINTUSING execution. However, if we look again at Example 15.1 we notice
that for each DATA value except the first, there are extra # symbols to the
left of the decimal. When there are extra number symbols to the left of the
decimal, they are replaced by spaces, not zeros. Thus, on the first time
through the loop of Example 15.1, this substitution is made:

]print eIemenEb- 14 500.00

AR A

BT ITINY

On the second time through, the system supplies spaces for the #'s (and
the comma) left of the first digit, thus

spaces print
supplies element
by system, "
r~—~
ADA AA2,00
YHEVVE Y

% 44,888,488

Notice that the comma is replaced by a space if there is no digit to its
left.

From the 5th and 6th DATA values in Example 15.1, you will also notice
that if there are no significant digits left of the decimal, the # immediately
left of the decimal is replaced with a zero.

A single Image statement can be referenced by several PRINTUSING
statements. The Image statement has no effect when encountered in the normal
sequence of execution and may be placed anywhere in a program without regard
to the location of the PRINTUSING statements that reference it. However,
the Image statement must be the only statement on a line.

PRINTUSING and Image are illegal in the Immediate Mode. The keyword
"PRINTUSING" may not be entered by keying the keyword "PRINTY, and then typing
U-S-I-N-G. It may be entered character by character, or by using the
PRINTUSING key on a BASIC KEYWORD keyboard.

PRINTUSING output -occurs at the address selected for PRINT class I/O
operations. Therefore, if a statement such as

SELECT PRINT 215

has been executed PRINTUSING output occurs at the printer rather than the
CRT. '

Any expression can be used as a PRINTUSING print element. The
expression is evaluated and its result is substituted digit by digit into
the format specification. 1In addition, alphanumeric literal strings and
variables can be used as print elements., Their use is discussed in Section
15-4. Each print e€lement in the PRINTUSING statement must be separated from
the previous one by a comma or semicolon. The semi-colon has a special
significance, discussed in Section 15-5. The comma acts as a simple element

]

separator. It does not have the significance it has in the PRINT statement,
and causes no curscr govement.

15-2 ALPHANUMERIC LABELS IN THE IMAGE STATEMENT

In addition to format specifications any alphanumeric characters (other
than # and colon) can be included in an Image statement. This allovs
for easy labeling of output. Example 15.3 shows a modification of a program
first introduced in Chapter 12. The program is a DEFFN' subroutine that
converts degree measure to radian measure. The output is via the PRINTUSING
statement. The Image labels the output, and formats it.

Example 15.3 Alphanumeric Llabels in The Image Statement

110 REM USING ALPHANUMERIC CHARACTERS IN THE IMAGE STATEMENT

120 DEFFN' 11

130 INPUT "ENTEP DEGREES, MINUTES, SECONDsS", D,M,S
140 A =D +M/60 +5/3600

150 A = A-INT(A/360) *360

160 REM %oksesrkokat fofok ook # ook ok fokoofokok ok ok ok ok

170 PRINTUSING 180, A*.0174533

180 % ANGLE= #.#%#### RADIANS

190 REM %k kaiokskdokokok sk dokok ok dokok ok kok dokokok ok

200 RETURN

Output appears as fcllows:

ENTER DEGREES, MINUTES, SECONDS? 45,15,15
ANGLE= 0.7898 RADIANS

In Examgple 15.3 the expression A*,0174533 is the only print element in
the PRINTUSING statement. The value of this expression is calculated, and the
result is substituted digit by digit into the format specification in the
Image statement (line 180).: The Image contains just one format specification,
#.3###%. The other characters do not constitute a format specification, and
are merely output as a part of the Image, after digits have been substituted
for # symbols. The format specification calls for just 4 fractional digits,
so just four are output; the additional fractional digits in the result are
simply truncated. Notice that the output from the PRINTUSING exactly
duplicates the Image, except that print element digits have been substituted
for # symbols. The Image begins immediately after the % sign; the space
between % and "ANGLE" appears in the output.

It is possible to intersperse labels between several format
specifications. Example 15.4 shows a slight modification of Example 15.3; it
outputs the entered degrees, minutes, and seconds together with the radian
value.

Example 15.4 An Image Statement With Several Labeled Format
Specifications

110 REM ANOTHER EXAMPLE OF ALPHANUMERICS IN THE IMAGE STATEMENT

120 DEFF¥' 11

130 INPUT "EWNTER DEGREES, MINUTES, SECONDS", D,H,S
140 A =D +M/60 +5/3600

150 A = A-INT(A/360) *360

160 REM Fkkdokskkiorkdordokokook dofkokokookok ok dokfokkkok

170 PRINTUSING 180, D, M, S, A*.0174533

180 % (#%% DEG, ## MIN, ##% SEC) = #.#%###% RADIANS

7+

190 REM % kk ko ok sk ok ik ok ok ok ok o e o o o ok ok o ok gk ok ok ok ok ok
200 RETURN

Execution produces

ENTER DEGREES, MINUTES, SECONDS? 320,15,15
(320 DEG, 15 MIN, 15 SEC) = 5.5894 RADIANS

If there are fewvwer print elements in the PRINTUSING statement than
format specifications in the Image statement, the portion of the Image that
lies to the right of an unused format is not output. PFor example, if wve
accidentally comitted the print element S from lime 170 as follows

170 ERINTCUSING 180, L, M, A*.0174533
execution would prcduce:

ENTER DEGREES, MINUTES, SECONDS? 320,15,15
(320 DEG, 15 MIN, 5 SEC)=

Here, the first two print elements are output correctly. However, since S
is missing, the third orint element A*.0174533 replaces the third, but
inappropriate, format specification ##. The 5 which appears before "SEC" is
actually the integer portion of 5.5894 radians. Now there are no more print
elements, so the system outputs the image. However, output stops as soon as
the system finds a format specification for which digits have not been
substituted. WNo substitution has been made into #.####; therefore, =A are
the last characters ocutput.

It is possible to use an Image statement in which no format
specification occurs, an Image that consists merely of alphanumeric
characters. This can be convenient when creating report headings that must
align with columns of output. The Image statement for the headings can be
directly aligned on the CRT over the data-output Image statement. For example

Example 15.5 An Image Statement Without A Format Specification

110 REM USING AN IMAGE STATEMENT WITHOUT FORMAT SPECIFICATIONS
120 %PART NO. ON HAND ON ORDER
130 %¥a24244 EX 22 1] L2222

.

270 PRINTUSING 120
280 PRINTUSING 130, A, B, C

In this example the Image statement at line 120 consists only of
alphanumeric characters; there are no format specifications. Line 270 simply
tells the system to output the Image on line 120. Notice in line 270 that
the "120" is not fcllowed by a comma, and no print elements are specified. A
PRINTUSING statement which references an Image such as this, must not have any
print elements.

' 15-3 THE $, +, AND - SYMEOLS

Thus far, in our PRINTUSING examples, we have printed positive numbers

73

only. The output from the following program illustrates the output when a
negative value is printed.

Example 15.6 Printing Negative Values Without A Sign in The PFormat

110 REM PFINTING NEGATIVE VALUES WITHOUT A SIGN IN THE FORMAT .
120 PRINTUSING 140, 25.45, 1615.18

130 PRINTUSING 140, -25.45, -1615.18

140 TRESE.¥3 20444

: RON : v
25.45 1615.18 ‘
- 25.45 -1615.18

Line 120, which outputs positive values, is included in this example
for the purpose of comparison. The negative values output by line 130 cause
a minus sign to be output at the left of each format, and increase the length
of the format specifications by one character. This increase in length
causes the misaligrment of the columns, as shown. In general, this effect is
undesirable: output is misaligned with previous output, and the minus sign
floats at the left of the format, perhaps leaving several spaces between
it and the first digit of the value.

Beginning a Format Specification With a Minus Sign

Whenever a format specification may receive a negative value, it should
be preceded with a mrinus (-) sign. A minus sign at the beginning of a format
specification has special significance. It tells the system to output a minus
sign immediately preceding the leftmost digit of a negative value, or output
a space if the value is positive. Example 15.7 shows the result of adding a
minus sign to the formats previously shown in Example 15.6.

Example 15.7 A Minus Sign in a Pormat Specification

110 REM USING A MINUS SIGN IN THE FORMAT
120 PRINTUSING 140, 25.45, 1615.18

130 PRINTUSING 140, -25.45, -1615.18

140 F-RR2%.3% 23232

:RON
25.45 1615.18
-25.45 -1615.18

Notice in this examrle that the minus sign always appears immediately to the
left of the leftmost digit, regardless of the number of digits output.

Since there is room in the format for the minus sign, the format does not
have to be expanded to accommodate it. As a result, all columns are aligned.

Beginning A Format Specification With A Plus Sign

A plus sign may be used to begin a format specification. A plus sign
has the same general effect as a minus sign, except in one respect: when the
value of the print element is non-negative (greater than or equal to zero) the .
+ sign is output immediately preceding the leftmost digit. 1If the value is
negative, the minus sign is output. Example 15.8 illustrates the effect of
the + sign when used to begin a format specification.

Example 15.8 A Plus Sign In A Format Specification

110 REM USING A PLUS SIGN IN THE FORMAT

17¢

120 PRINTUSING 140, 25.45, 1615.18
130 PRINTUSING 140, -25.45, -1615.18
10 R+#S2F_ 4% 388044

¢ RUN
+25.45 +1€15.18
-25.45 -1615.18

When printing values that frequently alternate between positive and negative,
the explicit plus sign can increase clarity.

The Dollar Sign

If a format specification begins with a dollar sign ($), a dollar sign
is output immediately preceding the leftmost digit, if the value is positive.
If the value is negative, $- precedes the leftmost digit. The dollar sign
cannot be used together with a + or - in the format. It is used instead of
these symbols, and causes sign output analogous to the minus symbol. Example
15.9 illustrates the effect of the dollar sign used to begin a format
specification.

Example 15.9 The Dollar Sign In A Format Specification

118 REM USING A DOLLAR SIGN IN THE FORMAT
120 PRINTUSING 140, 25.45, 1615.18

130 PRINTUSING 140, -25.45, -1615.18

100 %SHEAR_ 4% SH2 44

¢ RON
$25.45 $1615.18
$-25.45 $-1615.18

Notice in Example 15.9 that when the value is positive the $ always appears
immediately left of the most significant digit, and that the format is not
expanded. When the value is negative, $- immediately precedes the value.
This does not cause expansion of the format unless the entire format
specification, including the $, is not large enough to accommodate the value
together with the $-. This occurs here for the value -1615.18, and causes a
misalignment of the columns. This misalignment can be avoided by simply
providing a format with one more #, left of the decimal, than the value will
ever occupy. In this case line 140 would be changed to

140 RE##4#_ 48 SESFRE. 44
and the output would be aligned as follows:

s RUN
$25.45 $1615.18
$-25.45 $-1615.18

A maximum of 16 # symbols can appear in a single format specification
used for numeric output.

Rounding

The PRINTUSING and Image statements never round values. Any fractional
digits beyond those selected for output are merely truncated. However, if a
value is simply to be printed, and does not enter into further calculations,
it can be rounded by adding 5 in the decimal position immediately to the right
of the rightmost printed digit. Thus, if a format prints to two decimal

175

places, .005 added to the value, prior to printing, will round the output to
tvo decimal places. This assumes the value is positive. The added .005
causes a carry into the second position, if the digit in position three is 5
or greater. For example

110 REM ROUNDING

120 INPUT “NUMBER TO BE ROUNDED", A
130 PRINTUSING 140, A+.005

140 % #%33.22

If the value to be rounded is negative in the above example, -.005
must be added in order to round. A simple way of rounding when the sign of
the value to be rounded is unknown is to multiply the rounding factor by the
SGN() of the value, before adding. The above example would be modified
as follovs:

110 REM ROUNDING (POSITIVE OR NEGATIVE)
120 INPUT "NUMEFR TO EE ROUNDED", A
130 PRINTUSING 140, A + (SGN(A)*.005)
160 % ~#448, 4%

If a value is to be used in further calculations after it is printed,
it is not advisable to round in the manner shown above, since the value of A
is not changed by line 130. For example, if A equals #45.779 and .005 is
added, truncated A will print as 45.78; but, A still equals 45.779 and could
yield apparently erroneous results if it enters into futther calculationmns.
In such circumstances, the value itself should first be rounded and truncategd,
using the procedures given in Example 1l4.4, or in Chapter 6.

. We have noted that if the number of digits left of the decimal is less
than the number of # symbols, the # symbols are replaced by spaces. However,
a different problem arises if there aren't enough # symbols left of the
decimal to accommodate the digits. For example, if the format specification
is —###.#4 and the value of the print element is 7500.50, there is no place
for the 7 in the format. W®When this happens, the system doesn't substitute
any digits into the format specification. The result is that the format
specification itself is printed. 1In this case -###.##% would show up in the
outpnt. This, then, is an indication of a programming error: a format
specification is too small for a value it is to receive.

Example 15.10 shows a modification of Example 7.10, a mortgage
payment program.

Example 15.10 PRINTUSING In The Mortgage Payment Problem of Chapter 7

110 REM ERINTUSING IN A MORTGAGE PAYMENT PROGRAM
120 REM OPEFATOR ENTERS VALUE FOR PRINCIPAL

130 INPUT "ENTER PRINCIPAL",P

140 REM #*hkkdokksdokkkhaikkkk

150 PRINTUSING 280

160 PRINTUSING 290

170 REM skok sk ok sk o ok o ok ok ook ke ok ke

180 PRINT

190 FOR T=20 TO 40 STEP 5

200 FOR I = 7 T0 9 STEP .5

210 M=P* (I/1200) / (1-(1+I/1200) 4 (~12%T))
220 REM e skokook ko ook ok o 3 ok o ok s e e o e o ok ok ok o ok 3 ok ok %
230 PRINTUSING 300, P, T, I, M+.005
240 REM ok ook s ok e ok ok ok e ok ok ok e e ok ok o ok ok e ok o ok o o ok %
250 NEXT I

176

260 PRINT

270 NEXT T

280 % INTEREST MONTHLY
290 ¥PRINCIFAL TERM RATE PAYMENT
300 RSHE RiE_## #% YEARS . ER% S O BRER A

In this example, notice that the report layout stands out in the program much
more clearly than it did in Example 7.10. The complicated round and truncate
operation of line 270 of Example 7.10 has been replaced by a simple rounding
effected by M+.005, and a truncation accomplished by the format specification.
Column output presents an even right edge, as shown helow.

INTEREST MONTHLY
PRINCIPAL TERM RATE PAYMENT
$30,000.00 20 YEARS 7.00% $232.59
$30,000.00 20 YEARS 7.50% $241.68
$30,000.00 20 YEARS 8.00% $250.93
$30,000.00 20 YEARS 8.50% $260.35
$30,000.00 20 YEARS 9.00% $269.92

15-4 ALPHANUMERIC PRINT ELEMENTS

The PRINTUSING statement can be used to output alphanumeric values.
Alphanumeric print elements may be in the form of literal strings, or
alphanumeric variables. 1In the Image statement, the format specification for
alphanumeric values usually simply consists of # symbols. Alphanumeric values
are substituted character-by-character into the format specification. The
leftmost # receives the leftmost character of the value, producing a left
alignment of the value in the format specification. If there are fewer
characters in the value than #'s in the format, the extra #'s at the right are
filled with spaces. If there are more characters in the value, the extra
characters at the right are simply truncated. A format specification used for
alphanumeric output may contain any number of # symbols.

A single PRINTUSING statement may contain both numeric and alphanumeric
print elements. Example 15.11 shcws a program segment that outputs a report
line of mixed numeric and alphanumeric values.

Example 15.11 Alphanumeric Print Elements

120 DIM NS$20

130 % EMELOYEE JOB REG. o/T GROSS
140 % NAME NUM. HOURS HOURS PAY
150 TEGARR4BRE4FEFR 0200 L2 22 #3. 8% #4844 LE T 2

890 PRINIUSING 130
900 PRINTUSING 140
910 PRINTUSING 150, N%, J$, R, O, G

Ooutput from these lines appears as:

EMPLOYEE JOB REG. o/T GROSS
NAME NUM. HOURS HOURS PAY

i77

R. J. THOMAS 155 40.00 5.50 258.60

A "numeric" format specification, one that contains $, .-+, may also be
used for alphanumeric output. However none of these special characters are
ever edited into the output, as they are with numeric print elements.

Instead, if such a format specification receives an alphanumeric value, these
characters act as if they are # symbols. The alphanumeric characters of the
print element are substituted for characters in a format specification such as
TR, 24,32 as if this specification were ####%#####. Occasionally this can be
useful. Example 15.12 shows Example 15.11 modified so that the column output
Image is used for the output of the headings. This yields some reduction in
total memory occupied by the progran.

Example 15.12 Printing Alrhanumerics With "Numeric" Format
Specifications

110 REM ALPHANUMERIC PRINT ELEMENTS INTO "NUMERIC" FORMATS
120 DIM N$20
150 REXRRRFRRRRNNRTRA230 i222 SN £ D% 2 .20 (2108 1

890 PRINTUSING 150, "EMPLOYEE","JOB","REG ", "0/T",6 "GROSS"
900 PRINTUSING 150, "NAME","NUM ®,"HOURS","HOURS"™,"PAY"
910 PRINTUSING 150, N3, J$%, %, O, G

Output frcm these lines appears as

EMPLOYEE JOB REG o/T GROSS
NAME NOM. HOURS HOURS PAY
R. J. THCMAS Al155 40.00. 5.50 248.60

Notice that the mantissa has been scaled to fit the number of # symbols left
of the decimal in the format, and the exponent adjusted accordingly.

15-5 SUPPRESSING TEE CR/LF

Reusing an Image

If the number of print elements in a PRINTUSING is greater than .the
number of format specifications in the Image statement a carriage return/line
feed is issued when the formats are exhausted. The Image is then reused,
from the beginning, for the reraining print elements. In Example 15.13, a
single PRINTUSING uses an Image three times to complete its output.

Example 15.13 Using An Image Repeatedly With A Single PRINTUSING

110 REM USING AN IMAGE REPEATEDLY WITH ONE PRINTUSING
120 DIN A (3), B(3)

130 % ACCT. NO. AMOUNT

140 % ARRRES NIRRT

. (values entered into A() and B())

380 PRINTUSING 130

390 PRINTUSING 140, A(1l), B(l), A(2), B(2), A(3), B(3)
Output from this program segment appears as:

ACCT. NO. AMOUNT

178

P

N

101 14,512.01
105 44,500.00
112 16,357.95

In this example line 390 outputs the three lines of data by using the
Image (line 140) three times. 1In executing 390 the system first substitutes
the digits of A(l) into the first format specification, #####%. Then, the
digits cf B(l) are substituted into the second format specification. The
system nov notices that there are more print elements but no more format
specifications. It therefore issues a CR/LP, which moves the cursor to the
leftmost position cn the next line. Now is reuses the Image from the
beginning, substituting A(2) into the first format specification and B(2)
into the second, A CR/LF is issued and the process repeats itself a third
time outputting A(3) and B(3). After the third line of output, PRINTUSING
issues a final CR/LF and passes control to the next instruction.

The Semicolon

The CR/LF that is issued before the system reuses an Image, may be
suppressed by placing a semicolon in the PRINTUSING statement. The
semicolon is used instead of the comma and must follow the print element
associated with the last format specification in the Image. Suppressing the
CR/LF in this fashion causes the ocutput from the Image to be repeated on the
same line. Example 15.14 shows a PRINTUSING statement that uses an Image
twice, and suppresses the CR/LF with a semicolon.

Example 15.14 Suppressing A CR/LF With A Semicolon

110 REM SUPPRESSING THE CR/LF WITH A SEMICOLON
120 % #4# #3444 PN $444 CU. MM
130 DIM I(15), C(15), V(15)

140 PRINT "ITEM CONCEN- TOTAL ITENM CONCEN- TOT
ALY

150 PRINT " NO. TRATION VOLOME NO. TRATION VoL
UME"

.

270 PRINTUSING 120, I(K), C(K), V(K);: TI(K+1l), C(K+l), V(K+l)

Output from this program segment appears as follovws:

ITEM CONCEN- TOTAL ITEM CONCEW~- TOTAL
NO. TRATION VOLUHME NO. TRATION VOLUME
13 455 PPM 0150 CU.MM 1ly 315 ppH 0170 CU.MM

Notice in this example that the Image at line 120 contains three format
specifications. The PRINTUSING at 270 contains six print elements. Execution
of line 270 causes print elements I(K), C(K), and U(K) to be substituted into
the three formats of 1line 120. Normally a CR/LF would be issued at this
point and the output of the next three elements would appear on the next
line. However, the print element U(K) is followed by a semicolon. This
suppresses the CR/LF. The Image is reused for print elements I (K+l),

C(K+1l), and V(K+l). Output appears on the same line.

Regardless of the number of format specifications actually used by a

PRINTUSING statement, PRINTUSING normally outputs a CR/LF immediately prior to
passing control to the next instruction. This final CR/LF can be suppressed

177

by placing a semicolon at the end of the PRINTUSING statement. Example 15.15 &)
shows a program which prints a table of random numbers using RND and

PRINTUSING. In the PRINTUSING statement the normal CR/LPF at the end is

suppressed by a trailing semicolon.

Example 15.15 A Semicolon at The End of The PRINTUSING Statement .
110 REM SUPPRESSING THE CR/LF WHICH NORMALLY FOLLOWS PRINTOUSING
120 %a%#43
130 FOR I = 1 TO 24 N
140 PRINTUSING 120, RND(1l) *1E5; .
150 NEXT I

Output from this prcgram appears as follows:

85710 91609 24725 5294 76934 75577 39969 34105
48561 44686 10999 14629 44239 31110 6u724 70047
88009 55461 21020 80680 29352 51562 75265 31696

In this program a single print element, RND (1) *1E5, is substituted into
a single format specification. Normally, after each execution of line 140, a
CR/LF would be issued. However, the semicolon at the end of line 140
suppresses the CR/IF. A CR/LF is issued only when the line becomes completely
full.

Looking at Example 15.15 you may wonder what is causing the spacing
between the columns; no spaces are visible in the Image. Despite the fact
that none are visitle, 3 spaces are in the image following the format. They

do not appear in the listing, but if line 120 were recalled in EDIT mode it)
would appear as

*120 FR¥A44

with the cursor positioned 3 spaces to the right.

15-6 EXPONENTIAL FCRMAT

Exponential format may be specified by ending a format specification
with . (Four up-arrows (4) are always used.) The four up-arrows are replaced
in the ocutput with the standard exponent form E#XX, The mantissa is scaled
so that its most significant digit occupies the leftmost # symbol and the
value of exponent is adjusted to offset this scaling. Any numeric value may
be output in exponential format. Example 15.16 shows the results of output in
exponential format.

Example 15.1 Using Exponential Format Specifications

110 REM EXPONENTIAL FORMAT SPECIFICATIONS
120% COEFF = +.###%¢2¢4¢ ERROR = -%#¢1¢¢
130 PRINTUSING 120,2.13E-5, 2.3E-9
+RUN
COEFF = +2130E-04 ERROR = 23E-10 ’

Igo

CHAPTER 16: MORE ABOUT ALPHANUMERICS

e ——

16-1 HEX CODES

In Chapter 8 we introduced the idea of alphanumeric variables. We
depicted an alphanumeric value in the memory of a Wang 2200 system without
saying very much about how the characters are actuwally recorded. For
exanmple, if A$ = "BOSTON, MA", and A% can hold a maximum of 16 characters,
we would have depicted memory as

AS E|O]|S oJN A Alslalala
where A means "1 space™

In fact, each character in A$ is not recorded in memory the way we see
it here. In memory, each character is recorded as a binary code. The value
of A$ in memory consists of the binary code for B, followed by the binary code
for 0, followed by the binary code for S, etcetera. Since there is a binary
code for a space, A% is recorded in memory as 16 binary codes, one for each
character and each space; a space just being a special kind of character.

These codes are called “"hinary" codes since the code for each character
is made up entirely of combinations of ones and zeros. For example, the
character B is represented by the binary code

01000010
the letter 0, the second character in A$, is represented by
01001111

With each code consisting of eight binary digits, there are a total of 256
possible codes.

Each keyboard character is represented by one of these codes. When a
key is depressed, the keyktoard sends the proper code to the CPU. However,
as Table 8.1 shows, there are only 86 characters that can be entered from
the keyhoard. This leaves 170 codes unused by tlie keyboard characters.
These "extra" codes are used in a variety of ways.

For example, if the CRT receives the code
00000011

it interprets this to mean, "Clear the.screen and move the cursor to the top
left corner." There are other codes that are given special interpretations
by the CRT. 1In addition, printers execute form control and other operations
based upon receipt of certain special codes. Before we discuss how these
special codes can be used, we must look at another, more convenient, way of
writing then.

Binary codes are inconvenient for human use. 1In order to write
one code for a single character, such as L, you must write 8 binary digits

01001100

Por this reason, a kind of shorthand for binary called hexadecimal or "hex" is
used instead. Hex uses one hex digit to stand for each group of four binary

18/

digits. Breaking the eight binary digits for "L*" into two groups of four,
and using the table below, you can see that in hex this code would be written
as 4c, as follows:

Bt

So, we say that for the Wang 2200 system the hex code for "L" is 4C.

HEX HEX
BINARY EQUIVALENT M BINARY EQUIVALENT
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

Table 16.1. Binary and Hex Equivalents

Since binary character codes always contain eight binary digits, the
hex representation always contains two hex digits. The hex digits 0-9 and
A-F must be thought of as just 16 symbols, each arbitrarily chosen to stand
for four binary digits. By contrast, the character "A" is represented by the
hex code 41 (its binary code is 01000001).

For the remainder of this vclume we can ignore the cumbersome binary
representation and refer only to hex codes, aware that when, say, something
like "This puts hex U4C into A$," we are just using hex 4C as a kind of
shorthand for the actual binary code.

It should be noted that the hex codes for the lower case characters
are different from the hex co-es for the upper case characters. To the
processor, "“A" and "a" are as different as "A" and "Z". A complete table of
characters and hex codes is given in Appendix C.

16-2 THE HEX() FUNCTION

Suppose we want to use the control codes for the CRT that we mentioned
earlier. Ve want to clear the CRT screen and put the cursor in the top left
position. (This cursor position, (line 0, column 0) is sometimes called
"home".) The hex ccde 03, received by the CRT, tells it to clear the screen
and home the cursor. How can vwe get the processor to send this code to the
CRT?

When we want the CRT to print a character we just write a statement such
as

10 PRINT waw
or two statements such as

10 A2$ = mAn
20 PRINT A23%

IEEN

In each case, execution of these statements causes the CPU to send the hex
code for "A", hex 41, to the CRT. However, there isn't any key on the
keyboard that we could use in place of the "A" key which would tell the

CPU to send hex 03 to the CRT. (The keyboard numeral "3" is represented by
hex 23.) Wang BASIC, therefore, provides the alphanumeric function HEX({) as
a means of directly specifying any desired hex code or series of hex codes.
HEX () says to the system, "Interpret the characters in parentheses to be a
directly specified hex code, or codes." For example, to clear the CRT
screen you can simply execute:

PRINT HEX (03)

This may be executed as shown, in the Immediate Mode, or as program statement,
provided that the CRT is selected for PRINT output. Alternatively, this could
be accomplished with the statements :

10 A2% = EEX(03)
20 PRINT A2$

Statement 10 assigns the hex code 03 to the variable A2%. The code hex 03
then occupies the first, leftmost, character position in A2$. The remaining
character positions in A2$%$ are occupied by spaces, hex 20. Therefore, A2S$
looks like this in memory.

A2$ J03[20]20{2020[20[20]20]20]20]20]20 [20 [20 [20]20]

At statement 20 the CPU looks at A2$, determines that it contains one
non-space character, the hex 03, outputs that character and ignores the
trailing spaces, the fifteen hex 20 codes. The result is that the screen is
cleared and the cursor is put in the home position.

The HEX function may be thought of as a special kind of literal string,
used when a non-keyboard character code is needed. An alphanumeric value
may be specified with a HEX function whenever a literal string in quotation
marks may be used, with a few exceptions. The exceptions are:

A HEX function may not be used in

1) An INPUT statement prompt.
2) A keyboard response to an INPUT statement.
3) A STOP statement message.
4) A PRINTUSING statement.
- S) A DATA statement.
6) (On the 2200S only) a DEFFN' statement used to define a character
string, for Special Function key entry.

There is no limit to the number of hex codes which may be used in a
single HEX function; however, a hex code must always consist of 2 hex digits.
An odd number of hex digits may never be used. The following statements are
examples of legal uses of HEX functions.

10 A$ = HEX (03)
40 C$ = BEX(0303)
85 PRINT HEX(030A0A); "PROCESSING FILE"; N
100 IF A$ = HEX(09) THEN 10
200 GOSUB' 50 (4,"NAME",HEX (09))
310 DEFFN'15 “LISTS 100, 9000"; HEX(OD) *
*NOT LEGAL ON 2200S

11.¢)

Chapter 17 discusses the use of hex codes in controlling the CRT.
In Chapter 18 discusses their use in controlling a printer.

The Hex Function in the DEFFN' Statement

On Wang 2200T systems, (or 2200S with 0P24) the HEX function may be
used in DEFPN' statements, when these are used to associate a character string
with a Special Function key. The general form of the DEFFN' statement for the
2200T is

DEFFN's HEX () s {HEXO

"character string" s {"character string. e
or
DEFFN'i [(variable [,variable])]

Where s is an integer 0-31 defining a Special Function key
i is an integer 0-255 (if i € 31 it defines a Special Function key)

The lower feorm shown is for marked subroutine definition; the top form is for
character string definition of Special Function keys.

Wang CRTs and printers can print certain characters which do not appear
on the keyboard. If you wish to use these characters you can define a Special
Function key to enter the required hex code for the character. For example,
hex 5B and 5D print left and right brackets [] on any Wang CRT. However, these
characters do not appear on the keyboard. If you wish an operator to be able
to enter these characters during program execution, you could define Special
Function keys 0 and 1 to the proper hex codes as follows:

6010 DEFEN'0 HEX (5B)
6020 DEFFN'1l HEX(5D)

With these two statements in a program, depressing Special Function key 0
causes a left bracket to be entered, and appear on the CRT. Special Function
key 1 enters a right bracket. {Note, however, that these characters may not
be used in BASIC statements as substitutes for parentheses.)

The (EXEC) key causes the hex code 0D to be entered. If a character
string in a DEFFN' statement is followed by HEX(0D), the string will appear on
the CRT, and be entered with one stroke of the defined Special Function key.
For example, if this statement appears in a program

10 DEFFN'1 "LISTS 500, 1000"

then keying Special Function key 1 when the colon is displayed causes the
following to appear on the screen:

:LISTS 500, 1000

To execute this LISTS command, (EXEC) must be keyed. However, if the
statement is changed to

10 DEFPN' 1 "LISTS 500, 1000"™; HEX (0D)
then merely depressing Special Function key 1 will initiate execution of the

LISTS commpand. The HEX(0D) at the end is the equivalent of keying (EXEC). A
semicolon must be used to separate HEX() functions from literal strings

I8¢

in the DEFFN' statement.

Complete tables of hex codes and characters for the CRTs and printers
are given in Appendix C.
16-3 HE ST N oN

The string function, STR(), allows you to use and operate on any
specified section of an alphanumeric variable. For example,

STR(AS, 2,4)

specifies the section of AS$ beginning with the 2nd character position,
taking a total of # consecutive character positions. Thus, if

as = [N[6]o0]7[S[-[a[2[1 [A[alalalalala]

3

then

- v .
RN .

STR(AS,2,4) = [4JO0T 7] 51'

The string function
STR(B%,9)

specifies the portion of B$ beginning at the 9th character position, and
extending thrcugh the end of the variable.

Thus, if

BS = @Alalgbialaja]clD[E[FlGJa[AIAJ

then

)

STR(BS,9) = [P [EIFIS [A]a]a]

A string function can be used whenever an alphanumeric variable can be used.
The string function is an extremely versatile feature of Wang BASIC.

If'

[k [1[ols]3]-[rl[sTaJalalalnlal ATa]

S$

and

RS

[5]12]6]7[alalplajalalalalalsla (8]

then after executing

200 RS = STR(S$,2,U4)

S$ is unchanged.

R$ = {QloJs[3[aipialalolalalnlslal s Bk

The following are examples of valid uses of STRY() functions:

10 INPUT "CREDIT RATING", STR(C9%,17,2)

185~

(assigns the entered credit rating to the 17th and 18th characters of C9%)
200 IP STR(C9%,17,2) = "aAl" THEN 280

(branches to 280 if the 17th and 18th characters of C9% equal "Al")
750 PRINT "SUPPLIER CODE="; STR(P$,1,5)

(Prints "SUPPLIER CODE=" followed by the first five characters of P%.

900 READ STR (A2$(5),6,1)

(assigns the next DATA value to the sixth character in the list variable
A2%(5).

200 DEFFN'40 (STR(AS,S5,15),BS,K)

(specifies that the first value passed to the DEFFN' by the GOSUB' is to be
assigned to the 5th - 19th characters of A%; that is, to the 15 consecutive
characters beginning with character 5.)

405 STR(B%,2,7) = STR(¥$,10,7)

(beginning at the 10th character of N$, assigns the next seven characters to
the portion of B$ beginning at the second character and extending through the
next seven consecutive characters. Thus, if

AS (615}915i-16]2]3[-[AT4JO[1[I[B[a]
L ————
STR(AS$,10,7)
BS [N[ols[2[7[2]a]2][2]-r[afr[2]3]2]
__......’ .)
STR(BS,2,7)

then after executing statement 405
A$ is unchanged
BS [n[afsfol1]1[elal2]-[F[AJL]2][3]1]
4 —

Y

STR (B$,2,7)

The general form of the STR({ function is:
STR (alphanumeric variable, expression 1, {?xpression 2?)

where: alphanumeric variable = any alphanumeric variable (subscripted or
scalar)

expression 1 = an exrression specifying the starting character in
the string. Its integer value must be 1 or greater and less than
or equal to the maximum size of the variable.)

expression 2 = an optional expression specifying the number of
consecutive characters desired. If this expression is omitted, the

entire remaining portion of the variable is specified. (If a
variable, A%, is dimensioned to hold a maximum of 20 characters, then

STR(A$,5) is equivalent to

186

STR (A$,5,16) .

Both specifying the entire remaining portion of the variable from
character 5 on.)

Any numeric expression can be used in the string function to specify the
starting character and the number of consecutive characters to be used. Thus,
string functions of the following forms are legal (provided the expressions
yield values that keep the string function within the defined size of the
variable).

STR (B2%, 29, 4)

(here the value of the numeric variable Z9 specifies the starting
character of the string function.)

STR (A23, (N+2) /2, K)

(here the value of the expression (N+2)/2 determines the starting
character; the value of K specifies the number of consecutive
characters to be used.

NOTE: Only the integer portion of a value is used.)

When a variable is specified with a string function, all the characters
in the string are included in the value of the variable, even trailing spaces.
For example, enter and execute:

10 A$ = v
20 PRINT AS$; “eE&"
30 PRINT STR(AS$,1); "&&&"

The result is:

TEEE
T &&8&

The variable A$ after statement 10 consists of the character T followed
by 15 trailing spaces. When A$ is printed at line 20 the trailing spaces are
ignored; they are not printed. Ir line 30 STR(A$,1l) specifies the entire
variable A%, that is "starting at the first character take all remaining
characters." Characters specified within a string
function are taken to be part of the value of the variable, even if they are
trailing spaces. Therefore, when STR(A$,1) is printed all 15 spaces are
printed with it. ‘

Frequently, it is advantageous to store different data items in a single
variable and access individual items by means of a string function of that
variable. This is particularly true when data storage on tape or disk is taken
into consideration, topics we take up in Chapters 20 and 21. However, the
string function has a great many uses and we will see some of them in the
coming chapters.

16-4 INITIALIZING AN ALPHANUMERIC VARIABLE WITH A SPECIFIC CHARACTER (INIT)

When RUN (EXEC) is keyed, the system sets aside space in memory for
all the variables used in a program. Each numeric variable is assigned an
injtial value of zero, and each alphanumeric variable is filled with spaces,

/37

hex 20's,
Sometimes, though, we may wish to fill an entire alphanumeric variable,
or even an entire alphanuwmeric array, with some other character, or hex

code., For example, suppose we want to assign the hex code 0A to each
character in the variable A%. VWe could do it in this manner:

A$ = HEX(OACAOAQOAQAOAOAOAOAOAOAOAOAOAOAOQA)

This approach, however, becomes inefficient and inconvenient as the
dimensioned length cf AS$ increases. If an entire array is to be filled in
this manner, a loop must te used to assign the hex codes to each variable in
the array.

On the 2200T a BASIC statement is available that assigns a specific
character to an entire alphanumeric variable, or to an entire alphanumeric
array. This is the INIT statement. For example, the statement

20 INIT (OA) AS$
assigns the hex code OA to each character in A$%. The statement

20 INIT (0C) R$()

assigns the hex code 0C to each character in each variable in the array
R$(Q) -

With the INIT statement, any single hex code (two hex digits) may be
specified within the parentheses as the value to be assigned. Alternatively,
the value may be specified as a character in quotation marks. For example,

30 INIT ("X") A$
assigns "X" to each character cf AS.

Finally, the value to be assigned may be specified by putting an
alphanumeric variable within the parentheses, If this method is used,
the first character in the variable is the character which is assigned.

For example

20 A% = "DEEF"
30 INIT(AS$) BS()

This sequence assigns to each character in each variable in B$(), the value
"p", since "D" is the first character in AS.

In an INIT statement several variables may be initialized with the
same character, by serarating them with conmmas.

For example,
40 INIT (OA) A$,BS,R$
The INIT statement is legal in the Immediate Mode.
The INIT statement is not part of the 2200S instruction set. It is
available to users of the 2200S as part of Option 22. For 2200S owners,

without OP-22, the following technique is suggested whenever a long
alphanumeric variable must be initialized with a specific character.

/88

)

The statement sequence

10 A$ = HEX (0A)
20 STR(AS$,2) = STR(AS,1)

assigns the hex ccde 0OA to each character in the dimensioned length of AS.

This programming technique exploits the fact that the processor actually

makes the assignment at line 20 on a character by character basis. That is,

it first fetches a character from the source (STR(A$,l)), then assigns it to
the receiver (STR(AS%,2)); then returns to the source for the next character,
assigns it, and so on. Statement 10 makes the first character in A$ equal to
hex 0A. The remaining characters we can assume to be spaces. Statement 20
gets the first character in A%, hex OA, as specified by STR(AS%,1l) and assigns
it to the second character position in A%, as specified by STR(AS,2).
However, STR(A$,l) specifies the entire length of A%, so the processor
continues the assignment ty getting the next character out of STR(AS,1l) and
assigning it to the next character position in STR(AS$,2). The character it
gets out of the second character position in STR(A$,l) is the hex OA that Jjust
a moment ago it put there. It takes this OA and assigns it to the second
character position in STR(A$,2). Now, AS$ looks like this:

AS oAl 0op]OQAl20 [20] 20720 [20] 20[20 [20 T 20720 [20 [20 [20]

The processor continues getting a character out of one character position
and assigning it to the next until STR(AS$,2) is full.

16-5 THE LEN() FUNCTION

The LEN() function is used to determine the number of characters in an
alphanumeric variable, excluding trailing spaces. For example, if

A = A[BICID A |AaA [alA IS IA[EalaTATS =]

then LEN(A%) returns a value of 4, since there are 4 characters preceding-
the first trailing space. Though LEN() operates on an alphanumeric
variable; that is, its arqument is alphanumeric, it yields a numeric value,
and may be used anywhere that a numeric expression may be used. The
following are examples of legal uses of the LEN() function:

100 IF LEN(A$) = 20 THEN 400
100 R = IEN(K2$(3)) *INT (V)
100 PRINT TAB(32-LEN (A§));: AS$
100 STR(B$,1,LEN (A$)) = AS$

If the alphanumeric variable in the LEN() function is all spaces,
LEN () returns a value of 1, not 0. This is in keeping with the discussion
of Chapter 8 which pointed out that the value of an alphanumeric variable
that is all spaces, is 1 space.

In Section 16-3 it was pointed out that the STR() function causes the
system to treat all the characters within the specified string as significant,
even trailing spaces. Therefore, LEN() with a STR() as an argqument, such
as

L = LEN(STR(AS,1))

assign to L the dimensioned length of A%, even if A% is all spaces.

| 87

The LEW() function can be useful in a variety of programming situations.
For example, it can te used in the TAB() parameter to produce right-aligned
output. This use is shown in Example 16.1.

Example 16.1 Right-Aligning PRINT Output

110 REM RIGHT-ALIGNING PRINT OUTPUT

120 READ N

130 FOR J = 1 TO N

140 READ PS%

150 PRINT TAP(20-LEN (P$)); P$
160 PRINT

170 NEXT J

990 DATA 5, "EMPLOYEE NAME", "“JOB NO.", "JOB CATEGORY", "REGULAR
HOURSY, "OVERTIME HOURS" :
¢ RUN

ENPLOYEE NANE
JOB WO.

JOB CATEGORY
REGULAR HOURS
OVERTIME HOURS

Notice that the output presents an even right edge with each line ending
at column 20 (last character in column 19). It is easy to see why this
works. When P$ is printed, PRINT outputs all characters up to a
trailing space, in cther words as many as the LEN() of P$. Therefore,
for each line, the total number of spaces from the TAB(), and characters
from P$, is 20 - LEN(P$) + LEN(P%), or 20.

On an INPUT statement with an alphanumeric receiving variable, an
operator can enter any number of characters, but if the number of characters
entered exceeds the dimensioned size of the variable, the extra characters are
lost, without the operator being alerted. This problem can be largely
overcome by using a single 64 character alphanumeric variable to receive all
alphanuwmeric input, and then testing the LEN() of the entry before assigning
it to a shorter variable. A DEFFN' subroutine that takes this approach is
shown in Example 16.2.

Example 16.2 Using LEN() To Test The Number of Characters in an Array

110 REM AN ALPHANUMERIC ENTRY SUBROUTINE

115 DIM F$8, R$64, PI6U

320 GOSUB '186 ("ENTER FILE NAME (MAX. 8 CHARACTERS)",2,8)
330 F$ = RS :REM ASSIGN RESPONSE

990 DEFPFN' 186 (P$, 11, 12)

910 PRINT P$;

920 RE = # n

930 INPUT STR(RS,2)

940 I¥ LEN(R$)-1< L1 THEN 960 :REM LESS THAWN MIN.?
950 IF LEN(R$)-1 €= L2 THEN 980 :REM LESS THAN MAX.?
960 PRINT "INVALID. REENTER"

970 GOTO 910

980 R$ = STR(RS$,2)

fqe

990 FETURN

The GOSUB' at line 320 passes a prompt and the minimum and maximum
number of characters acceptable as a response. 1In this case the
maximum, 8, is the dimensioned size of the variable F$ that ultimately
receives the value. 1Line 920 is used to ensure that a previous entry
will not be accepted as a new one (if the operator merely keys (EXEC).
The value is received by STR(R$,2) rather than R$, so that LEN(R$)=1
indicates unamhiguously that no entry was made; otherwise an entry of 1
character would be indistinguishable from no entry, since LEN() returns
a minimum value of 1l.) Iine 980 eliminates this space before the
subroutine returns.

16-6 CONVERTING ALPHANUMERIC VALUES TO NUMERIC VALUES, AND VICE VERSA

To facilitate the evaluation of numeric expressions, numeric quantities
are contained in numeric variables in a unigqgue format. This format is
completely different from the simple hex codes used to represent alphanumeric
characters. This is why alphanumeric values cannot be included in a numeric
expression, and why numeric values cannot be directly assigned to an
alphanumeric variatle.

However, the PASIC statement CONVERT can be used to convert alphanumeric
values to numeric values, and vice-versa. For example,

10 a$ = "1200.50"
20 CONVERT A$ TO W

Line 10 assigns the literal string "1200.50" to A%$. 1In A3 this literal

string is represented simply as a series of seven hex codes followed by trailing
spaces. Line 20 takes the characters in A$, converts them to a numeric

quantity (in numeric format), and assigns this numeric quantity to the numeric
variable N. A$ is unchanged. N contains the numeric quantity 1200.50,

and can be used anywhere an expression is allowed.

The characters to be converted in a CONVERT statement must be an
alphanumeric representation of a valid numeric quantity. This means that up
to 13 digits, decimal point, sign, and a signed two digit exponent may be
included in the alphanumeric value to be converted. 1In the above example, if
A$ were assigned "12#87" instead of "1200.50", an error would result when
CONVERT attempted to convert "12#87" to a numeric guantity, since "12#87%" is
not a valid representation of a number. .

In many programming situations it is desirable to check whether an
alphanumeric variable contains a valid representation of a number before
attempting to convert it. This helps to avoid error interruptions during
execution of CONVERT. The NUM() function can be used to facilitate such
a test. NUM() is =iwmilar to LEN() in that it operates on an alphanumeric
variable as its argument, but returns a numeric gquantity. NUM() examines
an alphanumeric variable, and counts characters until it finds one that
would be illegal in a valid representation of a number, or it reaches the
last character. It includes all spaces, even trailing spaces, in its count.

1f A= [L[2][0J0[.[5]6 [alalalalalaslalala]

then

NUM (A$) returns 16, since 1200.56 is a valid representation of a
number, and all the trailing srtaces are counted.

19

If a% = [1 |2|0'[01XIATB [aJoalalalalalalalal

then NUM(A$) returns 4, since the sequence of characters fails to conform
to standard BASIC numter format when the X is encountered.

To test whether an alphanumeric variable can be converted to nunmeric,
a program can simply test if the NUM() of the variable is equal to the
dimensioned length of the variable. A simple INPUT routine might look like
this:

10 INPUT AS

20 IF VUM (A$) = 16 THEWY 50 : REM NUMERIC FORY?
30 PRINT "NCN-NUMERIC. REENTER."

40 GOTO 10

50 CONVERT A% TO X

With the ability to convert alphanumeric values to numeric ones, it
is possible to write a single DEFFN' subroutine for alphanumeric and
numeric entry. Receiving numeric entries as alphanumeric and then converting,
permits the program tc prescribe the error procedure when a numeric entry
fails tc¢ conform to numeric form. Example 16.3 shows such a subroutine.

Example 16.3 A General Purpose Input Subroutine

110 REM GENERAL PURPOSE INPUT SUBROUTINE

120 DIM P$64, RE6UL, T$1

130 DEFFN' 187 (P$, 1§, L1, L2, L3)

140 EFINT P§

150 R$=n 0

160 INEUT STR(RS,2)

170 IF T$ = "A" THEN 250 :REM ALPHANUMERIC ENTRY?
180 REM NUMERIC TESTS

190 IF NUM(RS) 64 THEN 280 :REM NON-NUMERIC?

200 CCNVERT R$ TO R

210 IF R<€ L1 THEN 280 :REM TOO LOW?

220 IF R > L2 THFN 280 :REM TOO HIGH?

230 IF INT(R*104L3) = R*104L3 THEN 330: REM DECIMALS OK?
240 REM ALPHANUMERIC TESTS

250 IF LEN(R$)-1 € L1 THEN 280 :REM ENTRY TOO SHORT?
260 IF LEN(R$)-1 <= L2 THEN 320 :REM ENTRY SHORT ENOUGH?
270 REM LISELAY ERROR MESSAGE

280 PRINT "INVALID. REENTER™

290 PRINT

300 GOTO 140

310 REM EXIT

320 R$ = STR(RS,?2)

330 RETURN

The values passed to this subroutine are:

P$

prompt, 64 characters maximum.

TS type of entry code: "AY = alphanumeric

any other value = numeric
Numeric entry:

11 = minimum acceptable value
L2 = maximum acceptable value

192~

L3 = maximum number of digits right of decimal point.

Alphanumeric entry:

L1 = minimunm number of characters
L2 = maximum number of characters
L3 = not used

Numeric values are returned in R, alphanumeric in R$. Maximum response = 63
characters.

Converting Numeric To Alphanumeric

The CNVERT statement can also be used to convert numeric values to
alphanumeric values. However, when converting from numeric to alphanumeric a
question arises as to the form in which the numeric value is to be
represented. For example,

3207.4500
3207.45
3.20745E+03

all represent the same numeric quantity. Therefore, when converting numeric
to alphanumeric the programmer must specify an image for the converted value.
The image is written directly into the CONVERT statement. For numeric to
alphanumeric conversion the general form of CONVERT is

CONVERT expression T0 alphanumeric variable, (image)
where: (image) = [+] [#...] [.] [#...] [+¥4]
1 <€ number of #'s < 13
For example

10 N = 3.14816
20 CONVERT N TO AS$, (#.##)

This sequence assigns "3.14" to A$. The image in the CONVERT statement is
similar, though not identical to, a format specification in an Image (%)
statement. In executing the CCNVERT statement, the system first evaluates the
expression, then starts substituting digits from the result for the # signs in
the image. Once this substitution is complete the image, now with digits in
place of # signs, is assigned to the specified alphanumeric variable.

The rules for constructicn of the image are given below. The principal
differences between the irage in the CONVERT statement and the PRINTUSING
format specification are noted by asterisks.

In general there are two formats:

Normal Format - e.g., ##.%#
Fxponential Format - e.g. #.##P4p4%

1. If the image starts with a plus sign, (+), the sign of the value (+ or
-) is substituted for the plus sign in the image.

2. If the image starts with a minus sign, (-), a blank for positive

values and a minus (-), for negative values is substituted for the
minus sign in the inmage.

113

*3, If no sign is specified in the image, no sign is included in the
character string.

u, If the image is Normal Format:

a)

*b)

*C)

d)

The digits of the value are substituted for the # signs with the
decimal point in the proper position.

If there are more # signs left of the decimal in the image than
there are digits left of the decimal in the value, leading =zeroes
are substituted for the extra # signs. The sign, if present, does
not "float" in front of the highest significant digit.

Tf there are fewer # signs left of the decimal than digits left of
the decimal value, an error results.

Extra # signs right of the decimal receive zeroes. Extra digits
right of the decimal are truncated.

S. If the format is Exponential:

The value is scaled as specified by the image, so there are no
leading zeroes. The exponent is always substituted into the image
in the form: E+XX.

194

~

CHAPTER 17: CONTROLLING A CRT

17-1 CRT HEX CONTROL CODES

When the cursor is positioned on the bottom line of the CRT and a CR/LF
code is received, all the lines of the CRT are shifted up one line, and the
top line is removed. This clears a new bottom line for output. This is
called "rolling", and is an automatic function of the CRT itself. It is not
under CPU control. The effect of rolling is that once a program fills the
screen, all new lines appear at the bottom of the screen.

For some applications rolling is fine, and no programming steps need be
taken to circumvent it. However, frequently it is better to control the line
location of CRT output, and maintain a "steady-screen" display. This is more
aesthetically pleasinc¢, and results in superior operator/system interaction.
For example, one might want all input requests to appear in the upper left
corner of the CRT, and use mid-screen for display of recently entered items.
Alternatively, one might wish to display a series of input messages down the
left side of the CRT, and let the operator respond to them sequentially with
the question mark dropping from line to line.

In order to do these sorts of things you must be able to control the
cursor position (the location at which characters will appear), move it up,
down, right and left, and be able to clear the screen when necessary. All of
these things can be done with special hex control codes. These codes are sent
to the CRT by the processor just as if they were characters, but instead of
causing the CRT to display "A", for example, they cause it to clear the
screen, or move the cursor. The CRT curscer control codes are given in Table
17.1.

Table 17.1 The CRT Cursor Control Codes.

HEX CODE ACTION
01 Move cursor to top left corner of the CRT (home)
03 Clear screen and home the cursor
08 Backspace cursor :
(03] non-destructive space right
).\ Move cursor down one line (line feed)
0C Move cursor up one line (reverse index)
0D Move cursor to leftmost position of the

current line

Hex 01

Hex 01 moves the cursor to the top left corner of the CRT. No
characters are cleared from the screen. (This top left position is
referred to as "home" or column 0 row O0.) To observe the effect of HEX(01)
execute these two rrcgrams

10 PRINT HEX(01):
20 GOTO 20

and
10 PRINT HEX(O0l); "OUTPUT ON LINE O"

The first of these goes into an endless loop at line 20 so that the cursor can

95

be observed, the second illustrates how a message might be printed on line 0
by using the HEX(01l) code.

Hex 03

Hex 03 also hcmes the cursor, but clears the entire screen first.
Clearing the screen has no effect on memory.
Execute the statements shown above but with HEX(03) rather than HEX (0l).

Hex 08

HEX(08) backspaces the cursor one character position. No character is
erased. If the cursor is already in the leftmost position, column 0, it moves
to the right end ¢f the line. The key,board backspace key, when depressed
during an INPOT instruction or when the colon is displayed, does not simply
tell the CPU to output a HEX(08) because, when depressed, it erases the last
character in additicn to backspacing the cursor.

Hex 09

HEX(09) moves the cursor right one position but does not erase any
character. The space character, HEX(20), which is the padding character for
alphanumeric variables and the character input by the keyboard space bar,

erases the character at the current cursor location before moving the cursor
right one. HEX(09) is usually called the "non-destructive space".

To see the relationship between HEX(08), HEX(09) and HEX(20), execute
the follewing gprogram:

10 PRINT "ABCD"; HEX(080809);
20 GOTO 20

The display apfrears as

ABCD
The two 08 codes move the cursor back two and then 09 moves it right one for
a net left movement of 1. No characters are erased. Now change the program

to

10 PRINT "ABCD"; HEX(080820);
20 GOTO 20

The display appears as
AB D

The cursor is in the same position but HEX(20), which was output when the
display wvas

ABCD

erases the character at the current location before moving the cursor
right one.

Hex OA

HEX(OA) moves the cursor down one line from its current position.
It remains in its previous column; no character is erased.

196

+PRINT "AE"; HEX(OA); "CD"
produces

AB
CD

Hex 0C

HEX(0C) moves the cursor up one line from its current location. WNo
characters are erased.

¢PRINT "“ABR"; HEX(0C); "CD"
produces

CD
AB

Hex OD

HEX(0D), the so-called "carriage return", moves the cursor to the
leftmost position (column 0) on the current line. No characters are erased.

When the PRINT or PRINTUSING statements issue a CR/LF the codes that are
received by the CRT are HEX(ODOA). Also, the system automatically issues this
HEX (ODOA) when a PRINT print element is about to overflow the current line,
and under a variety of other conditions described in previous chapters.

17-2 THE LINE LENGTH CHARACTER COUNT

The 2200 System counts the number of characters it has output to a single
line of the CRT. 1t uses this count to issue a carriage return/line feed
when the maximum line length would be exceeded bty the next character, or
next print element. The TAB() parameter also depends upon this count for its
operation.

Whenever the system outputs a space (hex 20), or a character to the CRT,
it updates its count by one. Whenever a hex 0D (carriage return) is output,
the count is set back to zero. All of the other hex control codes haveno
effect upon the character count; they neither update it, nor reset it. This
can occasionally be a source of bewilderment for the unwary programmer.

For example, if you execute the following statement
:PRINT TAB(62); HEX(03); "Aw; "xyz"
the result is:

On line O0: A
On line 1: XYZ

The 62 spaces output by TAB(62) update the internal character count to 62.
HEX(03) clears the CRT and homes the cursor, but does not reset the
character count. Therefore when "A" is output the system "thinks" its
outputting it at column 63. Were this the case, "XYZ" would overflow the
64 character line length; therefore the system issues a CR/LF prior to
outputting "XYZ". To correct a problem such as this, the statement can be
changed to

197

PRINT TAB(62); EHEX(030D); "A"; WXYz"

Here the added hex OD has no effect on the cursor position. It simply
resets the character count to zero.

The TAB() print element can be affected by the use of hex control
codes. TAB() issues spaces until the character count equals the value
within parentheses. Therefore, it will move the cursor to the correct
column only if the character count accurately reflects the cursor position
vhen the TAB() is executed.

17-3 USING THE CRT BEX CCNTROL CODES

How can the cursor control codes be used to implement steady-display CRT
usage? An example to consider is a revwritten version of Example 2.2 the first
inventory program. Suppose we wish the inventory status to always be
displayed on line 0, the input message to appear on line 1, and a reorder
message, if any, tc appear on line 3. The modification to Example 2.2 shown
in Example 17.1 uses the CRT control codes to obtain this form of display.

Example 17.1 The Inventory Program (Example 2.2) Rewritten for a
Steady Disrlay

10 LET I=42500

20 PRINT HEX(03); "OPENING INVENTORY="; I

30 INPUT "“NUMEER OF TONS RECEIVED (+) OR SOLD (-)", T

40 IET TI=I+T

50 PRINT HEX(03); "TONS ON HAND ="; I

60 IF I»= 100 THEN 30

70 PRINT HEX(OAOA) ;"REORDER COAL IMMEDIATELY: INVENTORY BELOW
100 TONS"; HEX (01)

80 GOTO 30

At line 20 HEX(03) clears the screen and homes the cursor, before
displaying the opening inventory status report. After executing line 20 the
system issues a CR/LF. This moves the cursor column 0 line 1. On line 1 the
input prompt is disglayed. Now, since the inventory status is always to
appear on line 0, the cursor must be homed before a new inventory status is
output. Furthermore, the 0ld inventory status must be erased €rom the screen,
as well as the 0l1d operator entry. A HEX(03) at the beginning of line 50 does
this. Since it clears the entire screen, it clears the prompot as well. This
is not a problem, however, since the prompt will be redisplayed when the INPUT
statement is executed.

Assuming there is no reorder message, the program simply loops from line
60 to 30. In a sense, we can think of this loop as "beginning" at line 50,
where the screen is cleared and the inventory status displayed. Then line 30
outputs the prompt cn CRT line 1. When the operator makes an entry the
process is repeated.

Now, suppose the inventory drops below 100 tons. This occurs at line
40. Line 50 displays the new status on CRT line 0, and then drops the cursor
to line 1. If we inserted the statement 55 GOTO 55 to see the cursor
location and display, the display would look like this:

TONS ON HAND = 40

(1%

TN

(e

Line 60 does not effect a branch; line 70 is executed. HEX (0OAOA) drops the
cursor down two lines to line 3. Then, the reorder message is printed. Now
the cursor must be returned to line 1, column 0, so that-the INPUT prompt will
be in its correct location. 1The easiest way to do this is by homing the
cursor HEX (01) and letting the normal CR/LF be issued to move the cursor to
line 1. You should try running Example 17.1, and also try changing the
various HEX codes to see the results.

Status Reports

When lengthy internal computations are taking place, or when external
files are being operated on without operator intervention, it is often a good
idea to maintain a system status message on the CRT. This message can let
someone who walks up to the system know that it is busy, and perhaps give some
idea of how lcng it will be before the present operation is complete. Example
17.2 maintains a steady display of a loop counter, for loop processing, and
indicates the upper bound of the loop as well.

Example 17.2 Maintaining a Steady Processing YMessage On The CRT

550 PRINT HEX(030A0AOAOAOAOGAOA)

560 FOR I = 1 TO N

570 PRINT HEX (0C);TAB(18); "PROCESSING LOOP";I3MOF"; N
580 REM LOCP PRCCESSING BEGINS HERE

1050 NEXT 1I

In this figure, line 550 clears the screen and moves the cursor to line
8 (seven HEX(OA)'s plus the CR/LF at the end). Line 8 is one line below the
line which the display is to appear. Line 560 sets up the loop. 1In 570,
HEX(0C) moves the cursor up to the output line, TAB(18) centers the message,
the message is output, and a CR/LF at the end moves the cursor to the leftmost
position on the next line. This frogram can be executed, as shown, without
any lcop content, if a value for N is supplied.

Example 17.2 may seem unnecessarily elaborate. Why not simply backspace
the cursor, and only output the print elements I; "OF"; N each time through?
This solution is impossible because backspace, hex 08, does not decrease the
character count, despite the fact that it moves the cursor left. Each time
I; "OF"' N is output the characters update the count. When the count is
about to reach 64, the line length, the system issues a CR/LF that drops the
output to the next line.

If a program calls for frequent cursor repositioning it is convenient
and efficient to include in the program a general cursor-positioning
subroutine. Such a subroutine is shown in Example 17.3. To use it one simply
writes a statement such as GOSUB'185 (7,45) which tells the subroutine to
position the cursor at line 7, column 45.

Example 17.3 A Cursor-Pcsitioning Subroutine
110 REM POSITION CURSOR SUBROUTINE

120 DIN C$€L
130 DEFFN' 185 (R,C)

140 C$= HEX (01)

150 INIT(09) STR(CS,2)
160 R$ = HEX (00)

170 INIT (OR) STR(RS,2)

9

180 PRINT HEX(OD); STR(CS$,1,C+1); STR(RS,1,R+1);

In this subroutine C$ is dimensioned to a length of 64 characters. Line
140 assigns hex 01 to C$. After 140, therefore, C$ has hex Ol in

the leftmost character position, followed by 63 trailing spaces. Statement
150 changes all the trailing spaces to hex 09's. After 150 C$ looks like
this

c$ [01To09]09]09]09]09f09]0909]09 09 09]09]09T09fool " . . _J09[09[09]
— By

————————p—
one 63 hex 09's
hex Ol

Lines 160 and 170 go through a similar procedure with R$, leaving it as
follows:

R$ [00]04 oa [0A[04]0A[0A]0AOATOATOA[OATOATOATOATOA]

one 15 hex 0A's
hex 00

Lines 140 to 170 are simply preparation for moving the cursor. Their only
function is to get the needed hex codes into C$ and R$. The subroutine
could be rewritten so that this operation was not repeated on each execution.

Line 180 positions the cursor to the selected column and row. The first
print element HEX (0D) moves the cursor to the leftmost position of whatever
line it happens to be on. However, its main function here is to reset the
internal character count so that we can be sure an automatic CR/LF will not be
issued during the cursor positioning. The second print element STR(CS%,1,C+l)
starts outputting characters from C$ beginning with the first character. The
first character is a hex 01, which moves the cursor to home position (row O,
column 0). TIf the value of C, which was passed to the subroutine, was 0 for
column 0, STR(C$,1,C+1l) is equivalent to STR(CS$,1,1), which specifies just one
character, beginnirg in the first character position. If the value of C is
45, the first 45 characters of C$ are specified for output. These U6
characters consist of one hex 01 followed by 45 hex 09's. The 45 hex 09's
space the cursor to column 45. ©Now the cursor is in the correct column but on
row 0., STR(R$,1,R+1l) moves it to the correct row. The first character in RS,
which is the only character output if R is 0, is a hex 00. Hex 00 does
absolutely nothing, the cursor isn't moved and no characters are erased. This
"do nothing" is exactly what we want if the desired row is row 0. However, if
the desired row is 7 STR(R$,1,R+1l) outputs 8 characters: a "do nothing"
followed by 7 line feeds, hex OA's, to move the cursor to its desired
location.

Clearing Selected CRT Lines

We have seen that the hex 03 code clears the entire CRT screen.
Sometimes, though, you may wish to clear just one line of the CRT. The
easiest way to clear a single line of the CRT is to move the cursor to
column 0, and then TAEB(64), assuming that the line length is 64. Th TAB()
outputs spaces, thereby clearing the line.

CHAPTER 18: CONTROLLING A PRINTER

There are two fundamentally different kinds of printers available with
Fang 2200 systems. There are the matrix printers, Models 2221w, 2231w, 2221,
2231, and 2261, and the character printer, the 2201 Output Writer. Users of
matrix printers should read section 18-1 on the Model 2221¥, in which the
minor differences of the cother models have been noted. Section 18-2 is
devoted to the 2201 Output Writer.

18-1 HEX CONTROL CODES FOR THF 2221W PRINTER

When the 2221W printer receives a hex code for a printable character, it
simply puts that code into its print buffer. Unless the buffer becomes full,
no immediate action is taken. However, certain special hex codes are not
entered into the buffer, but rather cause immediate action by the priater.
These special codes are the printer control codes.

The printer control codes for the 2221W are:

HEX (0D) PRINT BUFFER CONTENTS: The buffer is printed and line
feed and carriage return are generated automatically.
printed. The buffer is cleared after printing,
and the processor's internal character count is reset.

HEX(0A) LINE FEED: advances paper one line.

HEX(OE) EXPANDED PRINT: causes the printer to print the first
66 characters in the print buffer in an expanded
format, when the next HEX(0D) is received,

HEX(07) BEIL: generates a two second audible tone.

HEX(0C) FORM FEEL: advances paper until the next hole in
channel 7 of the forms tape is reached.

HEX(0B) VERTICAL TAB: advances paper until the next hole in
Channel 5 of the forms tape is reached.

HEX(7F) Clears current buffer contents.*

*Models 2221W and 2231W only.

Hex OD

The hex 0D code tells the printer to print the characters in its buffer.
After printing the buffer contents, the printer automatically feeds the
paper up one line, and returns the print head to the left of the print well.

The processor issues a hex 0D code whenever a PRINT or PRINTUSING
statement ends without a comma or semicolon. Therefore, it is never necessary
to use the HEX functicn to issue a hex 0D code. 1In fact, because your Wang
system reduces all keywords to a one character code, a statement such as

100 PRINT "“ABC CO."; HEX (0D);"15 BEACON ST."; HEX(OD); "BOSTON,MA"

occupies less memory if written as a multistatement line with the HEX
functions omitted:

2l

100 PRINT "ABC CO.":PRINT "15 BEACOM ST.":PRINT "BOSTON,MA"™
Hex OA

The HEX(OA) code causes the printer to feed the paprer up one line.
Buffer contents are not affected. It is important to realize that for all
control codes the printer acts immediately upon receipt of the control code,
and does not await a hex 0D. For example, Example 18.1 shows a program which
uses hex OA's and the resultant output.

Example 18.1 TIllustration cf the Fact that Control Codes are Output
Immediately

110 SELECT ERINT 215 (132)

120 PRINT "LINE ONE" :

130 PRINT "ABC CO."; HEX(O0AORA); "BOSTON,MA"™
s RUN

LINE ONE

" ABC CO. EOSTON, MA

Despite the fact that two hex OA's are embedded in the PRINT statement
at line 130 they are not acted upon by the printer after "ABC CO." is printed
and before "BOSTON, MA"™ is printed. 1In this program the system first executes
line 120 which prints LINE ONE for reference. At line 130 the processor
outputs the characters ABC CO. to the printer. The printer senses that these
are printable characters, not control codes, and puts them into the buffer.
The processor now sends the two ccntrol codes OAOA to the printer. The
printer checks the first OA, finds it's a control code, and, therefore,
immediately executes it, feeding the paper up one line. The process is
repeated for the second OA. The OA's are not put into the bhuffer. Now the
processor sends the characters BOSTON, MA to the printer. The printer puts
them into the buffer. Finally the processor issues a hex 0D code, since the
PRINT statement ends without a comma or semicolon. The printer, on receipt of
the hex 0D code, prints the buffer contents. The results, as shown, is "LINE
ONEY", followed by two line feeds, followed by "ABC CO., BOSTOW, MAY,

Hex OE

A hex OE code tells the printer that the next time it prints the buffer
contents it should print it in expanded form. Expanded characters take twice
the space of ncrmal characters; therefore, only the first 66 characters in the
buffer can be printed. Any additional ones are simply lost. A hex OB code
does not itself initiate printing. It simply specifies that, when a hex 0D is
received, characters should be printed in their expanded form. A hex OE can
be sent to the printer before or after the characters to be printed are put
into the buffer. Once the buffer is printed, after a hex 0E, the printer
automatically reverts to normal print form, unless another hex OE arrives
prior to the next grinting of the buffer.

Expanded print can be usefor for producing more striking report titles,
total lines, etcetera. Example 18.2 shows the use of expanded print.

Example 18.2 Expanded Print
110 REM USING EXPAWDED PRINT
260 REM PRINT PSL

270 SELECT PRINT 215 (80)
280 PRINT HEX (OE) ;"FROFIT AND LOSS STATEMENT®

us kN

8

Output from line 280 appears as:

When using expanded print, remember that each printed character takes
up twice the normal paper space, and that, therefore, a line length
specification in the SELECT statement does not offer the usual protection
against printing beycnd the right end of the paper.

Hex 07

The hex 07 code, when received by the printer, generates a two second
audible tone. The tone is output immediately upon receipt of the hex 07 code;
the code does not become part of the buffer. A continuous tone can be
generated by putting PRINT HEX(07) within a loop. For example,

110 SELECT PRINT 215
120 FOR I=1 TO 6

130 PRINT HEX(07)
140 NEXT I

This generates a tone approximately of 12 seconds duration. A pulsing tone
can be produced by putting a "do-nothing" FOR...TO/NEXT loop within the loop
shown above. For example, you could add the lines

133 FOR K=1 TO 500
134 NEXT K

to the above example. This locp simply consumes time, to make the tone

)pulsate.

Forms Ccntrol With Hex OB and Hex 0C_

The vertical format tape loop, located under the printer's left cover,
can be used to contrcl paper advance. EFach tire the paper is advanced one
line, the vertical format tape moves the distance of one sprocket hole past
the tape-reading photo-cells. This tape movement occurs as a result of a
mechanical linkage hetween the paper advance mechanism and the tape sprocket
wheel.

The vertical format tape can have holes punched in any of three
"channels" as shown telow.

Figure 18.2 A Section of a Vertical Format Tape (Enlarged)

Generally a tape is prepared sc that the distance between channel 7 punches,
measured by the number of sprocket holes, is the same as the overall length of
the paper form being used, measured in the number of lines that can be output
on it. Standard 11" report-paper is 66 lines long; therefore the distance
betvween channel 7 punches on the supplied standard vertical format tape is 66
sprocket holes. When the printer receives a hex 0C code, it rapidly advances
the paper until the vertical fcrmat tape reader senses a hole in channel 7 of
the tape. Provided that the paper was properly aligned in the first place,
this advances the paper to the top of the next form. The hex 0C code is
called a "form feed", by virtue of this function.

On special forms such as invoices, checks, account statements, =2tcetera,
a vertical format tape is prepared that has punches in channel 5, spaced to
align with the major divisions on the form. For example, an invoice tape
might have channel S punches that align with the first line of the "ship to"
address, the "sold to" address, the body of the invoice and the "total" line.
If the "ship to" address is the tcp of the form it might be punched in channel
2 as well as channel 5. A hex 0B, when received by the printer, advances the
paper until the vertical format tape reader senses a hole in channel S of the
tape.

Form advance using the vertical format tape is considerably faster
than that which can be achieved by issuing line feeds (hex OA's). 1In addition
it causes much less wear on printer mechanisms than repeated hex OA's, and,
therefore, should be used for all repetitive multi-line form-up. Example 18.3
is a skeleton of a simple invoicing program designed to show the use of hex
0C and 0B codes for paper advance. It presumes that a properly prepared
tape has been mounted in the vertical format tape reader.

Example 18.3 Using Vertical Tabs in an Invoice Program

110 REM USING VERTICAL TABS, HEX (0B), TO FORM-UP AN INVOICE
120 SELECT PRINT 215

130 PPINT HEX (0C)

140 INPUT "ALIGN FORM BELOW PERF. KEY (EXEC) TO RESUME",A9%

200 REM PRINT "SOLD 1T0™ ADDRESS
210 PRINT HEX(OB) ¢:REM FORM UP TO FIRST "SOLD TO" LINE

260 REM PRINT "SHIP TO"™ ADDRESS, IF DIFFERENT
270 PRINT HEX (OB) :REM FORM UP TO FIRST "SHIP TO" LINE 1

320 REM BODY OF INVOICE BEGINS

330 PRINT HEX (0B) sREM FORM UP TO FIRST ITEM LINE
335 1L=0 :REM RESET LINE COUNT

340 L=L+1 $REM INCREMENT LINE COUNT

350 IF L = 17 THEN 1400 :REM INVOICE OVERFLOW?

0¥

900 INPUT "MORE INVOICE LINES? (Y OR N)", A9S
910 IF A9%="Y" THEN 340

920 IF A93Q®»"N" THEN 900

930 REM NC MORE INVOICE LINES

940 PRINT HEX (0B) ¢:REM FORM UOP TO "“TOTAL"™ LINE
950 REM CALCULATE DISCOUNTS AND PRINT TOTAL LINE

1100 INPUT "MORE INVOICES? (Y OR N)", A9%
1110 IF A9%= "Y" THEN 200

1120 IF A9%<» "N" THEN 1100

1130 REM PRINT COMPANY TOTALS

1380 END
1400 REM INVOICE OVERFLOW ROUTINE

At line 130 a HEX(0C) is issued to advance the form and the vertical
format tape to the tog-of-form position, (Channel 7 hole). The operator should
then check that the fcrm is prcperly positioned, and adjust it if necessary.
Often it is a good idea to have the program print a blank form, with all
fields filled with # symbols, to let the operator exactly position the form
. for vertical as well as horizontal alignment. (Assuming that the PRINTUSING

statement is employed for printing on the form, this can be accomplished by
attempting to print 1E99 to all the format specifications. 1E99 is too
large a number for any format specificaticn, other than exponential, and
will therefore cause the Image statement # signs to be output.)

The invoices used by Example 18.3 have four major divisions: sold to
address, ship to address, body of the invoice, total line. At the beginning
of the program routines that operate on each section, a HEX(0B) is printed to
advance the form to the proper line. The number of lines used by each of the
sections, except the body of the invoice, is fairly standard, so line counts
are unnecessary. However, as the number of invoice items is indeterminate, a
line count of the body of the invoice must be maintained. This line count
takes place at lines 340 and 350. If a 17th line is to be added to the
invoice, it must appear on the next form; a branch to an invoice overflow
routine is provided.

On the 2221%¥ and 2231V printers a punch in channel 2 of the vertical
format tape carries special significance. Unlike channel 5 and 7 punches,
which are used only to terminate a form advance, channel 2 punches initiate a
form advance. When the printer senses a hole in channel 2 of the tape, it
automatically initiates a form-up that ends when a channel 7 hole is sensed.
This feature is known as "automatic page eject", and, with a properly punched
tape, can eliminate the need for maintaining a line count within a progran.
For example, standard 11" report paper is 66 lines long. Allowing 3 lines for
top and bottom borders, leaves 60 print lines. the standard vertical format
tape supplied with the printer contains a channel 2 hole sixty sprocket holes
(60 lines) after an "initial" channel 7 hole. Therefore, if the paper is
aligned after form-up to 3 lines below the paper perforation, then 60 lines
" later an automatic form up will take place, triggered by the channel 2 hole.
Six lines after this channel 2 hole is the next channel 7 hole which stops the
form-up at the top of the next sheet. This system automatically prevents
printing on a perforation.

p o

If a program is being run that contains an internal line count to
trigger form-up, then channel 2 holes in the Vertical Format Tape should
be covered with an opaque material to prevent undesired automatic form-ups.

Hex 1F

A hex 7F code clears the print buffer on model 2221W and 2231W printers.
Nothing is printed, and no forms movement occurs. Whatever characters are in
the buffer, at the time the 7F is received, are simply lost. The hex 7F code
has no effect on the 2221, 2231, or 2261 series printers.

Outputting a hex 7F at the beginning of a program is often a worthwhile

precaution. Th previcus program may have left c¢haracters in the print buffer
which would otherwise spoil the first print output.

18-2 HEX CONTROL CODES FOR THE 2201 OUTPUT WRITER

The hex contrcl codes for the 2201 Output Writer are:

HEX (0A) LINE FEED: Advances paper one line. Print assembly
does not move.

HEX (OD) CARFIAGE RETURN/LINE FEED: Moves the print assembly
to the left margin, advances paper one line, and
resets the processor's internal character count.

HEX (09) TAB: Moves the print assembly to the right until a
mechanical tab-stop is reached.

HEX (13) SET TAB: Sets a mechanical tab-stop at the current
print position.

HEX (19) CLEAR TAB: Clears a mechanical tab-stop at the current
print position.

HEX (08) BACKSPACE: Backspaces the print assembly one
character position.

HEX (5F) UNDERSCORE: Prints an underscore mark at the current
print position.

Hex OA

The hex OA code causes the platen to advance one line. (The platen
will advance two lines if the manual single-space/double-space lever on the
right side of the Output Writer is set to double-space.) The hex 0A code
does not affect the print assembly and, therefore, should be used instead
of hex OD whenever multi-line form-up is desired. For printing that requires
frequent form feeding, it may be desirable to initialize a form-feed
alphanumeric variable as follows:

10 DIM LI9S6U +REM UP TO 64 CHARACTERS LOWNG
20 INIT (OA)L9S :REM 19% IS FILLED WITH OA's

With this variable, 19%, initialized as above, a carriage return and six line
feeds can be accomplished with:

PRINT STR(L9%,1,5)

296

Here five OA's are output follcwed by the automatic carriage return/line
feed. Twventy line feeds without a carriage return can be accomplished with:

PRINT STR(L9%,1,20);
The semicolon suppresses the automatic line feed/carriage return.

Example 18.4 shcws a segment of an invoice preparation program that
uses the 2201 Output Writer.

Example 18.4 1Invoice Forms Control On The 2201

110 REM PROGRAM SEGMENT SHOWING FORM CONTROL ON 2201
115 REM INITIALIZE FORM-UP VARIABLE

120 DIM L9$29

140 INIT (0A) 19S

560 REM FORM UP TO BODY OF INVOICE AND START LINE COUNT

565 PRINT STR(L93%,1,3) <:REM 4 LINES UP

570 I=0

580 L=L+1 tREM NEXT LINE, BRANCH BACK TO HERE
590 IF L = 25 THEN 2010 tREM LINE OVERFLOW?

600 REM OUTEUT ONE LINE OF INVOICE

710 INPUT "MORE INVOICE LINES (Y OR N)", RS
720 IF RS = "yn THEN 580

730 REM FORM UP TO "“TOTALY" LINE FROM LINE L .
740 PRINT STR(L9%,1,25-1)

750 REM CUTPUT INVOICE TOTAL LINE

2000 REM LINE OVERFLOW ON BODY OF INVOICE
2010 PRINT L9% :REM 30 LINES TO BODY OF NEXT FORM
2020 GCTI0 570

Line 130 initializes L9% to 29 hex OA's. This is the maximum number of
OA's which ever need to be output in this program. Between lines 140 and 560
the "Sold To", "Ship To" and "Salesman" lines are printed. Line 565 advances
the form to the first invoice line. Line 570 resets the line count variable,
I. Line 580 increments the line count by l. There is room for 24 lines in
the body of this invoice. Line 590 tests if the line about to be output is
the 25th line. If it is, 590 effects a branch to a routine which advances the
form to the body cf the next invoice for continuation of output. Lines
600~710 are used to construct and output one line of the invoice. At line
720, if there are more lines to be entered, R$ equals "Y" and a branch is
effected back to line 580. If there are no more lines to be entered the
"total" line must be printed. Counting the 1lst line in the body of the
invoice as 1, the "total" line is the 26th line, and, therefore, can be
reached by outputting 25 line feeds from line 1. If L is 1, line 740 outputs
the first 24 characters of 19%, followed by the automatic CR/LF for a total of
25 line feeds. Sirilarly if L is any number in its range of 1-24, line 740
outputs the correct number of lines to reach the "total" line.

Hex 0D

In general it should not be necessary to explicitly include a HEX (0D)

207

in a program for the 2201, since this code can always be generated by simply
ending a PRINT statement without a comma or semicolon.

Hex 09 and Hex 1A

The hex 09 code causes the 2201 to rapidly move the print assenmbly
to the right until a mechanical tab stop is reached. This is the equivalent
of depressing the tab key on the 2201 when using it in manual mode. 1In
order for the hex 09 code to be useful, mechanical tab stops must
previously have been set at the desired positions. They may be set manually,
or under program control by issuing the hex 1A code.

The TAB() print element is not related to this mechanical
tab capability of the 2201. TAB() print elements cause spaces to be output
until a desired column location is reached. Outputting spaces in this
fashion does not cause the print assembly to move as rapidly as it moves
when executing a mechanical tadb, but, on the other hand, it does not
require that a mechanical tab be preset. If a program requires a substantial
amount of tabbing by the 2201, it may be faster to have the program set
mechanical tabs, and then move from tab stop to tab stop by issuing hex 09's.

Tt should be noted that when a mechanical tab is executed the system
"loses track of" the position cf the print assembly. That is, the internal
character count, which is used by TAB() and causes the end-of-line automatic
CR/LF, is not properly updated, and therefore, TAB() cannot be used together
with the mechanical tab feature of the 2201.

For more information on setting and clearing mechanical tabs, see the
2201 Output Writer Reference Manual (700-3113a). -

Hex 08 and Hex SF

The hex 08 code backspaces the print assembly one character position.
It does not update the internal character count, and, therefore, effectively
disables the TAB() print element. It can be used with the underscore mark,
hex 5%, to underline characters. Theprogram shown in Example 18.5 illustrates
a simple underlining subroutine that first backspaces past a specified number
of characters and then underlines them, leaving the print assembly in its
original position.

Example 18.5 An Underlining Subroutine For The 2201

110 REM ILLUSTRATION OF UNDERLINE SUBROUTINE FOR 2201
120 SELECT PRINT 211

130 PRINT "UNDERLINE THIS";

140 GOSUB '202 (14)

150 STOP

2000 REM UNDERLINE SUBROUTINE FOR 2201

2010 DEFFN' 202 (N) :REM N = NUMBER OF CHARACTERS TO UNDERLINE
2020 FOR I = 1 TO W

2030 PRINT HEX (0B) ;

2040 NEXT I

2050 FOR I = 1 TO N

2060 PRINT EEX(SF);

2070 NEXT I

2080 RETURN

208

CHAPTER 19: TABLES (TWO DIMENSTONAL ARRAYS)

19-1 INTRODUCING TWO-DIMENSTIONAL ARRAYS

Thus far we have seen two ways of referring to variables. Ordinary (or
scalar) variables each have a fixed name assigned to them, for example, A, C2,
G8%, N$, X. In Chapter 1l we introduced list variables. With list variables,
a name, such as D3(), is assigned to an entire list of variables. Each
variable on the list is referred to by giving the list name and a single
expression in parentheses. Th expression gives the position of the desired
variable in the list. A reference to a list variable might be A2(3), which
specifies the third variable down the list A2(). Assuming that it has four
elements, all the variables on the list A2() can be named by:

A2(1)
A2(2)
22(3)
A2(4)

In many instances list variables make simple and compact operations out.
of ones that would be cumbersome using ordinary scalar variables. However,
sometimes a programming problem suggests that variables be arranged in a kind
of table. 1In a table arrangement of variables, a particular variable is
specified by means of two expressions that together give the variable's
position in the tatle. For example, a table of variables called N() is shown
telow.

A Table of Variables Called N()

row 1 ¥(1,1) ¥(1,2) N(1,3)
row 2 N(2,]1) N(2,2) N(2,3)
rov 3 N(3,1) N(3,2) N(3,3)
row u N(u,1) N(4,2) N(4,3)

column 1 column 2 column 3

The table N () consists of 12 variables, or elements, each named by
giving the table name together with the variable's row and column position.
The table N() has four rows and three columns. Thus, N(1,1) names the
variable at row 1 column 1l; N(3,2) names the variable at row 3, column 2;

N (4,3) names the variable at row 4, column 3. numbering of the rows and
columns of a table always starts with one, never zero.

In Section 11-3 we mentioned that list variables are often called
one-dimensional arrays, since any variable on the list can be referred to by
means of a single value in parentheses. To specify a variable within a table
requires two expressions; therefore, variables arranged in table form are said
to be in a two-dimensional array.

Just as for a list, any expressions can be used to give the position
of a variable in a twc-dimensional array. For example, in the array W (),
above, the variable in row 3, column 2 can be referred to by .

N (3,2)

but also by

>4

¥ (#PI, (642/18))

since the integer value of the expressiéns #PI, and 642/18 is 3 and 2
respectively.

Establishing a Tvo-Dimension a

In order to use a two-dimensional array of variables you must specify
in a DIM statement a name for the array, and the number of rows and columns
it is to have. 1In PASIC the array names that are used for one-dimensional
arrays are also used for twvo-dimensional arrays. Thus, the names we gave
in Chapter 11 as being legal for naming lists, RA{)...Z() and AO(), Al (),
A2(),.-.-29(), BO(), B1 () ,-.-27(), 28(), Z9(), are also legal for naming
two-dimensional arrays. The dimension statement for the two-dimensional
array ¥ (), shown above, would te

DIM N (4,3)

where N() gives the name c¢f the array, and the integers 4 and 3 give the
number of rows and columns the array is to have. The total number of
variables in this array is 12 (or 4 times 3). 1In the DIM statement the row
and column size of the array must be given by integers; an expression may not
. be used. The maximum number of rcws or columns in any array is 255, however
the total number of elements may not exceed 4096. Therefore, a DIM statement
such as

DIM K (8, 255)
is legal whereas
DIM (65,65)
is not, since a 65 by 65 array would contain more than 4096 elements.

A single DIM statement may be used to specify any number of one and
two-dimensional arrays, as well as giving the size of alphanumeric scalar
variables. For examrle,

40 DIM A$30, B(1l2), R(5,5), Bt (4)2

dimensions the scalar alphanumeric variable A$ to a length of 30 characters,
establishes the list of 12 numeric variables B{(), the numeric two-dimensional
array R() with 25 variables arranged in 5 rows and 5 columns, and finally

the alphanumeric list B$() with 4 variables each 2 characters long. The

DIM statement for an array must appear at a lower line number than any
reference to a variable in-the array.

In addition to two-dimensional arrays of numeric variables, BASIC
also permits two-dimensional arrays of alphanumeric variables. For
example,

DIM R5%(10,12)

sets up an array of alphanumeric variables with 10 rows and 12 columns,

a total of 120 variables. Since a character length for thé variables is not
specified, each variable in this array would be given a length of 16
characters. It is possible, though, to specify a different variable length
by simply adding a length specification, 1-64, outside the parentheses.

For example,

2¢

DIM K$(10,12)20

sets up an array of alphanumeric variables, each of which has a maximum
length of 20 characters.

It is not possible to use the same array name for a one-dimensional
array and for a two-dimensional array in the same program. Therefore, this
DIM statement produces an error

DIM K(4,7), K(9)

Hovever, a numeric array and an alphanumeric array may have the same nanme,
except for the $. For example, this DIM statement is legal

20 DIM R2(10,10), R2%(10,10)
Yemo sage

The total memory space required for an array, plus the memory space
occupied by the program statements and other variables, cannot exceed the
amount of memory available. The total amount of memory available can be
determined by executing an END statement in the immediate mode, after the
system memory has been cleared. (It is approximately 700 bytes less than the
the absolute amount, €.g., 4K, 8K, 16K, etc.)

In Chapter 9 it was mentioned that numeric variables occupy 8 bytes
of memory, and that, in addition, 5 bytes are used for the control
information that enables the processor to find the variable. Alphanumeric
variables may occupy from 1 to 64 bytes, and also require 5 bytes of control
information. The memory space, M, in bytes required for an array is given

by

M= nl + 7
where n = the total number of variables or elements
1 =8 if numeric array

or
dimensioned length of each alphanumeric array element (1-64).

and 7 is the seven bytes of control information required for an array.
For example, a 20 by 20 numeric array dimensioned as follows
DIM E2(20,20)
has 20%20 = 400 elements. Thus,
M = B00*8+7 = 3207 bytes
An alphanumeric array dimensioned as
DIM (13,13)30
has 169 elements
M = 169*%30+7 = 5072 bytes

Remember that only if the RUN command has been executed does END take
into account the space occupied by variables and arrays.

21

19-2 USING TWO-DIMENSIONAL ARRAYS

A simple example of the use of a table, or two-dimensional array, in
commercial data processing is a withholding tax routine in a payroll program.

For example, a state supplied withholding tax table might look something like

this:

Number of Dependents
1 2 3 4 5 6 7 8 or more

Lowest Income (1 .005 .003 .001 0 0 0 0 0

2 .G08 .005 .0025 .001 0 0 0 0

3 015 .009 .004 .003 .0025 0 0 0

4 .015 .010 .009 .007 .005 .0035 .0025 .001

éncome < 5 .0175 .011 .010 .009 .009 .007 .004 .003
ategory

6 .02 .018 .0105 .0105 .010 .010 .009 .008

7 .028 .021 .019 .017 .014 .013 .012 .01

8 .03 .029 .02 .019 .018 .616 "~ .015 .015

Highest Income 9 .04 .04 034 .050 .029 .025 .025 .022

The proper withholding tax percentage can be found at the location specified
by a given number of dependents and a given income category. The routine to
calculate withholding tax simply uses a table of variables dimensioned to
accommodate this tax table supplied by the state. For example, the program
might include a dimension statement such as

120 DIM T (9,8)
which defines T() as a table with 9 rows and 8 columns. Each variable
in the table must then be assigned the proper percentage as specified by the
state. To "lock ur" the percentage in the table the program simply
specifies the correct variable with

T (I,D)

wvhere I and D give the row and column, (income and dependents).

We must assume that the state supplies an annual gross wage cut-off
point for each income category. For example

EROJECTED
ANNUAL GROSS WAGE CATEGORY
IS UNDER IS
5100 1
€200 2

-

-3

7600
8400
12300
14900
17100
21600
21600 and over

WOV FEFW

Prior to accessing the tax table the program must determine a person's
income category. Here, a list containing the cut-off points can be searched,
comparing the cut-cff point with the person's projected annual wage. Example
19.1 does this, and then calculates the tax to be withheld.

Example 19.1 Determining Tax Bracket and Tax Using a.lList and a Table

110 REM CALCULATING TAXES BY ACCESSING A TABLE
120 DIM T(9,8), C(8)

450 REM D CONTAINS NUMBER OF DEDUCTIONS
460 REM CALCULATE STATE TAX
470 REM FIND TAX BRACKET NUMBER BY SEARCHING CUT-OFF LIST C(),

480 K =0

490 K = K+l

500 IF K = 9 THEN 520 +REM TOP BRACKET?

510 IF A>= C(K) THEN 490 +REM HIGHER BRACKET THAN K?

520 REM K NCW HAS CORRECT TAX BRACKET
530 REM T(K,D) IS WITHHOLDING PERCEWTAGE

540 S = W * T(X,D)
550 REM S NOW HAS STATE TAX AMOUNT
560 REM

At line 120 a tax table T(), and a cut-off list C() are dimensioned.
Between 120 and 450 we assume that the variables in the cut-off list and
the tax table have received the fixed values supplied by the state; that
variable A is assigned the projected annual wage for the individual being
processed, D is assigned a number of dependents (1-8), and W is the week's
gross wages.

Lines 490 to 510 form a loop in which the annual wage is compared to
each of the values in the cut-off list until the cut-off value C(K) is
greater than the annual wage, or the highest bracket, 9, is reached. After
510 the search is complete, and K contains the tax bracket (income category).
Now the state tax to he withheld can be calculated by simply multiplying
the variable W times the variable T(X,D), since K and D specify by row and
column the variable containing the proper percentage. This calculation is
performed at line 5u40.

We have passed over one majcr point in this discussion, how the values
are to be assigned to the variables in the tax table, and cut-off list.
Normally this would be accomplished by loading the values into these
arrays from data files saved on tape or disk. Data files are discussed in
Chapters 20 and 21.

In many situvaticns processing the elements of a two-dimensional array
can be accomplished with nested FOR...TO/NEXT loops. For example to print
the value of each of the elements of a 5 by 5 array, D(), the following
routine can be used.

PYE]

Example 19.2 VWVested Loops Used To Process a Two-Dimensional Array

110 DIM D(S,5)

220 FORR =1T0 5

230 FORC =1 T0 5
240 PRINT D (R,C);
250 NEXT C ‘
260 PRINT

270 NEXT R

In this program all the elements of a row are printed by the inner
loop 130-150, then a carriage return line feed is issued (line 160).
Then, NEXT R, in the outer loop, increments the row counter R, so that the
next row will be output when the inner loop executes again.

Instead of printing in such a loop a READ, INPUT or assignment
statement could be used to assign values to each element. For example

240 D (R,C) = D(R,C)*5

would multiply the value of each variable by 5.

Zechnical Applications

Outside of strictly commercial processing, two-dimensional arrays of
variables introduce particularly powerful programming simplifications for
computational problems in linear algebra. In programming applications of this
variety, the terminology of linear algebra supplants that which we have been
using. A table or two-dimensional array is called a "matrix", and a list or
one-dimensional array is called a "column vector®".

Historically, the first problem of linear algebra is the solution of a
set of n linear equations in n unknowns. Because computational problems from
many fields of mathematics can often be reduced to problems of this and
related types, research into efficient computational techniques for thése
problems is ongoing, and a substantial technical literature has been
generated. Volume Two of this work will contain a selected bibliography of
this literature and a discussicn of programming techniques for unusual
problems. However, for the most common problems of matrix algebra, a set of
special BASIC statements is available that permits operations on entire
matrices to be performed with a single statement. These statements are
discussed briefly in the next section, and in more detail in the reference
manual Matrix Statements (700-3332B).

The special matrix statements of BASIC are not part of the standard
instruction set of the 2200S processor. They are, however, available as an
optional addition to the 2200S.

19-3 THE MATRIX STATEMENTS

BASIC includes a special set of 14 instructions which are designed to
facilitate matrix operations. Each of the instructions in this set
operates on an entire array of variables, rather than on individual variables
within an array. These statements are collectively known as the Matrix
Statements, and all of them begin with the keyword "MAT". Their operations
are summarized in Table 19.1

NY

TABLE 19.1 MATRIX STATEMENT OPERATIONS

Operation E (! | A/N Description Example
Matrix Addition v array = array + array MAT X=Y+Z
Matrix Subtraction. v array = array - array MAT X=Y -2
Matrix Multiplication v array = array # array MAT X=Y » Z
Scalar Multiplication v array = scalar expression # array MAT X =(3) « Y
Matrix !nversion and
Determinant v matrix = inverse matrix and
scalar variable = determinant of matrix MAT X = INV{Y), D
Matrix Transposition J array = transpose of array MAT X = TRN(Y)
Matrix Assignment v array = array MAT X=Y ‘
Identity Matrix J array = identity matrix MAT X = IDN
Zero Matrix v each array element =0 MAT X = ZER
Matrix Constant J) each array element = 1 MAT X = CON
READ Matrix v J array elements = successive DATAvalues MAT READ X
PRINT Matrix J J print all array elements MAT PRINT X
INPUT Matrix J L v array elements = values from keyboard MAT INPUT X
Redimension Array v v qrarray shape changed as specified 1 MAT REDIM X(R, C)—-T
JE = Array can be redimensioned explicitly
v = Resultant array redimensioned implicitly

v A/N

Can be performed on alphanumeric as well as numeric arrays

Note:

In addition to Matrix Statements Wang BASIC includes
another group of statements +that begin with the word
"MAT", These are the Sort Statements, discussed in Volume
Two of this work. Their syntax, operation, and purposes
are not related to the linear algebra operations performed
by Matrix Statements, and the two groups should not be
associated, nor implications drawn from one to the other.

In several important and unigque ways the Matrix Statements depart from
standards of EASIC syntax and operation which apply to all other statements.

Matrix Statements operate on entire arrays not just on individual
variables within an array. To facilitate use of these statements, and to make
their notation more similar to that commonly used in linear algebra, an array
of variables is referred to in a MAT statement without appending the empty
parentheses, (), tc the name. Thus, when it appears in a Matrix Statement, X
can refer not to a scalar variable, as it does in all other BASIC statements,
but to a numeric array X, which in all previous chapters we have named as X ().
In the Matrix Statements, an array name never includes the () symbols. For
the Matrix Statements the symbols at the right below replace the symbols at
the left.

Standard Basic Syntax Matrix Statement Syntax
c2() c2
A() A
L$() D$
KUs3 () K4$

Arrays that are referred to in Matrix Statements are automatically
dimensioned to 100 element 10 x 10 arrays, unless a DIM statement at a
lover lire number has already established them with different dimensions.
Dimensioning of arrays occurs immediately after RUN (EXEC) is keyed,
before execution actually begins, and takes place in line number sequence.
This automatic, or default, dimensioning of arrays means that if a 10 x 10
array is adequate for the operations being performed, a DIM statement need
not be used. Thus,

20 MAT A =B + C
is equivalent to

10 DIM A(10,10), B(10,10), C(10,10)
20 MAT A = E + C

However, notice that

10 A(5,4) = 75
20 MAT A = B + C

produces an error, since a reference to an array element, A(5,4) occurs
at a lower line number than the statement that dimensions the array
(statement 20). Alphanumeric arrays, referred to in MAT statements, are
also dimensioned tc 10 x 10 size, with each variable 16 characters long.

Several MAT statements can change the shape of an array during
execution. Here vwe must distinguish between the total size of an array
(the amount of space it occupies in memory), and the shape of an array.

For example, an 8 x 8 numeric array is square; it has 8 rows and 8 columns.
A 2 x 32 numeric array is not square; it has 2 rows and 32 columns.

Despite the fact that the shapes of these arrays are different, the memory
space required for them is the same, since each contains 64 numeric
variables.

Memory space for variables and arrays is allocated at only one time,

before execution begins, immediately after RUN (EXEC) is keyed.
Therefore, it is impossible to increase the total size of an array, once

26

M

=l

execution has begun. However, some MAT statements can change the shape

of an array. This is called "redimensioning" and occurs when the MAT statement
is executed. For example, the statement MAT REDIM has redimensioning as

its scle purpose.

10 DIM K2(20,20)

730 MAT REDIM K2(12,N)

In the program segment shown above the following occurs: After RUN
is keyed, prior to execution, the DIM statement at line 10 allocates space
for a 20 by 20 array, and calls it K2(). Later, sometime during program
execution, 730 is encountered. It changes the shape of array K2 so that it
novw has 12 rows and as many columns as the current value of the ordinary
scalar variable N (provided of course that 12*N is less. than or equal to
20%*20).

In the MAT REDIM statement a variable, or any expression,
can be used to give the new dimensions. This is not possible in the DIM
statement.

If the redimensioned array is alphanumeric, a length specification
may be added to the new dimensions. For example,

10 DIM AS$ (20,20)20

430 MAT REDIM A$(25,30)10

In line 430, the 10 outside the parentheses specifies 10 characters as the new
maximum length for each variable. VWNotice that line 430 also increases the
total number of variables, or elements, from 400 to 750. This is made possible
by the length decrease of each variable from 20 characters to 10, which

keeps the total array size less than the original array size. The

total number of characters in the redimensioned array is 7500 versus 8000

in the original. Redimensioning, however, does not actually reduce the

total amount of memory used, it merely changes the shape of the array, and

in this case, leaves 500 bytes of memory inaccessible. It would be possible,
however, after statement 430, above, to again redimension array A$ to any

size cr shape up to the maximum size to which it was originally dimensioned

in line 10. Thus,

760 MAT REDIM A$(10,20)u40

would be a legal addition to the program above. The total number of bytes
in the array it specifies is again 8000.

Five of the MAT statements permit explicit redimensioning in the same
manner as MAT REDIM, tut then perform specific operations on the redimensioned
array. In addition, six of the MAT statements may redimension an array
automatically, the new dimensions being implicit from the operation and the
dimensions of the arrays operated upon. For the detailed syntax of each
Matrix Statement, see the publication Matrix Statements (700-3332B).

Presented below is a program that solves systems of up to 20 linear
equations in 20 unknowns, provided such a solution exists.

»7

Before we lock at the program a brief discussion of the mathematics
emnplovyed is warranted. In general, a system of N linear equations in ¥
unknowns can be represented by

€11¥1* Cpp¥pteete X By

x=b

ChqiX,*+ C, X, +...%+C
2n'n 2

2171 "2272

+c¢c ,x,+...¥¢_x = b

cmlxl m2°2 mn ' n m

where: ¢ to Con 2T the coefficients

11
X1 to xn are the unknowns

b1 to bn are the absolute terms, or 'right hand sides"

This system can be written in matrix notation as
CX=B

vhere C is the matrix of coefficients, order n
X is the vector of unknowns
B is the vector of the right hand sides

The solution to this system can be written as

x:B

C

However, since direct matrix division is, in general, undefined, the solution
is always written

x=c‘l

B
where c"l represents the inverse of the matrix C, a defined matrix operation
on C.

With the BASIC Matrix Statements a solution can be obtained in two
steps. The matrix of coefficients, A, is inverted, then multiplied by
the vector of the right hand sides. The resulting vector X, of dimension
m, is the solution.

The program shown in Example 19.3 implements this solution at lines 280
and 290. The MAT INPUT and MAT PRINT statements are used to facilitate the
required Y/0 operations. For systems of order less than 20, MAT REDIM (line
180) redimensions arrays to the proper size. It should also be noted that the
matrix inversion, performed at line 280, is done in place; a second array to
receive the inversion of C is not required. This reduces the amount of memory
needed by the program.

Example 19.3 Solving a System of n Linear Equations in n Unknowns
110 REM SOLVING A SYSTEM OF N LINEAR EQUATIONS IN N UNKNOWNS

120 CIM C(20,20) :REM MATRIX OF COEFFICIENTS
130 DIM X (20) :REM VECTOR OF THE UNKNOWNS

»E

[

s’

140 DIM B (20) ¢REM VECTOR OF THE RIGHT HAND SIDES

150 ERINT HEX(03)

160 REM FEDIMENSION ARRAYS TO SIZE OF LINEAR SYSTEM

170 INPUT "NUMBER OF VARIABLES (<= 20)", K

180 MAT REDIM C(K,K), X(K), B(K)

190 REM ASSIGN COEFFICIENTS TO MATRIX C

200 PRINT HEX(OA) ;"ENTER MATRIX OF COEFFICIENTS."

210 PRINT "ENTER ELEMENTS ROW BY ROW, SEPARATING ELEMENTS WI
TH COMMAS.®

220 PRINT "KEY EXEC AFTER EACH ROW."

230 MAT INPUT C ,

240 REM ASSIGN RIGHT HAND SIDES TO VECTOR B

250 PRINT HEX(OA) ;"ENTER VALUES OF THE RIGHT HAND SIDES"
260 FAT INPUT B

270 REM SCIVE

280 MAT C = INV(C)

290 MAT X = C*B

300 REM OUTPUT SOLUTION VECTOR

310 PRINT HEX(OA) ;"SOLUTION VECTOR"

320 MAT PRINT X

The user of this program should be alerted to two kinds of possible
problems. The first problem is that of inaccuracy in the
result due to the accumulation cf round-off errors during execution of MAT
Inversion and MAT Multiplication. The other problem also involves the
untrustvworthyness of results, but is of a fundamentally different character.
Some matrices, called "ill-conditioned" matrices, can yield solutions which
vary enormously with only small changes in the values of the entered
coefficients. As a practical matter, then, small errors in the process of
determining the values of the coefficients can produce wildly inaccurate
results.

The problem cf round-off errors is most likely to be serious when values
along the main diagonal are not in the same range as other values in the
matrix, in particular when those in the main diagonal have large negative
exponents. Rows can be rearranged, and values close to zero zeroed to help
overcome this problem. If you suspect significant round-off errors in the
results of Example 19.3 the simplest test is to reinvert the matrix C,
in the inmmediate mode:

tMAT C = INV(C)
and follow this with MAT PRINT

:MAT PRINT C
The discrepancies between this result and the original matrix of coefficients
will be at least as great as any roundoff errors in the solution vector,

provided the matrix is not ill-conditioned.

To test for an ill-conditioned matrix, the normalized determinant of C
should be calculated. The normalized determinant of C is defined as

el

3 T

Norm ’C] =3

a,0

172

where: |C| = determinant of C

2
kn

2 2
a = /Ekl * oot tete

29

If this value, norn[CL is small relative to 1, then an ill-conditioned matrix
should be suspected. It should be noted that the determinant \C|is not a
reliable indicator of an ill-conditioned matrix.

Example 19.3 can be modified to calculate and display the normalized
determinant by changing line 280 to 50SUB 1000 and adding the subroutine shown
in Example 19.4.

Example 19.4 A Subroutine To Calculate The Normalized Determinant

999 END

1000 REM SUBROUTINE CALCULATES NORMALIZED DETERMINANT OF C()
1010 A=1

1020 FOR ¥ = 1 10 K

1030 Al = 0

1040 FOR X = 1 T0 K

1050 Al = C(Y,X)12 +Al

1060 NEXT X

1070 A = A % SOR(AL)

1080 NEXT Y

1090 MAT C = INV(C),Dl :REM INVERT AND GET DETERMINANT Dl
1100 REM NOFMALIZED DETERMINANT

1110 PRINT HEX(OA); "NORMALIZED DETERMINANT ="; D1/A

1120 RETUFN

The Matrix

7 8 9
8 ° 10
9 10 8

is ill-conditioned, yet its determinant is 3. 1Its normalized determinant is
8.29E-04. Try executing Example 19.3 with this matrix of coefficients, and
with the right hand sides close to the values:

24
27
27

You will notice large changes in the result with only small changes in the
values of the right hand sides.

230

s’

CHAPTER 20: AN INTRODUCTION TO DJISK DATA FILES

20-1 OVERVIEW OF CHAPTER 20

This chapter covers the fundamentals of the use of disk memory for data
storage and retrieval. Sections 20-2 through 20-7 provide an overview of the
basic catalog mode operations on data files: how to create a file, save data
in it, read data sequentially and randomly from it. Sections 20-8 through
20-11 discuss in more detail some elementary topics that are introduced in the
preceding sectioms. ‘

This chapter is not an exhaustive treatment of all the capabilities of
the catalog mode statements. After reading this chapter, the beginner is
urged to read the chapter of the Disk Memory Reference Manual which presents
the general forms of the Automatic File Cataloging Statements and Commands.
This provides an excellent review, and will introduce some auxiliary statement
capabilities not discussed here.

20-2 FILES AND THE DISK CATAICG

In Section #-2 we introduced the use of disks for program storage. Ve
said that the recording area of a disk is divided into a large number of
small chunks called sectors. Each of these sectors has an identifying number
called its address. Disk devices are known as direct access devices bhecause
the disk read/write mechanism can move directly to any sector on the disk,
when it is given the address of that sector.

We said that it would be possible to save and locad programs by manually
keeping an accurate list of the sectors occupied by each program, and then
supplying the proper beginning sector address to the disk when saving or
loading is desired. However, this is extremely inconvenient. Therefore, a
group of instructions have been built into your Wang 2200 system that create
and maintain, on the beginning sectors of a disk, a complete list of the names
and associated sector addresses of all the files on the disk. These
statements are known as the "Catalog Mode" statements. They include SCRATCH
DISK, which sets aside disk space for the catalog index and catalog area, SAVE
DC which saves a program and enters its names and sector addresses into the
catalog index, and LOAD DC which searches the catalog index for a specific
program name, then loads the program into memory from the sector addresses it
finds listed in the index. Catalog mode statements also include a group of
seven statements for establishing and operating on files of data. This
chapter is an introduction to programming with these statements. All of these
statements may be executed in the immediate mode.

In addition to the Catalog Mode statements, your Wang 2200 system
includes a gyoup of statements called the "Absolute Sector Addressing"
statements. In order to use these statements, the program must supply the
absolute disk sector addresses upon which operations are to take place.
Though these statements are essential for certain types of operations, the
Catalog Mode statements are easier to use and safer, in most cases.

A "file" is a collection of information about a topic. Generally,
within a file this collection consists of "records." For example, an employee
file might be a collection of the pay records for employees, one record per
employee. A test results file might be a collection of the records from each
repetition of a particular test, one record per repetition. When data files
such as these are maintained on a disk using the catalog mode statements, the

pryi

catalog index contains the starting and ending sector addresses of the file,
together with the file name. A single disk may contain many such files, or
perhaps only one. In any case, the catalog index contains the information
needed to find the file, and to prevent accidental destruction of an 0ld file
with an incoming new one.

Programs saved on a disk are called "files" because they are treated
as files by the catalog system, i.e., their names are entered in the catalog
index with starting ending sector addresses. The catalog index also contains
a notation indicating for each file whether it is a program file or a data
file.

The catalog index contains only the names of files and file boundary
addresses, not the sector addresses of the individual records within each
file. A variety of methods are employed to find individuval records within a
file; these methods are discussed in Section 20-9.

An overview of the Catalog mode statements and their functions is
given below:

STATEMENT FUONCTIOW
1. DATA SAVE DC OPEN Establishes a new data file on a disk,

and readies the processor for operatiomns
on the file.

2. DATA LOAD DC OPEN Readies the processor for operations on
a previously established data file.

3. a) DATA SAVE DC Takes values from memory, and saves them
as one "record" in a data file.

b) DATA SAVE DC END Saves a special record that marks the end
of live data in a file.

4. DATA LOAD DC Reads values from a record (or records),
and assigns the values to variables in
memory.

5. DSKIP These statements change the sector

6. DBACKSPACE address at which the next DATA SAVE DC

or DATA LOAD DC will occur. They permit
rapid nonsequential accessing of records.

7. DATA SAVE DC CLOSE Protects against accidental file damage,

by clearing information needed for
operations on the file.

20-3 ESTABLISHING ANL OPENING DATA FILES

The SAVE DC statement, introduced in Section 4-2, can be seen as
performing two distinct orerations. First, it writes the program name
into the catalog index, specifying the new file's starting and ending sector
addresses. Secondly, it saves the program into these sectors. For disk
data files, these two kinds of operations are performed by different
statements.

Establishing A New File

P A

-

The statement DATA SAVE DC OPEN is used to write a new file name into
the catalog index, and to set aside a specific number of unused sectors for
the file. The addresses of the file's starting and ending sectors are entered
into the index. The user need only indicate a name for the file and the
number of sectors needed. DATA SAVE DC OPEN automatically allocates the next
available sectors to the file. This statement also writes a sector of control
information in the last sector allocated to the file (it serves as a marker of
the end of the file space). , DATA SAVE DC OPEN does not save any data into
the file.

The statement
DATA SAVE DC OPEN F 200, "INVTORY"™

establishes a new file called INVTORY, and assigns to the file the next 200
sectors in the disk's catalog area. The name INVTORY, together with the
starting and ending sector addresses, is entered into the catalog index, and
one sector of control information is written into the last sector in the new
file.

In the DATA SAVE DC OPEN statement shown above, the F indicates that the
file is to be opened on the F disk, of the device selected for DISK class I/O
operations. The F disk is the fixed lower disk of 2230 series or 2260 type
drives, or the diskette mounted in the leftmost diskette port of 2270 type
drives. R could be used instead of F to specify the removable disk of
2230/2260 drives, or the right port of the 2270-2 drive (the middle port
2270-3). ‘

(During Master Initializaticn, address 310 is automatically selected
for DISK class I/0 operations. The DISK class address may be changed by
executing a statement such as

SELECT DISK 320
A system of file numbers is available to add greater flexibility to the
addressing procedures of disk operations. This system is discussed in Sectionmns
20-10 and 20-11. Until then, we shall rely upon the SELECT DISK statement to
provide the device address of the disk unit, and the F and R parameters to
specify the disk.)

Just as with program files, the name of a data file can contain up

to eight characters. It may be expressed as a character string in quotes or
as an alphanumeric variatle. Therefore,

100 DATA SAVE DC OPEN F 200, "INVTORY"™
is functionally equivalent to

100 A$ = "INVTORY"
110 DATA SAVE DC OPEN F 200, AS

In all Catalog Mode statements that require a . file name, the name can
be specified by means of alphanumeric variable.

Before the DATA SAVE DC CPEN statement is executed the programmer must
give some thought to how much space is needed in the file. Generally the
series of questions to be asked is as follows:

1. What information will be stored in each record?

a3

2. How much disk space, in sectors, will one record of information
occupy? For example, is one sector per record required, or three
sectors per record, etcetera.

3. How many records are now waiting to be stored in the file?

4. How many additional reccrds will be generated in the lifetinme
of the file? Can these new records replace o0ld records deleted
from the file?

These questions are discussed in detail in Section 20-9. For now, though, we
should note that in the DATA SAVE DC OPEN statement the exact number of
sectors desired for the file must be specified. If the number of sectors
proves to be too small, it is not possible to simply expand the file.
Generally, a new, larger file must be created, and all the data in the o0ld
file transferred to the new.

#e have seen that DATA SAVE DC OPEN establishes a new disk file by
putting its name, and its starting and ending sector address into the Catalog
index. However, it does something else as well. It readies the processor for
Catalog Mode operaticns on the new file.

In order to operate on a file in Catalog mode, the processor must have
three sector addresses in a special part of its memory called the Device
Table. These sector addresses are the starting sector address of the file,
the ending sector address of the file, and a special third address called
the Current Sector address. When the processor has these addresses for a
file in its Device Tatle, the file is said to be "open," because data can
then be saved in, or loaded from the file.

DATA SAVE DC OPEN establishes a new file and "opens" it. That is,
it puts the name and file boundaries into the catalog index, and puts the
starting, ending and Current Sector addresses into the Device Table (in
the processor.) The starting and ending addresses in the Device Table are
the same as those in the Catalog index. They are put into the Device Table
for quick reference by the processor, and represent the fixed boundaries
of the file. The Current Sector address is set to the starting sector
address, by DATA SAVE DC OPEN.

Unlike the starting and ending sector addresses, which are fixed, the
Current Sector address is continuously updated by Catalog Mode operationmns.
As we shall see in the next section, this Current Sector address is the
address supplied to the disk drive when data is saved or loaded.

For now, we can consider the Device Table as follows:
Starting Ending Current Sector "
Address Address Address '
0 0 0

After DATA SAVE DC OPEN F 200, "INVTORY" the Device Table might look like

this:
Starting Ending Current Sector
Address Address Address
28 228 28

224

Re-Opening A File-

The DATA SAVE DC OPEN statement is executed only when a new file is being
established for the first time. Thereafter, the file's name and sector
boundaries are permanently stored in the catalog index. They need only be
read from the disk into the Device table in order to "open" the file. The
statement that must be used to open an already existent file is DATA LOAD
DC OPEN. For exanmgle,

DATA LOAD IC OPEN F "INVTORY"

searches the catalog index of the F disk for a data file named "INVTORY",
When it finds the entry it saves the associated file boundaries into the
Device Table and makes the Device Table's Current Sector address equal to
the starting sector address of the file.

DATA SAVE DC OPEN and DATA IOAD DC OPEN are often confusing to the
beginner because they are not good descriptions of the operations they
perform. The following summary is therefore provided:

DATA SAVE DC OPEN 1. Establishes a new data file of specified
sector length by entering its name and sector
boundaries into the catalog index.

2. Opens the new file for Catalog Mode operations
by putting its addresses into the Device
Table, and setting the Device Table's Current
Sector address equal to the starting address
of the file.

DATA LOAD DC OPEN 2. (OWLY) Opens a file by getting its sector
addresses from the catalog index and putting
them into the Device Table. Sets the Current
Sector address equal to the starting sector
address of the file.

Once a file is open, data can be saved in it or read from it, regardless
of whether it was opened for the first time with DATA SAVE DC OPEN or later
opened with DATA LOAD DC GPEN.

20-4 SAVING DATA IN A FIIE

Once a new file has been established and opened with DATA SAVE DC OPEN
the next step is to save data in it. The statement is used to save data in a
cataloged file. For example, the statement

DATA SAVE rC ¥§%, D3, S%, Q, R

causes the disk drive to save the current values of the variables N$, D3, SS§,
0, and R. The Current Sector address is supplied to the disk drive as the
address at which it is to begin saving the data. After the data has been
saved, the Current Sector address in the Device Table is updated so that it
contains the address of the sector following the last one in which data was
saved. Saving values specified by a DATA SAVE DC statement may require just
one sector, or many sectors. However, even if the final sector is not
completely filled, the Current Sector address is updated so that it has the

225

address of the next sector following the partially filled one.

In addition to saving the specified values the DATA SAVE DC statement
surrounds the saved values with certain control information. This control
information marks off the values, collectively, as a "record." Thus, the
stored result of a DATA SAVE DC statement is, by definition, a record, and it
is the task of the program to specify all the values needed for a single
record, prior to executing the DATA SAVE DC statement. For example, suppose
that the above DATA SAVE DC statement saves an inventcry record for one
product. Prior to executing this statement, N$ might receive the product
number, D$ the product description, S$ the supplier code, Q the on-hand
quantity, and R the reorder level. These values are the complete record for
one product in this simple inventory file. A very simple program that creates
a new inventory file, and allcuws records to be saved into the new file is
shown in Examfple 20.1.

Example 20.1 Creating A Wew File and Saving Records Into It
110 REM A SIMPLISTIC PROGRAM FOR CREATING A NEW FILE
112 REM AND SAVING RECORDS INTO IT
120 DIY N$10, D$u0O, S36
130 REM ESTABLISH FILE AND OPEN IT.
140 DATA SAVE DC OPEN F 200, "INVTORY"
150 REM ENTER DATA FOR CNE INVENTORY RECORD
160 INPUT "PRODUCT NUMBERY", N$
170 INEUT "EFRODUCT DESCRIPTION", D3
180 INPUT "SUPPLIER CODE", S$%
190 INPUT "ON HAND CUANTITY", O
200 INPUT "INDICATED REORDER LEVEL", R
210 REM SAVE RECORD CN DISK)
220 CATA SAVE DC w$, D§, S$, 0, R
230 REM MORE RECORDS?
240 INPUT "MORE PRODUCTS (Y OR N)", RS
250 IF RS = "y" THEN 160
Line 140 establishes a new file called "INVTORY", with 200 sectors

allocated to it, and opens the file. 1Lines 160 to 180 enter values into each
of the variables used to define the record. Line 220 writes the record into
the file, at the Current Sector address. Each time through the loop

a record is saved, and the Current Sector address is updated to the next
available sector. Since DATA SAVE DC OPEN sets the Current Sector address

to the first sector in the file, this program saves the first product record

starting at the first sector of the file.
into the next available sector.

sectors on the disk in the sanme

This program will execute

_ Each subsequent record is saved
Thus, the records are saved into sequential
order that they are entered.

successfully; however, it does not display

good programming practices for disk data files, for reasons that are

discussed below.

with the same disk, since on a second attempt,
to open a second new file with the name "INVTORY", an illegal operation.

reopen the file created by this
must be used.

Values to be saved by the

It also should be noted that it cannot be executed twice

DATA SAVE DC OPEN would try
To
program, the DATA LOAD DC OPEN statement

DATA SAVE DC statement can be specified by

giving the name of thte alphanureric or numeric variable that contains the

value, as shown in line 220 of Example 20.1.

If an entire array of values is

to be saved, the standard form array name, such as A() or K2%$(), may be used

in the DATASAVE DC statement.

Finally, a value may be specified by means of a
literal string, or an expression.

In the latter case, the expression is

226

evaluated, and the result is s=aved.

Within a record, values are saved in the sequence in which they are
specified in the DATA SAVE DC statement. Arrays are saved row by row. Each
value is preceded in the record by a one byte Start of Value code, which
separates the value from the preceding value, and marks it as numeric or
alphanumeric. Only the value is saved in the record, not the name of the
variable, or the quctation marks around a literal string.

20-5 MARKING THE END OF DATA IN A FILE AND CLOSING THE FILE

Usually, when a new file is created, it is given extra sectors to
allow for gradual growth in the number of records. Therefore, most files,
at any given time, will contain some unused sectors, tetween the last record
saved and the end of the file space. 1In many programming operations
it is useful to have this end of the live data clearly marked. For example,
this permits the end of the live data to be found very quickly when a new
record needs to be added. It is useful in other operations as well.

The statement TATASAVE DC END is used to write a special one-sector
trailer record, that marks the end of live data in a file. DATA SAVE DC END
puts the special trailer record into the sector specified as the Current
Sector address.

In the program of Example 20.1 the Current Sector address is always
set to the first empty sector at the end of the live data; therefore, the
DATA SAVE DC END statement can simply be appended to the program as follows:

Example 20.2 Adding a DATA SAVE DC END To Example 20.1

110 REM MARKING THE END OF DATA

120 DIM N$10, D$40, S$6
130 REM ESTABLISH FILE AND OPEN IT.

140 CATA SAVE DC OPEN F 200, "INVTORY"
150 REM ENTER DATA FOR ONE INVENTORY RECORD
160 INEUT "ERODUCT NUMBER", N§ ‘

170 INPUT "PRODUCT DESCRIPTION", D$

180 INPUT "SUPPLIER CODE", S$

190 INPUT "ON HAND CUANTITY", Q

200 INPUT "INDICATED REORDER LEVEL", R
210 REM SAVE RECORD CN DISK

220 CATA SAVE DC ¥§$, D$, S$, Q, R

230 REM MCRE RECORDS?

240 INPUT "MORE PRODUCTS (Y OR N)", R$
250 IF RS = "Y" THEN 160

260 REM MARK END OF DATA

270 CATA SAVE DC END

Marking the end of live data with a DATA SAVE DC END statement is not
required for the use of disk catalog operations; however, it is so often
useful to have the end of the data wmarked, that it is a part of all
good programming.

Closing a File

EFarlier we said that a file is "open" when starting, ending, and Current

Sector addresses are present in the Device Table. An open file can be
operated on with the Catalog Mode statements. A particular open file can be
"closed" by opening another file. This replaces the old file's sector

227

addresses with those of the newly opened file. (In Section 20-10 we will see
a means by which several files can be open simultaneously.) A file can also be
closed by executing CLEAR, or Master Initializing, which puts zeros into the
sector addresses in the Device Table. Since a closed file cannot be operated
upon with DATA SAVE DC, closing a file protects it from accidental
destruction, by ancther program, or by an immediate mode operation. Por this
reason, the statement

DATA SAVE DC CILOSE

is available to close a file. Tt simply replaces the sector addresses in the
device table with zeros. It does nothing to the disk file itself, or to the
disk Catalog Index. Files closed with DATA SAVE DC CLOSE may, of course, be
reopened with DATA LOAD DC OPEN just as they could be if they had been closed
by any of the other means discussed above. Mere termination of a program does
not close a file. For this reason DATA SAVE DC CLOSE should be used.
Therefore, this statement should be added to Example 20.2.

280 DATA SAVE DC CLOSE

20-6 LOADING LATA FROM A FILE

Once a data file has been set up, and records saved in it, the records
can be read. In order to read a record in the Catalog Mode, the file must
be "open." That is, a starting, ending, and Current Sector address must be
entered into the Device Table. Except when first established, a data file
is alvways opened with DATA 10AD DC OPEN. This gets the starting and ending
addresses of the file, puts them in the Device Table, and sets the Current
Sector address equal to the starting sector address of the file.

The DATA LOAD DC statement is used to load data from a file in Catalog
Mode. For example, the statement

DATA LOAD DC W§, DS, S$, Q, R

causes the disk drive to begin reading, starting at the sector specified as
the Current Sector Address. The values that are read are assigned
successively to the variables specified in the DATA LOAD DC statement. After
values have been assigned to each of the specified variables, the Current
Sector address, in the Device Table, is updated to the address of the first
sector of the next record.

Assignment of values is according to the conventional procedure. For
example, if an alphanumeric variakle is too short to contain an entire
alphanumeric value, the assignment is made with the extra characters on
the right truncated. It is especially important to note that an error
results if a numeric value, encountered in the record, is matched with an
alphanumeric variable, in the DATA LOAD DC statement, or vice versa. For
this and other reasons it is important that precise documentation be
maintained of data file record layouts.

Values may be lcaded into an entire array by specifying the standard
array designator in the DATA LOAD DC statement. For example, in the statement

400 CATA LOAD DC A$(), X()
values from the data file are assigned row by row to the array A%$(), until

each variable in the array has been assigned a value, then the next values
are assigned in the same way to X ().

78

It is not necessary that the same variables be used to receive data
in the DATA LOAD DC statement as were used originally to save the data. The
only requirement is that numeric values be loaded into numeric variables,
and alphanumeric values into alphanumeric variables.

It is good programming practice to read exactly one record with a
DATA LOAD DC statement, though this is not required. For example, the
DATA SAVE DC statement of Example 20.1 creates a record with three alphanumeric
values followed by two numeric omnes. Since the statement:

DATA LOAD DC N$, DS, S$, Q, R

shown above specifies three alphanumeric variables followed by two numeric
ones, it loads exactly one record, as created by the DATA SAVE DC statement of
Example 20.1.

If fewer variables are specified in the DATA LOAD DC statement than
there are values in the record, the extra values are ignored. If more
variables are specified than there are values in the record, successive
values from the next record(s) will be assigned to the variables. It nmust
be emphasized, though, that after a DATA LOAD DC statement, the Current
Sector address is set to the beginning of the next record, even if only
some of the values from the previcus record have been assigned to variables.
In Catalog Mode it is impossible to begin reading values in the middle of a
record.

A simple program that reads and prints the inventory data file
created by Example 20.1 is shown in Example 20.3.

Example 20.3 Printing The Inventory File of Example 20.3

110 REM A SIMPLISTIC PROGRAM FOR PRINTING THE INVENTORY FILE

120 CIM N$10, D$40, S$6

130 SELECT PRINT 215 (100)

140 REM OPEN FILE

150 DATA LOAD DC OPEN F "INVTORY"

160 REM LOOE TO READ AND PRINT EACH RECORD

170 CATA LOAD DC N$, D$, S$, O, R

180 PRINTUSING 200, N$, DS, S$, 0, R

190 GOTO 170

200 T ARRRRERARS BEESRRRRRRRRRRER R RAR RN R RRN RN RN RS
P ITITT Ty B4, 048

Notice at line 120 of Example 20.3 that the alphanumeric variables are
dimensioned to the same size as those which were used to save the recori.
Variables N$ and S% could be allowed to be dimensioned to the default length
of 16 characters; however, if D3 were not dimensioned to at least 40
characters, part of the second value in the record might be lost, since it
can contain 40 characters.

Statements 170 to 190 form a loop. Each time through the loop a record
is read, the Current Sector address is automatically updated, and then the
record is printed. However, this loop has no exit, so, eventually, either the
end of live data will be reached, or the control sector at the very end of the
file space will be reached, or both. When either happens, an error is
signalled as the DATA LOAD DC statement attempts to load nonexistent data.
Remember, the file which this program reads was created by Example 20.1, so no
end-of-data trailer record is present.

279

Testing For End-of-Data

Now we can see a value in using the end-of-data trailer record. If the
current Sector address is the address of an end-of-data trailer record in the
file, and a DATA LOAD DC statement is executed, several things happen. PFirst
of all, the values of the variables in the DATA LOAD DC statement are left
unchanged. The Current Sector address is not updated, and a notation is made
in a special part of memory that a DATA LOAD DC statement has read an end of
data trailer record.

A special BASIC statement is available to test if an end-of-data
trailer has been read. The form of this statement is

IF END THEN line number

The IF END THEN statement checks the special part of memory to see if an
end-of-data trailer has been read during the last DATA LOAD DC statement.

If it has been read, IF END THEN effects a branch to the line number following
"THEN". Thus, the IF END "THEN" statement can be used to exit from a record
reading loop, when the end-of-data is reached (provided that the end-of-data
is marked with the special end-of-data trailer record.) IF END THEN may not
be used in the immediate mode. '

Example 20.4 shows a modification of Example 20.3. It uses IF END
THEN to exit from the loop. It will read and print a file created by Example
20. 2.

Example 20.4 Printing The File Created bty Example 20.2

110 REM A BETTER PROGRAM FOR PRINTING THE INVENTORY FILE

120 DIM N$10, D$u40, S36

130 SELECT PRINT 215 (100)

140 REM CPEN FILE

150 DATA LOAD DC OPEN F "INVTORY"

160 REM 1OOP TO READ AND PRINT EACH RECORD
170 DATA LOAD DC N$, D$, s$, 0O, R

175 IF END THEN 210

180 PRINTUSING 200, N$, DS, S$, Q, R
190 GOTO 170

200 T OBRRRERRERS BHARHARERLARRAIRSHAABLBRERUR L HRERRRAES
EETETY A8, 248 4, 404

210 LATA SAVE DC CLOSE

The IF END THEN statement, added at line 175, effects a
branch out of the loop when DATA LOAD DC reads an end-of-data trailer record.
Thus, this program does not terminate in an error message, and vere it
necessary, processing could continue uninterrupted.

It should be noted that only the special end-of-data trailer record
created by DATA SAVE DC END has the effect described above. An error,
results if a DATA IOAD DC statement is executed when the Current Sector
address contains the address of the control sector at the end of the file.

20-7 NON-SEQOUENTIAL ACCESS WITH DSKIP AND DBACKSPACE

We have seen that whenever a DATA SAVE DC statement is executed, the
Current Sector address is updated to the sector following the last one in
which data was saved. When a DATA LOAD DC statement is executed, the Current
Sector address is updated to the sector address of the next record. Thus, at

230

the most fundamental level, the Catalog Mode write and read statements are
designed for accessing records sequentially. Many applications require that
records be accessed sequentially, and, therefore, having this type of
accessing built into the Catalog Mode statements can be extremely convenient.
This is particularly true if the records can be kept in a particular sequence,
either by sorting the records, or adding records that logically come at the
end.

Fcr example, suppose that in our inventory example the product number
is assigned to nev products by the user of the system. The product
number is a composite. The first character in the product number is a
letter of the alphabet that indicates the warehouse in which the product is
stored. The remaining characters in the product number provide a consecutive
numbering of the products. Thus the product numbers for the first five
products might be B1, A2, B3, F4, M5, If there are now 217 such products
in the inventory file and a new product, stored in warehouse A must be added,
it would be assigned product number A218 and placed at the end of the file.

In such a situation, the file may be initially created sequentially,
as shown in Example 20.2 and also may be printed sequentially as shown in
Example 20.4. But, what happens when a new record must be added to the end
of the file, or the on-hand quantity reduced for product number B185. One
way to find the end cf the file wculd be:

200 DATA LOAD DC N$, DS, S$%, O, R
210 IF END THEN 230
220 GOTC 200

230 REM FOUND END OF FILE

This reads each record until the end-of-data trailer is read. A similar
approach to updating product B18S5 is:

200 CATA LCAD DC OPEN F "INVTORY"
210 FOR K=1 TO 184

220 DATA LOAD DC NS, DS, S$, O, R
230 NEXT K

240 REM NOW READY TO UPDATE B185

However, both of these solutions fail to make use of the disk's feature of
offering direct access to any sector. These solutions merely represent
roundabout ways of getting the Current sector address equal to the address
of the end-of-data trailer (first problem), or equal to the sector address
of product 185 (seccnd problem). Once the Current Sector address in the
Device table is correct, the disk device is used to directly save new data
at the proper location. If the Current Sector address could be changed in a
more direct fashicn, the time consuming sequential loading of the above
examples could be eliminated.

Wang BASIC offers two statements whose purpose is to change the Current

Sector address. These two statements are DSKIP and DBACKSPACE. Each of these
statements can be seen as having three forms summarized in Table 20.1.

Table 20.1 Forms of the DSKIP and DBACKSPACE Statements

Forms of the DSKIP Statement Operation
DSKIP expression S Evaluates the expression and adds the

truncated result to the Current Sector

»/

address. Thus, if the value of the
expression is n, n sectors are "skipped"
over.

DSKIP‘END Sets the Current Sector address equal
to the address of the end-of-data
trailer record.

DSKIP expression Evaluates the expression and skips
over a number of records equal to the
truncated value of the result.

Forms of the DEACKSPACE Statement Operation
DBACKSPACE expression S Evaluates the expression and subtracts

the truncated result from the Current
Sector address. Thus, if the value
of the expression is n, n sectors are
"backspaced" over.

DBACKSPACE BEG Sets the Current Sector address equal
to the starting sector address of the
file.

DBACKSPACE expression Evaluates the expression and backspaces

over a number of records equal to the
truncated value of the expression.

The statement DSKIP END is used to set the Current Sector address to
the address of the end-of-data trailer record. Of course, the trailer must
be present for DSKIP END to execute correctly. Execution of DSKIP END is
much faster than the technique of reading each record shown above.

The DSKIP...S and DBACKSPACE...S statements simply add and subtract,
respectively, from the Current Sector address, the truncated (integer) value
of the expression. The value of the expression must be positive. If the
resultant Current Sector address would be less than the first sector of the
file, the address ¢f the first sector of the file becomes the Current Sector
address. Similarly, if the resultant Current Sector address would be
above the end of the file space, the end of file address becomes the
Current Sector address. Thus, it is impossible to accidentally set the
Current Sector address to a sector outside of the file. However, it is
possible to accidentally set it above the address of the end-of-data trailer
record. The programmer must be careful to avoid this.

DSKIP...S and DBACKSPACE...S are the fastest ways of changing the
Current Sector address, since they require no action by the disk drive
itself. Their use, however, presupposes that the length of each file record,
in sectors, is known. PFor example, if the length of each record is known to
be. 2 sectors, and the program should skip forward "“over" 20 records, then
DSKIP 40 S could be used. MNost often, record length is known and, therefore,
DSKIP...S and DBACKSPACE...S should be used. (Record length is discussed
in detail in Section 20-8.)

In some technical applications in which a few large arrays may
constitute an entire file, record length may not be known, or may be highly
irregular. In these circumstances DSKIP... and DBACKSPACE... may be the
easiest way to skip or backspace over a specific number of records. These

242

instructions require the disk to read all intervening records, though, and
are, therefore, much slower than DSKIP...S and DBACKSPACE...S.

Example 20.5 shows a program for adding new product records of the type
discussed above to the end of the inventory file. Each inventory record
in this system occupies one sector.

Example 20.5 Adding Records to the End of the Inventory File

110 REM ADDING RECORDS TO THE END OF THE INVENTORY FILE

120 DIM N$10, N2$10, D$40, S$6

130 REM CPEN FILE

140 DATA LOAD DC OPEN F "INVTORY"

150 REM

160 REM READ LAST PRODUCT RECORD

170 CSKIP END

180 CEACKSEACE 1 S

190 DATA LOAD DC N§$, D$, S§, Q, R

200 CCNVERT STR(N$,2) TO N

210 REM GET NEW PRODUCT NUMBER AND CHECK.

220 PRINT HEX(03); "TO END PROGRAM KEY S.P. 31 AT ANY TIME®
230 INPUT "NEW PRODUCT NUMBER", N2$

240 IF NUM (STR(N2S,2))<> 9 THEN 400 :REM NON-NUMERIC?
250 CCNVERT STR (N2%,2) TO N2

260 IF N+1 €» N2 THEN 400 :REM OUT OF FILE SEQUENCE?
270 REM PRODUCT NUMBER OK. ENTER RECORD VALUES.
280 INFUT "PRODUCT CESCRIPTION", D$

290 INPUT "SUPPLIER CODE", S$

300 INPOT "ON HAND CUANTITY", O

310 INPUT "REORDER LEVEL", R

320 REM SAVE NEW RECORD AND GO BACK FOR NEXT
330 CATA SAVE DC N¥2$, D$, S$, O, R

340 N = N2

360 FRINT

370 GCTO 220

380 REM

390 REM EAD PRODUCT NUMEER ENTERED

400 PRINT “INVALID PRODUCT NUMBER"

4.10 PRINT

420 GOTO 230

430 REM END PROGRAM ROUTINE

440 DEFFN' 31

450 DATA SAVE DC END :REM MARK END OFDATA
460 CATA SAVE DC CLOSE

Line 170 changes the Current Sector address to the address of the end-
of-data trailer. Line 180 then backspaces one sector so that the last record
in the file can be read. The last record is read so that when the new product
number is entered it can be tested to see that is actually the next
consecutive number. This protects the inteqrity of the file organization.
Before this test can be made, the consecutive portion of the product number,
STR(N%,2) must be converted to numeric form (line 200).

At line 230 the new product number is entered into N2$. Line 240 checks
that the number portion of this can be converted to numeric. Without this
test, on accidental entry of "BB125", for example, would cause an error at
line 250, since B125 cannot be converted to numeric form. Assuming the form
is acceptable, 240 makes the conversion, and 260 tests to see if the product
number is the next consecutive product number. If the entered product number
fails the validity tests at lines 240 or 260, a branch to an "invalid" message

323

occurs, and the number must be reentered.

Lines 280 through 330 allow the remaining record values to be entered,
and save the new record. The new record is saved over the end-of-data record,
which is thereby eliminated.

Line 340 sets ¥ equal to the converted consecutive portion of the new
product number. If another record is to be added, the test for consecutive
product numbers can be performed without reading the last record.

Line 370 branches back tc the product number entry routine, making this
program into a closed loop. The program can be ended, any time the ? is
displayed, by keying Special Punction key 31. This causes a branch to the end
program routine, which writes the end-of-data trailer, and ends the progranm.
The end-of-data trailer must be written before the program is ended, since
operations on this file depend on its presence. Providing the loop exit in
this fashion gives the operator an emergency termination procedure, as well as
a routine one, both of which preserve the file's integrity.

Example 20.6 shows a program designed to allow updating of the quantity-
on-hand value in any selected record.

Example 20.6 A Program to Update Product Records

110 REM UPDATING A PRODUCT RECORD

120 DIM N$10, D$LO, S$6

130 REM OFEN FILE

140 DATA LOAD DC OPEN F WINVTORY"

150 REM GET HIGHEST EROTUCT NUMBER

160 CLSKIP END

170 CEACKSPACE 1 S

180 DATA LOAD DC ¥$, D$, S$, O, R

190 CCNVERT STR(N$,2) TO M :REM M 1S MAX PRODUCT NUMBER
200 REM GET PRODUCT NUMEER OF RECORD TO EE UPDATED
210 PRINT HEX(03) :REM CLEAR CRT

220 INPUT "NUMBER OF PRODUCT TO BE UPDATED", N$
230 IF NUM(STR(N$,2)) €7 9 THEN 460 :REM INVALID?
240 CCNVERT STR (N%,2) TO N

250 IF N > M THEN 460 : REM TOO HIGH?

260 REM PROLUCT NUMBER OK. FIND PRODUCT RECORD.

270 DEACKSPACE EBEG

280 DSKIP N-1 S

290 REM LOAD AND PRINT PRODUCT RECORD

300 CATA LOAD DC X%, D$, S$, O, R

310 PRINT

320 PRINT D$

330 PRINT "QUANTITY ON HAND ="; ©

340 PRINT

350 DEACKSPACE 1 S

360 REM ENTER TRANSACTION AND UPDATE RECORD

370 INEUT "ENTER AMOUNT RECEIVED (+) OR SOLD (-)", T
380 DATA SAVE DC N$, D$, S$, 0+T, R

390 REM MORE RECORDS TO UPDATE?

400 R$ = " " :REM NO DEFAULT ENTRY

410 INPUT "MORE RECORDS TO UPDATE (Y/N)", RS
420 IF R$ = "Y" THEN 210

430 IF R$<> "N" THEN 410 :REM OPERATOR ERROR?
440 DATA SAVE DC CLOSE

450 END

460 REM ERRCR ROUTINE

23¢

R—

470 ‘PRINT "INVALID. REENTER"®
480 PRINT
490 GOTO 220

Lines 160-190 load the last record in the file, and convert the number
portion of its product number to a numeric value. This value is saved in M
(line 190) so that when product numbers are entered they may be checked
that they are not greater than the highest product number.

Lines 210 to 250 allow the product number to be entered, convert its
number portion to numeric, and test that it is within the file.

Line 270 sets the Current Sector address equal to the beginning
sector address of the file. This permits DSKIP (line 280) to set the Current
Sector address equal to the address of the desired record. After line 270,
the Current Sector address points to the first record in the file. If the
first record is the record sought, then no skip is needed. For each product,
the number of sectors to be skipped to locate it is one less than
the product number; therefore, N-1 sectors are skipped at line 280. After
line 280, the Current Sector address is set to the address of the desired
record.

Since DATA SAVE DC always saves an entire record, in order to update one
value in the record the program must first read the whole record, update the
proper value, and write the entire record. Lines 300 to 350 read the record,
print the product description and quantity on hand, and backspace one sector
so that the updated record will be recorded in the same sector from which it
was read.

At line 370 the transaction is entered. The new value of the on-hand-
quantity appears as an expression in the DATA SAVE DC statement (line 380).
The DATA SAVE IC statement evaluates the expression, and writes the result
into the record.

20-8 DATA RECORDS AND PIANNING OF DATA FILES

The DATA SAVE DC OPEN statement requires that a file size in sectors
be specified. Thus, before a new file can be established some planning must
be done to determine the size cf each record to be saved in the file,
and the maximum number of such records which may be saved in the file at
any one time, during the expected lifetime of the file. It is not possible
to simply expand a file which proves to be too short. In general, a new,
larger file must be opened on the same disk or another disk, and the
contents of the old file copied to the new.

When planning records and file space, careful attention must be paid not
only to the space occupied by actual data values, but also to the space used
by the various kinds of control information that the Catalog Mode statements
automatically supply. PFor example, the last sector of every data file is
occupied by a special control sector, which contains certain information about
the file in addition to that maintained in the Catalog Index. Also, all data
files should have an end-of-data trailer record. This also, occupies one
sector. Thus, when estimating file size, two sectors should always be, added
to the total required for the actual data records.

Each sector on a disk has a physical storage capacity of 256 bytes.
(Remember that a byte is the amount of space required to contain a single
alphanumeric character. We could as well say that a sector has a physical
storage capacity of 256 characters, though the term "byte" is customarily used

235

when referring to capacity.) Hcwever, control information is automatically
written into each sector by the DATA SAVE DC statement. This control
informa tion reduces the amount of space available for data. Control
information is of two types:

1. Sector control tLbytes.
2. Start of value (SOV) control bytes.

The DATA SAVE DC statement automatically writes three sector control
bytes into each sector of a record. Two of these bytes occupy the first two
byte locations in each sector. These are used to indicate whether the sector
is the first, last, or a middle sector in the record. They serve to separate
one record from the next. The third control byte follows the last byte of
the last data~-value in the sector, and marks the end of valid data within
that sector. Thus, after subtracting the three sector control bytes a total
of 253 bytes are available for data and start-of-value (SOV) bytes.

In addition to the sectcr control bytes, a single start-of-value (SOV)
byte precedes each value saved in a record. This byte indicates to the systen
whether the value is numeric or alphanumeric, and its length in bytes.
Consider, for example, the inventory record of in the preceding sections. The
storage space for the record is defined by:

120 DIM N$10, D3uUO, S3$6

220 DATA SAVE DC ¥§$, D%, S$, Q, R

and the record looks like this in a sector:

TOTAL USED = 80 BYTES TOTAL UNUSED = 176 BYTES
A A
Ve — -~
SOV for SOV for SOV for SOV for SOV for
valuo of NS value of D$ value of S$ value of Q value of R
10 bytes 40 bytes 6 bytes 8 bytes 8 bytes
-~ A N g ath ~ y — v —N | ——
I "'1//// / F & \\f‘
:., Value Value Value h N N
Value ot N$ Valus of D$ of 85 ot a iR §§§§§§Q§§§t\§§§ \\Q§§§:§>_
! B
L /] / ‘\
N~
2 sector
c:mr:l) 1 sector control
via byte. End of

valid data.

Disk storage space requirements can be summarized as follows:

l. There are 253 bytes available for storage in each sector, after
allowing for the sector control bytes.

2. Each numeric value requires 9 bytes, 8 bytes for the value plus

236

1 byte for the SOV. (Numeric values may be specified in the
DATA SAVE DC statement by numeric variables, expressions, or
numeric array elements.)

3. Each alphanumeric value requires a number of bytes equal to the
dimensioned size of the specifying alphanumeric variable or array
element, plus one byte for the SOV; or, the number of characters in
the specifying literal string plus one byte for the SOV. VNote
that in the case of an alphanumeric variable or array element,
it is the dimensioned size, including all trailing spaces, which
must be counted.

4. If a value does not completely fit into the space remaining in a
sector, it is automatically written in the next sector. Values do
not overlap from one sector to the next, though a single record
may require many sectors.

When entire arrays are saved in a record by using the array designator
the values are saved row ty row into the record. For example, in the record
saved by

10 DIM K (3,3)

50 CATA SAVE DC K{()

the values are saved from the variables in this order: K(1,1), K(1,2),
K(1,3), K(2,1), K(2,2), K(2,3), K(3,1), K(3,2), K(3,3). The value of an
individual array element can always be specified in a DATA SAVE DC, if the
entire array is not to be saved. Within the record there is no indication of
whether a value was saved from an array, or any other source, and, therefore,
values may be loaded intc array or scalar variables regardless of their
origin.

When planning a disk file it is wise to design files so that disk space
is not wasted. ¥For the beginning programmer this means designing records
so that the total unused space at the end of each sector is held to a
minimum. There are several techniques for doing this.

When a record extends over several sectors, there can be more efficient
and less efficient ways of saving the record, decrending only upon the order
in which the values are specified in the DATA SAVE DC statement. For example,

10 DIM A$(5)50, BS(3)64, CSu8

100 DATA SAVE DC A$(), B${(), C$

This record requires 3 sectors which, after subtracting the 3 sector control
bytes and consolidating the SOV bytes into the values, look like this:

51 51 51 51 49 51 65 65 7 49 204
{unused) {unused) (unused)
N ” | — \ »a
v Vv e
253 hytes 253 bytes 253 hytes

A

1 RECORD 937

A total of 49+7+204 or 260 bytes are unused in the three sectors occupied .
by this record. However, merely rearranging the order of specification of

the values in the DATA SAVE DC statement can result in a savings of one entire
sector as follows:

100 DATA SAVE DC C$, A$(), B$()

c$ AS(1) AS$(2) AS(3) | As(4) AS(5) B$(1) BS(2) 85(3)

W—’_V—J\—_d\'—‘—-/"—‘ D Y et ¥ e S N —

49 51 61 51 51 51 €5 65 65 7
(unused)
N v v N ~ s/
253 bytes 253 bytes
N\, 7
2'g
1 RECORD

A different approach is required when a record is so short that it uses
only one sector, and leaves most of the sector empty. An example of this is -
the inventory record discussed in the previous sections. It uses only 80
bytes out of 256, leaving 176 bytes wasted. Beginning programmers are often
tempted to ignore this waste of disk space, especially when available space
exceeds present needs. This temptation should be overcome. Files tend to
grow more rapidly than may be anticipated, and operations on more compact
files are generally faster.

The programming technique used to reduce this waste is known as
"blocking" records. In the inventory file discussed in the preceding sections,
one disk record, that is, the result a single DATA SAVE DC statement, contains
one data record, the data on a single product. DATA SAVE DC always
creates one disk record and always uses at least one sector. It is,
therefore, impossible to put more than one disk record into a single sector.
Hovwever, it is rossible to let one disk record contain several data records.
Prom the point of view of the disk, and the control information written with
a DATA SAVE DC statement, the several data records will "look like" a single
record, since they are written collectively with a single DATA SAVE DC
statement. The programs that create and use the file must internally
distinguish one data record from another, within a single disk record.

For example, since each inventory data record requires 77 bytes, (after
subtracting the three sector ccntrol bytes), three such data records would
occupy 231 bytes and can fit into a one-sector disk record. An obvious way of
saving three such data records in a single disk record would be by simply
using three sets of variables, and specifying one set after the other in the
DATA SAVE DC statement:

120 DIM N1$10, D1$40, S1$6, N2$10, D2$40,
s2$,6, N3$10, D3$40, S3$6

235

400 DATA SAVE DC N1%, D1l$, S1%, Ql, R1l, N2%,
p2$, s2$, 02, R2, N3%, D3$, S3%, 03, R3

Though intuitively obvious, this approach is extremely awkward from
the point of view cf the programming required to manipulate the separate
data records. In most cases a far superior approach is to associate the
corresponding values in each of the data records, as follows:

record 1 Nls$ D1§ S1$ 0l Rl
record 2 N2§ D2% S2% Q2 R2
record 3 N3S D3% S3% 03 R3
Product Description Supplier Quantity Reorder
Number Code on Level
Hand

and, instead of using scalar variables to specify the values, use
one-dimensional array variables in which the subscript identifies the data
record. Thus, each of the values in the three records can be identified as:

record 1 NS (1) D% (1) S$(1) 0(1) R(1)
record 2 N$(2) D$(2) S$(2) 0(2) R(2)
record 3 N$(3) DE(3) S$(3) 0(3) R(3)

Product Description Supplier Ouantity Reorder
Number Code on Hand Level

All three data records can be written into a single disk record as follows:

120 DIM N$(3)10, D$ (3)40, S$(3)6, 0(3), R(3)

&00 DATA SAVE DC N$(), D$(O), S$(), 00, RO

This is known as "array type blocking". Notice that as a result of the DATR
SAVE DC statement, the corresponding values of each of the data records are
saved one after the other. Thus, at the beginning of the disk record are the
three product numbers. These are followed by the three product descriptions,
followed by the three supplier codes, etcetera.

Records saved in this fashion are loaded as follows:
120 DIM N$(3)10, D$(3)u40, S$(3)6, 0(3), R(I)

190 DATA LOAD DC ¥$(), B$S(), SS(O, 00, R()

Example 20.7 shows a modification of Example 20.2. It creates the
inventory file with three product records per sector (block).

Example 20.7 Creating a Blocked-Record Inventory File

110 REM EXAMPLE 20.2 MOLIFIED FOR ARRAY TYPE BLOCKED RECORDS

120 DIM N$(3)10, D$(3)u40, S$(3)6, 0(3), R(I
130 REM ESTABLISH FILE AND OPEW IT.
140 DATA SAVE TLC OPEN F 100, "INVTORY"

3%

150 REM 1OOP TO ENTER DATA FOR THREE RECORDS

160 FOR K = 1 TO 3

170 PRINT HEX(03); "KEY S.F.31 TO END PROGRAM"
180 INPUT "PRODUCT NUMBER", N$(K)

190 INFUT "PRODUCT DESCRIPTION", D$ (K)

200 INPUT "SUPPLIER CODE", S$(K)

210 INPUT "ON HAND QUANTITY"™, O(K)

220 INPUT "INDICATED REORDER LEVEL", R(K)

230 NEXT K

240 REM SAVE THREE DATA RECORDS IN ONE DISK RECORD

250 DATA SAVE TC Nf(), D$(), S50, 00, R()

260 GOTO 160 :REM LOOP BACK FOR MORE

270 REM END OF DATA ENTEY

280 DEFFN' 31

290 IF K = 1 THEN 370 :REM NO LEFT-OVER DATA RECORDS?
300 REM FILI UNUSED DATA RECORDS

310 FOR J = K TO 3

320 INIT("4") N$(J), D$(J), S$(J)

330 NEXT J

340 REM SAVE LEFT OVER DATA RECORD(S) AND FILLED RECORD (S)
350 CATA SAVE DC N$(), D$(), S5O, Q0O , RQ)

360 REM MARK ENT OF DATA

370 DATA SAVE DC END

380 DATA SAVE DC CLOSE

Notice that the data entry loop (lines 160-230) is executed three times
before a disk record is actually written. The loop counter, K, acts as a
subscript, specifying the variables to receive the values for a single
record. The main part of the program (lines 160-260) forms a closed loop.
Special Function key 31 is used to end the progranm.

Since the number of product records may not be evenly divisible hy 3, it
is possible that an entered data record may not have been written to the disk
when S.F. 31 is depressed. If all records have been written, then K will
have a value of 1, ready to specify the first product record in a new block,
and the DATA SAVE LC END trailer can be immediately written (lines 290 and
370). If, hovwever, K has a value of 2 or 3, then 1 or 2 records have been
entered but not saved to the disk. They must be saved and, in addition, the
unused records in this last block should be filled with padding characters.
The padding characters have several functions: they mark the end-of-data
within the block, and they ensure that, if the file should be sorted, garbage
in the last unused record position will not be confused with live data. The
values which should be padded are those which could serve as possible
identifiers (or so- called "keys") of the record. The loop at lines 310-330
fills the alphanumeric values in the unused records with up-arrow characters.
(Up arrows are often used for this purpose since their character value is
greater than all the uppercase keyboard characters; they, therefore, sort high
in an ascending sort cf the file).

Example 20.8 is a modification of Example 20.4. It prints the
blocked inventory file.

Example 20.8 Printing a Blocked File

110 REM PRINTING A BLOCKED INVENTORY FILE

120 DIM N$(3)10, D3(3)40, S$(3)6, 0(3), R(3)
130 SELECT PRINT 215 (100)

140 REM OFEN FILE

150 DATA LOAD DC OPEN F "INVTORY"

160 REM IOOF TO REAT EACH DISK RECORD

>0

.

170 CATA LOAD DC W$(), D$(), S$S(O), 00, R(Q)

175 IF END THEN 210

176 REM LOOP TO PRINT EACH DATA RECORD

177 FOR K =1 T0 3

178 : IF NS(K) = "A42242%44n THEN 210 :REM PADDING?
180 PRINTUSING 200, N$(K), D$(K), S$(K), O(K), R(K)
185 NEXT K

190 GOTO 170

200 % RRRRERRRNY BRBERERBARRRRRERLRDRRRRLRARERARRRETR RS
FEREAD 8,488 24,408

210 CATA SAVE DC CLOSE

In Example 20.8 hotice that within the larger loop that reads the disk
records (lines 170-190) another loop has been nested. For each DATA LOAD DC
(line 170) this inner loop prints the three records.

There are two ways for this program to end. If the number of
product records divides evenly by 3, then IF END THEN (line 175) will be the
loop exit. Otherwise, line 178 will detect padding characters and cause an
exit.

To add records to the end of a file, when using blocked records, the
last block can be found by skirping to the end of the data and then
backspacing one sector, (as shcwn in Example 20.5). However, the program must
then test to see if the block is filled with product records, or has some
padded records. If records are padded, then the new records must replace the
padded records in the last block. If the block is filled, then the new
records must begin a new block.

To access a specified product record with blocked files such as these,
the number of sectors to skip must calculated, as must the record's
subscript within the block. The relationship between these three values
for the first 8 products is as fcllows:

Consecutive Number of Subscript
Portion of Sectors of Product
Product Number To Skip Record

1 0 1

2 0 2

3 0 3

4 1 1

5 1 2

6 1 3

7 2 1

8 2 2

Th number of sectors to skip, B, is given by
B = INT((N-1)/3)
where: N is the consecutive portion of the product number.
The subscript is given by
K = N - (B*3)
where: B and N are defined as above

Programs that add records to the end of this file and update the

24/

guantity on hand balance of selected records are given in Appendix.

An additional consideration when planning file size is whether the
system of file organizaticn will permit new records to replace 0ld records
deleted from the file.

In the simple consecutive file organization which we have discussing
here, it would not be too difficult to let new products replace o0ld ones in
the file, provided that the reassignment of an o0ld product number would not
cause any problems external to the system. OUnless a single program was
used to mark "deleted" records, (ty filling the description with asterisks
or some such technique) and to add new records, a list of available deleted
records would have to be maintained. 1In the next section we discuss the
general problem of accessing records, and will return to the topic of
replacing deleted records with new ones from a broader perspective.

20-9 RECORD ACCESS TECHNIQUES

In Section 20-2 we mentioned that the catalog index contains the
starting and ending sector addresses of each file saved on the disk using
Catalog Mode statements. However, it does not contain the sector address of
each individual data record in a file. Therefore, some additional means of
determining the sector address of a desired record must be employed, whenever
data is to be saved in or loaded from a file.

When records in a file can be processed in their physical recoried
sequence, then the automatic updating of the Current Sector address, by
DATA SAVE DC and DATA LOAD DC, can be used to supply the sector address of
each record. A simple example of this was shown in Examples 20.2 and 20.4.

The situation becomes more complicated when sequencial accessing of
records is impractical. Example 20.6, which allows selected records to be
updated, is an example of nonsequential accessing. In this example a
portion of the product number directly identifies the record's location in
the file. The record is accessed by extracting this portion of the product
number, and "skipping" the specified number of sectors from the beginning
of the file.

In general when accessing a file, as in Example 20.6, the known value
that is used to identify the desired record is called the "key" or '"key
field." (Sometimes a "key" may be only a portion of a field, as it is in
Example 20.6.) Example 20.6 assumed that the key field could be specified to
fit the needs of the system; that is, each new product is assigned the next
consecutive number. Often it is impossible or impractical to specify keys in
this fashion; the keys are determined by other considerations external to the
system. For example, it may te necessary to access an employee record, given
the social security number as a key, or an accounts payable record given the
invoice number as a key. In situations such as these, there are a great many
different ways of approaching the problem but they may be divided into two
classes: 1) solutions that involve the use of another, specially structured
data file that acts as an index to the data file containing the recoerds to be
accessed; 2) sclutions that do not use a separate index file. These generally
depend upon the data file having been sorted on the key fields, or upon the
discovery of a formula fcr converting the key to a sector address.

When solutions of the first type are employed, the specially structured
index file contains scme or all of the keys from the file to be accessed (the
object file). 1In the index file each key is associated with the sector
address of its record in the object file. The index file is structured so

240~

that, given a key, the index entry for that key can be rapidly found. The
address in the index is then used to access the object record, or one
sufficiently close the the object record so that a minimal amount of searching
is needed.

Writing programs to create and maintain an index file can be a highly
complex programming task. The associated techniques are outside the scope of
this volume. However, a general purpose keyed file accessing systen is
available from Wang Laboratories. Called KFAM, it creates and maintains an
index file for the records in a user's data file. The index file contains an
entry for each record in the user's file. The entry contains the record key,
its sector address, and, for blocked records, its position within the block.
Included in the KFAM system are DEFPN' subroutines which, when passed a key,
automatically search the index file and set the Current Sector address to the
address of the record in the user's data file. Thus, after passing the key of
the desired record to the KFAM subroutine, the user's program can simply
execute a DATA LOAD DC to obttain the record.

The structure of the KFAM index is such that it can be efficiently used
for files that frequently have new records added or o0ld ones deleted. 1In
addition to random accessing of records, it permits rapid processing of the
user's file in key sequence. (In a user file accessed with KFAM, the physical
sequence of user data records will generally not be key sequence.)

The techniques employed for finding records when an index file is not
used are beyond the scope of this volume, except for simple cases such
as the inventory system shown above in which a portion of the key is
directly related to the sector address of the record. The beginning
programmer who needs to have random access to file records should use the
KFAM system, available from Wang Laboratories.

When using KFAM, it is possible to reuse the space occupied by deleted
records in the user's data file. However, it may be necessary to maintain a
separate file that contains a 1list of the sector addresses of deleted
records. For more information about this, see the KFAM manual.

20-10 HOW TO ACCESS SEVERAL FILES IN ONE PROGRAM

Many data processing tasks require that data from several files
be accessed to complete a single operation. For example, a program to process
customer orders for merchandise might require that, for each order, the
- inventory file be updated, the customer (accounts receivable) file be
updated, and perhaps the salesperson's file as well.

With the disk catalog capabilities we have outlined thus far, such an
operation would require that a DATA LOAD DC OPEN statement be executed each
time the program goes from working on one file to working on the next file.
Each time this is done the new starting, ending, and Current Sector addresses
replace the cld ones in the Device Table. This gets the job done, but can be
quite awkward and inefficient. For example, it means that repeated searches
of the catalog index must be made, since this is what DATA LOAD DC OPEN does.
Forthermore, if one of the files is being accessed sequentially, the
convenience of having the Current Sector address automatically updated by DATA
SAVE DC and DATA LOAD DC is lost, since opening another file replaces the
Current Sector address with the starting address of the new file.

Thus far we have considered the Device Table as, for example,

PPN

Starting Sector
' Address

Ending Sector
Address

Current Sector
Address

28

228

28

Implicitly, the device address and platter parameter has been associated as
vell, so that a more explicit picture of the Device Table might have looked

like

Device Platter Starting Sector Ending Sector Current
Address Parameter Address Address Sector Address
F or R
310 F 28 228 28

The device address was provided by Master Initialization or SELECT DISK, and
the platter parameter was specified by the F or R in DATA LOAD DC OPEN or

DATA SAVE DC

OPEN.

and Current Sector addresses for the table.

These two statements also provided the starting, ending

The Device Table as shown above contains all the information needed by

the processor in order for it to access a disk sector,

that is

, the device

address, the platter (F or R), and the sector address of that platter.

If the Device Table
sometimes called,

would have to be executed

the Device Table contains

permits seven

files tc be

tten in

consisted of just one row,
order to access different files,

repeatedly,

seven rows exactly like the one shown above,

"open" simu

as discuss

ltaneously.

or "slot"
DAT
ed above. 1In

The rows are

Thus the actual entire Device Table looks like this:

as it is

A LOAD DC OPEW
fact, however,
and
numbered 0-6.

Row or Device Platter Starting Ending Current
"File" Address Parameter Sector Sector Sector
Number (F or R) Address Address Address

#0 310 undefined 0 0 0

#1 000 undefined 0 0 0

#2 000 undefined 0 0 0

#3 000 undefined 0 0 0

#4 000 undefined 0 0 0

#5 000 undefined 0 0 0

#6 000 undefined 0 0 0

Figure 20.1 The Device Table After Master Initialization

Notice in Figure 20.1 that address 310 is saved by Master Initialization
in Device Table row #0. Row #0 is the row we have been using in all the
preceding examples. We were able to do this because row #0 is used by default
if a Device Table row is not explicitly specified in a disk statement. 1In the
general fore cf each of the statements we have considered, a specific device
table rovw can be specified. Thus expanded, the general forms look like this:

1y

For example, the statement
DATA LOAD DC OPEN F "INVTORY"™
is equivalent to
DATA LOAD DC OPEN F #0, "INVTORY"™

Each of these two statements specifies that the address of the disk device
is to be found in row #0 in the Device Table, and that, when the data file
"INVTORY" is opened, row #0 is to receive the platter parameter, F, and the
file's sector addresses.

Now suppose that we had opened the inventory file in this manner and
wish to open, in addition, a custcmer (accounts receivable) file. At this
point, with just the inventory file open, the device table looks like this:

Row or Device Platter Starting Ending current
"File"® Address Parameter Sector Sector Sector
Number (F or R) Address Address Address

#0 310 F 028 228 028

#1 000 undefined 0 0 0

#2 000 undefined 0 0 0

#3 000 undefined 0 0 0

£ 103 000 undefined 0 0 0

#5 000 undefined 0 0 0

#6 . 000 undefined 0 0 0

Before we can open a file in one of the other rows of the Device Table, we
must first put a device address into the row. The statement used to put an
address into one of the rows #1 through #6 is

SELECT 'file symbol' 'device address’!

where: *file symbol' is one of the following: #1,#2,
#3, #4, 45, 26
and tdevice address!' is the device address to be put into the row

For example, if the customer file were on a disk mounted in the same disk
unit as the inventory file, the program would execute

190 SELECT #1 310
This statement would put the address 310 into row #1 of the Device Table.
Now a statement such as

200 DATA LOAD DC OPEN R #1, "CUSTOMER"

W5

would be used to open the file called "CUSTOMER" on the R disk, and put the R
parameter, starting sector address, ending sector address, and Current Sector
address into row #1 of the Device Table (Current Sector set to starting sector
address). After this statement the Device Table might look like this:

Row or Device Platter Starting Ending Current
"File" Address Parameter Sector Sector Sector
Number (F _or F) Address Address Address
40 310 F 28 228 28
#1 310 R 485 960 485
#2 000 undefined 0 0 0
#3 000 undefined 0 0 0
#4 000 undefined 0 0 0
#5 000 undefined 0 0 0
#6 000 undefined 0 0 0

With both of these files open, the customer file, specified in row #1, can
be operated on with statements such as:

210 DATA LOAD DC #1, A%, R, K, Q0$(), N

270 DBACKSPACE 41, 2S
280 DATA SAVE DC #1, A%, R, K, 080, N

330 DSKIP #1, END

420 DBACKSPACE #1, BEG

In each case the #1 in the statement says that the specification of the device
address, platter, and sector addresses is to be found in row #1 of the Device
Table. To operate on the inventory file, the symbol #0 could be included in a
statement; or, the specification may be omitted, since #0 is used
automatically if no row is specified. Up to seven files may be "open"
simultaneously by using all seven rows of the Device Table. The files may he
located on the same disk, at different disks mounted at the same drive (F or
R), or at disks mounted in different drives.

In the SELECT statement a 'file symbol®' must be specified by the #
symbol and a digit, 1-6. A variable may not be used, nor may a variable be
used to contain the device address. However, in disk statement references to
a Device Table row, the # symbol may be followed by a numeric variable. The
value of the variable (0, 1, 2, 3, 4, 5, 6) then determines which device table
rovw is used.

Example 20.9 shows how several open files can be accessed from the same
program.

Example 20.9 Accessing Reccords In Several Open Files

110 REM ACCESSING SEVERAL OPEW FILES

246

130 SELECT DISK 310, #1 320, #2 320

140 DATA LOAD DC OPEN F "INVTORY"

150 CATA LOAD DC OPEN R #1, "CUSTOMER™

160 DATA LOAD DC OPEN F #2, "SALES"

310 REM UPDATE INVENTORY FILE

320 DSKIP K S

330 DATA LOAD DC N%(), D$S(O), S$Q0), 00, R()
350 TCATA SAVE DC N$(), D$(), S$0, 00, RO
480 REM UPDATE CUSTOMER FILE

490 LPACKSPACE #1, BEG

500 DSKIP 41, J S

510 LATA LOAD DC #1, A$, R, K2, A$(), N
530 CATA SAVE DC #1, AS, R, K2, AS(), W
600 REM UPDATE SALESPERSON FILE

610 DATA LOAD DC #2, E43(), N280), 6(), CQ)
630 CATA SAVE DC #2, E$S(), N2§Q), 60, CO
940 CATA SAVE DC CLOSE ALL

In Example 20.9 notice that a single SELECT statement line 130 is
used to select addresses for several rows in the Device Table. The first
part of the SELECT statement, DISK 310, is used to ensure that address 310
is in row #0 of the Device Table. MWaster Initialization, of course, puts
310 in rov #0, but a different address could have been selected by an
intervening program. It is not possible to assign a device address to row #0
with the form

SELECT #0 310
The word “DISK"must be used.

Lines 140 to 160 open the files at the selected addresses, thereby
assigning the platter parameter (F or R), and the sector addresses to the
proper rows in the table. Notice that #0 is not specified, but is used by
default for statements 140, and 320-350. The other statements contain

explicit references to the device table row so that the proper file is
accessed.

The statement shown at line 940

Qu0 DATA SAVE LC CLOSE ALL
closes all the open files by filling the Device Table sector addresses with
zeros. It does not affect the device addresses, which remain as assigned by
line 130. To close a particular file, a statement of this form can be used:

DATA SAVE DC CLOSE #n

where: n is a constant, or numeric variable with a value of 0, 1, 2, 3,
4, 5, or 6.

On the 2270-3 disk drive unit, the leftmost and middle diskette ports

are identified by means of the device address and the F or R platter parameter
(F referring to the left port, R the middle.) However, the third or rightmost

>

diskette port is treated as if it were a separate disk drive unit. It has its
own disk address and is referred to by means of this address, and the F
platter parameter. The device address of the third port can be determined by
adding 40 to the device address of the other two ports. Thus, if the two main
ports are identified by 310, F and R, the rightmost port will be identified by
350, F only. If the left and middle ports are 320, F and R, the rightmost
will be 360, F only, etcetera.

20-11 THE "T" PLATTER PARAMETER

It is possible to let an operator choose the device address at which a
disk file is mounted. For example,

130 PRINT *1l. 310", "2, 320"

140 INPUT "ENTER 1 OR 2 TC CHOOSE DEVICE ADDRESS",R
150 OoN R GOTO 180, 190

160 PRINT "INVALID. REENTER"

170 GOTO 140

180 SELECT DISK 310

190 GOTO 210

200 SELECT DISK 320

210 DATA LOAD DC OPEN F "INVTORY"™

However, with the techniques we have considered thus far, it is not possible
to let an operator choose whether a disk is to be mounted at the F or R disk
locations, at any given disk unit. This is because statements such as 210,
above, have ccntained a fixed F or R platter parameter. However, there exists
a third alternative to P and R, which may be used in place of these platter
parameters. This is the T parameter; it allows either the P or R disk to be
accessed with the same disk statement.

In order to execute a statement such as
210 CATA LOAD DC OPEN T "INVTORYI™

the system must have some way of determining whether "INVTORY" is to be
found at the F or R disks of the selected disk drive. It does this by
looking at the first character of the device address.

All the disk device addresses we have mentioned thus far have had a 3 as
the first character, (310, 320, 350 etcetera). However, the same physical
disk drive units can also be addressed if the 3 is replaced with a B, A
complete device address, such as 310, is actually a composite, in which the
last two characters are the address of the physical disk drive unit, and the
first character is a special code, often called the "Device Type" code. For
example, with the addresses 310 and B1l0O

31 B10
2T =TT
v 7

Special Onit Special Unit
code Address Code Address
called called

"Device "Device

Type" Type"

754

Since 310 and B10 have the same unit address, either may be used to address
the same disk unit. If P or R is specified in a disk statement, such as

DATA LOAD DC F "INVTORY"™

the device address may be specified in the Device Table as 310 or B10, with
exactly the same results. However, when the T parameter is used instead of

F or R, then the 3 in the device address 310 indicates that the F disk at
unit address 10 is to be used, alternatively the B in the device address Bl0
indicates that the R disk at the same unit, unit 10, is to be used. Thus, by
using the T parameter, a disk statement such as

DATA LOAD DC OPEN T “INVTORY"

is completely generalized as to the location where INVTORY is to be found.
The location is specified entirely by the device address, whose last two
characters indicate the unit, and whose first character indicates the platter.

The sequence

110 SELECT #1 B1lO
120 DATA LOAD DC OPEN T#1, "INVTORY"™

causes a search of the catalog index of the R disk at unit 10 looking for a
file called "INVTORY". W®hen it finds the index entry it puts the starting and
ending sector addresses of the file into row #1 of the Device Table, sets the
Current Sector address equal to the starting sector address, and puts an R
into the platter parameter column (since the T in the statement and the B in
the address together indicate the R platter.)

In common parlance the F platter of the disk unit 10 is referred to as
address 310, while the R platter is referred to as address B1l0. When using
this terminology it is important to be avware that these device addresses, 310
and B10, carry this platter distinction only for disk statements in which the
T parameter is used, otherwise 310 and B10 are functionally identical.

Example 20.10 shows a pcrtion of a program that allows an operator to
choose the location of a disk file. The T parameter is used so that 310 and
B10, 320 and B20, specify different disk platter locations.,

Example 20.10 Operator Selection of Disk File Location

110 REM OPEFATOR SELECTION OF A SINGLE DISK FILE LOCATION

120 DIM P36U

130 SELECT DISK 310, #1 320, #2 350, #3 B10, #u4 B20

140 PRINT HEX (030A0OAOAOAOQA) :REM CLEAR CRT POSITION CURSOR

150 PRINT , "1l. 310", "u. BLOw

160 PRINT , "2. 320", "S5, B20O"

170 PRINT , "3. 350"

180 GOSUB '100 ("ENTER 1 - 5 POR ADDRESS OF 'INVTORY' FILE",
S 1, 0) :REM NUMERIC ENTRY

190 Fl1 = X - 1 :REM ASSIGN THE FILE NUMBER TO Fl

200 DATA LOAD DC OPEN T#Fl, “INVTORY"

3000 REM NUMERIC ENTRY SUBROUTINE
3010 DEFFN' 100 (P, U, L, D)
3020 PRINT HEX (010A); P$

249

3030
3040
3050
3060
3070
3080
3090

INPUT

IF X » U THEN 3070
IF X &€ L THEN 3070

X

¢tREM TOO HIGH?
¢REM TOO LOW?

IF INT(X*104D) = X*104D THEN 3090 :REM # DECIMALS OK?
PRINT HEX(OC); TAB(64);

GOTO

3020

RETURN

WINVALID. REENTER."

Line 130 assigns each of the available disk addresses to a row of the

device table.

170 display the available addresses.

This changes the programming problem from one of choosing
an address to choosing the desired row of the Device Table. Lines 140 to

Line 180 passes control to a numeric

entry subroutine that displays a prompt and validates the operator entry.

The returned variatle,

X, contains a number (1 ta 5) indicating the selection

number of the desired address (see lines 150-170). For each address, the
selection number is 1 greater than the row in the device table which was

assigned the address.

appropriate row number.
the device table rcw.

files are to be open simultaneously.
same disk,

for

Line 190, therefore,

assigns to variable Fl the

The numeric variable Fl is then used to specify

Since, with this form of selection, t
is unknown until execution, a different technique must be used if multiple

tvo files
Example

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

he Device Table row which is used

Otherwise, if both files were on the
opening cne would close the other. A program that allows addresses

to be selected is shown in Example 20.1l1.

20.

11 Selecting locations for Multiple Piles

REM OPEFATOR SELECTION OF DISK FILE LOCATIONS

REM

REM

REM

REM

DIX PS$

KEYEOARD SELECT OF

GOSUB
oN Xx-1
SELECT
SELECT
SELECT
SELECT
SELECT

6u

' 182
GOTO
DISK
DISK
DISK
DISK
DISK

CPEN FILE
DATA LOAD DC OPEN T#0,
KEYBOARD SEIECT OF "CUSTOMER" DISK ADDRESS

' 182 ("ENTER 1-5 FOR 'CUSTOMER' DISK ADDRESS™M)

GOSUB
CN X-1
SELECT
SELECT
SELECT
SELECT
SELECT

DATA LOAD

GOTO

YINVTORY' DISK ADDRESS

("ENTER 1 - 5 FOR 'INVTORY' ADDRESS")

170, 180,
310: GOTO
320: GOTO
350: GOTO
B10: GOTO
B20: GOTO

270, 280,

190
210
210
210
210
210

i

290

#1 310: GOTO 310
#1 320: GOTO 310
#1 350: GOTO 310
#1 B10: GOTO 310
#1 B20: GOTO 310
CPEN FILE

DC OPEN T#1,

¢ 200

NVTORY"

s 300

"CUSTOMER"

2000 REM SUBROUTINE FOR KEYBOARD SELECTION OF DISK ADDRESS
182 (p9%)
PRINT HEX(030A0AOAOAOQR)

2010
2020
2030
2040
2050
2060

DEFFN?'

PRINT
PRINT
PRINT
GOSUB

, "1l.
, 2.
, "3.

100 (P%$, 5, 1,

310", uy,
320", ws,
350"

Bl
B2

0)

2150

:REM CLEAR CRT POSITION CURSOR
on
on

:REM NUMERIC ENTRY

—

2070
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090

REM

RETURN

NUMERIC ENTRY SUBROUTINE

DEFFN' 100 (P$, U, L, D)’

PRINT HEX(0104) ; PS$

INPUT X

IF X > U THEN 3070 :REM TOO HIGH?

IF X< L THEN 3070 :REM TOO LOW?

IF INT(X*10#D) = X*104D THEN 3090 :REM # DECIMALS OK?
PRIFNT HEX(OD); TAB(64); "INVALID. REENTER."
GOTO 3020

RETURY

The T parameter can be useful even when operator selection of addresses
For example, even though a particular data file may seemingly
always be mounted at the R disk, there may come a time when, due to system
expansion or other factors, it would be convenient to be able to mount it at
some other location. If the programs which operate on the file are written
using the T parameter, then only the address in a simple SELECT statement
need be changed to modify the rrogram for operation at a different location.
By contrast, if F cr R is used in the statements, then all F or R references
must ke changed.

is not needed.

257

CHAPTER 21: TLCATA STORAGE ON TAPE CASSETTES

21-1 OVERVIEW OF CASSETTE DATA FILE OPERATIONS

In Section 4-1 we introduced the use of tape cassettes for program
storage. We said that a single program saved on cassette constitutes a
"file", and that a cassette may be used to save many such program files, the
exact number depending upon the length of the cassette tape and the sizes of
the programs. In addition to saving program files, cassettes can be used to
save data files.

A data file is a collection of information about a topic. Within a file
this collection consists of one or more "records". For example, a test
results file might be a collection of the records from a particular test run,
one record per test. A record for statistical analysis might consist of an X
value and a Y value, the coordinates of a point in the plane; a file of such
records might define a statistical population.

Regardless of the content of the data file, Wang BASIC allows you to
easily create cassette data files, save data records, read data records, skip
forward and back over records and files, and update individual data records.
Table 21.1 provides an overview of the functions performed by the cassette
statements for standard-format data storage and retrieval operations.

Table 21.1 The Tape Data File Statements

STATEMENT FUNCTION

1. a) DATA SAVE OPEN "file name" Saves onto the cassette tape a special
"header" record which marks the begin-
ning of a data file. This special record
contains the name of the file.

b) DATA SAVE Takes values from memory and saves them as
one record on a cassette.

c) DATA SAVE END Saves a special "trailer" record which
marks the end of a data file.

2. a) DATA LOAD "file name" Searches forward through a cassette for
the "header" record of a specific file.

b) DATA LOAD Reads values from a tape cassette
record, and assigns the values to variables
in memory.

3. a) SKIP END Searches forward for the next special
"trailer" record.
b) SKIP n Skips forward over n records on tape.
c) SKIP nF Skips forward over n files on tape.
4. a) BACKSPACE BEG Searches backwards for a header recorad.

b) BACKSPACE n Backspaces over n records.

24—

Y

c) BACKSPACE nF Backspaces over n files.

5. a) DATA RESAVE CPEN Saves a new special header record which
replaces (updates) the header record of
an existing data file.

b) DATA RESAVE Takes values in memory and saves thenm
as one record on cassette, replacing
(updating) an existing data recorad.

A single cassette can be used for just one file, or for many files.
Program files and data files can be saved on a single cassette; however,
many programmers prefer to store program files and data files on separate
cassettes.

Unless otherwise specified, all cassette operations occur at the device
whose address is selected for TAPE class I/O operations. This TAPE class
address is set to 10A by Master Initialization, and may be changed at any time
by executing a SELECT statement with a TAPE address specified. For example,

*SELECT TAPE 10B
sets the TAPE class address to 10B.

In addition to the TAPE class parameter, there are two other ways of
specifying the address at which a cassette operation is to take place. These
are discussed in Section 21-8. However, when these other techniques are not
used, the system defaults to the TAPE address.

All the tape cassette statements discussed in this chapter can be
executed in the immediate mode .

21-2 MARKING THE EEGINNING OF A FILE WITH DATA SAVE OPEN

The DATA SAVE OPEN statement is used to record a special header
record that marks the beginning of a data file. This special header
record contains the name of the file. The maximum length of the name is
eight characters. For example, the statement

120 DATA SAVE OPEN "TESTAll4"®

records a special header record at the current tape location, with the file
name “"TESTA1ll4Y,

It is not strictly necessary to save a header record at the beginning of
a data file. However, the presence of a header record makes it easier to
carry out certain operations. For example, it enables the system to search
forward through a cassette tape for the beginning of a named file, or to
backspace to the beginning of a file from any location within the file. 1In
general, if you wish to save several data files on one cassette, you will want
to mark the beginning of each of the files with the special header record
created by DATA SAVE OPEN. If you plan to put just one file on a cassette,
the header record may still be useful for cassette handling and control
purposes, since it lets you easily record the name of the file onto the
cassette. Finally, some of the utility programs supplied by Wang Laboratories
require that data files have header records.

353

21-3 SAVING DATA RECORDS

The DATA SAVE statement records data on a cassette tape, and
collectively marks off the reccrded data as one "record."™ It starts recording
at the current position of the tape. For example

100 DATA SAVE X,Y

causes the values of the variables X and Y to be saved on the cassette tape.

In addition to saving the specified values, DATA SAVE surrounds the saved

values with certain ccntrol information used by the system. This control -
information collectively marks off the values as a record.

Values to be saved by a DATA SAVE statement can be specified in any of
the following ways:

a) a numeric variable, e.g., A, Bl, C5, D
b) an alphanureric variable, e.g., A$, B2$, M4$

c) a specific element of a one-dimensional numeric or alphanumeric
array, e.g9., A(2), F1l(3), X(10), BS(4), G3$(5)

d) a specific element of a two-dimensional numeric or alphanumeric
array, e.9., A(3,4), Y5(2,9), A(1,15), C$(5,7), D1$(4,9)

e) an array designator (an array name followed by a left and a right
parenthesis), e.g., A(), P$(), U4$(). The entire array of values
is saved. B)

f) a mathematical expression, e.g., X*Y-Z, SOR(A42 + B%2), 2%D
The expression is evaluated and the result is saved.

g) a string, function or hexadecimal function, e.g., STR{AS%,3,8),
HEX (22), HEX (0DOA).

h) a literal string, e.g., "WANG LABORATORIESY,

Any number of values may be specified in the DATA SAVE statement. Each
value specification, or "argument", must be separated from the next by a
comma. Values are saved in the sequence in which they appear in the DATA
SAVE statement. If an entire array is specified using an array designator,
for exanmple

100 DIM R(2,3)
140 DATA SAVE R()

the values in the array are saved rov by row. Thus, in the above example, the “
values are saved in this sequence: R®r{(1,1), R(1,2), R{(,3), R(2,1), R(2,2),
R(2,3).

Regardless of how a value is specified in a DATA SAVE statement, only
the value is saved; not the name of the variable or array, nor the quotation .
marks.,

Example 21.1 allows the operator to enter the X and Y coordinates of
points in a plane. The values for each point are saved as a record. The Y
record also containg, as an alphanumeric value, the consecutive number of the
record.

r5¥

Example 21.1 A Program That Creates a Tape Data File

110 REM CREATING A SIMPLE DATA FILE

120 CIM R$1, NS4

130 REM NAME FILE IN HEADER RECORD

140 DATA SAVE OPEN "POINTS1®

150 REM SET UP FOR RECORD

160 N =N+ 1 :RFM RECORD COUNTER

170 PRINT HEX(02); "KEY S.F. 31 TO END PROGRAM"
180 PRINT "EECORD NUMEER ='"; N

190 PRINT

200 REM RECEIVE RECORD VALUES

210 INEUT "X VALUE", X

220 INPUT "Y VALUE", Y

230 ERINT

240 REM CPERATOR CHECK OF VALUES

250 R$ = " " :REM NO DEFAULT ENTRY

260 PRINT "CHECK VALUES"

270 INEUT "ENTER + TO ACCEPT, - TO REJECT", RS
280 IF R$ = "-" THEN 170 :REM REJECTED?

290 IF R$ = "+" THEN 330 :REM ACCEPTED?

300 PRINT HEX(0C); TAB(64) ; HEX(0COC): REM OPERATOR ERROR
310 GOTO 260

320 REM SAVE RECORD

330 CCNVERT N TO N$,(####)

340 DATA SAVE N$, X, Y

350 COTO 160

360 REM END PROGRAM

370 DEFFN' 31

380 PRINT HEX(03)

390 END

Line 140 writes a header record which contains the file name "POINTS1"™.
The display shows the consecutive record number and requires operator
verification of each set of values (170-310). Line 340 saves the record
number and the X and Y values of the point.

Lines 160-350 form a loop. The operator ends this loop by keving
Special Function key 31, which effects a branch out of the loop to line 370,
and ends the progranm.

There are several deficiencies in this simple program. One of these

deficiencies is that the end of the file is not marked. This problem is taken
up in the next section.

21-4 MARKING THE END OF A DATA FILE

The statement DATA SAVE END is used to mark the end of a cassette data
file. It writes a record that has special significance to certain other
BASIC statements.

The use of DATA SAVE END is not mandatory; however, as we shall see in
the next several sections, it is often very useful to have the end of the file
marked with DATA SAVE END.

Example 21.1 the DATA SAVE END statement can simply be added to the
"end program" routine as follows:

375 DATA SAVE END

254

In future references to Example 21.1 we shall assume that this line has
been added to the progranm.

21-5 LOADING DATA FROM A PILE

DATA LOAD "file name"

Before data can be loaded from a data file that has a header record
marking its beginning, the header record must be read. The statement,

DATA LOAD "file name"

searches forward through a cassette tape for the header record of the specified
file. After it reads the specified header record, it leaves the tape
positioned to read the first actual data record.

For example, the statement
150 DATA LOAD "POIWTS1™

searches a cassette tape until it reads the header record of the file
"POINTS"™. It leaves the tape rositioned so that the first record can be
read.

The "file name"™ parameter in this statement must be a literal string
containing the file name, as saved by DATA SAVE OPEN.

DATA LOAD

The DATA LOAD statement reads values from a tape cassette record (or
records), and assigns them to specified variables.

For example, the statement
DATA LOAD XN$, X, Y

causes the cassette drive to start reading values from the next record. The
values are assigned successively to the variables N$, X, and Y. The systenm
reads values until all the specified variables have been assigned a value.
After the last variable is assigned a value, the tape is positioned so that it
is ready to read the first value of the next record.

The assignment of values in DATA LOAD takes place just as if it were
performed in an assignment (LET) statement. For example, if an alphanumeric
variable is too short to contain an entire alphanumeric value, the assignment
is made, but the extra characters on the right are lost. Conversely, if the
variable is longer than the value, it is padded with spaces on the right. It
is especially important to be aware that an error results if a numeric value,
encountered in the record, is matched with an alphanumeric variable in the
DATA LOAD statement, or vice versa. For this, and other reasons, it is
important that precise documentation be maintained of data file record
layouts.

~
e

Values may be assigned to an entire ariay by specifying the standard
form array name (array designator) in the DATA LOAD statement. For example,
the statement

DATA LOAT AS$(), P()

256

'
~——’

reads values from the data file and assigns them element by element, row by
row to the array A$(), until each element in the array has been assigned a
value. Then, the next values are assigned in the same way to P().

The same variables need not be used to receive the values as were
originally used to save them. The only requirement is that numeric values be
loaded into numeric variables or numeric array elements, and alphanumeric
values be loaded into alphanumeric variables or array elements.

Usually, it is good programming practice to read‘exactly one record
with cne DATA LOAD statement. For example, the statement

DATA LOAD N$, X, Y

specifies that three values be read; assigned successively to one alphanumeric
variable, and two numeric ones. It therefore reads exactly one record as
written by statement 340 of Example 21.1.

A DATA LOAD statement need not read exactly one record. If fewer
variables are specified in the DATA LOAD statement than there are values in
the record, the extra values are ignored. If more variables are specified
than there are values in the record, successive values from the next record(s)
will be assigned to the variables. It must be emphasized, though, that after
a DATA LOAD statement, the cassette tape is positioned to read the next
record, even if only a portion of the previous record has been assigned to
variables. It is impossitle tc begin reading values in the middle of a record
with the DATA LOAD statement.

Example 21.2 shows a simple program for reading and displaying the data
file created by Example 21.1 (with the addition of the DATA SAVE END record
discussed in Section 21-4.)

Example 21.2 Reading and Displaying The Data File Records

110 REM PRINTING THE DATA FILE

120 DIM NS4

130 SELECT PRINT 005

140 REM FINL FILE

150 DATA LCAD "POINTS1"

160 REM SET UP FOR OUTPOUT

170 ERINT HEX(03) :REM CLEAR CRT

180 PRINTUSING 300: REM HEADINGS

190 REM READ AND PRINT RECORDS

200 FOR L = 1 TC 14

210 DATA LOAD N$, X, Y

220 IF END THEN 280 :REM NO MORE RECORDS?
230 PRINTUSING 310, N$, X, Y

240 NEXT L

250 INPUT "KEY EXEC FOR MORE LINES", R$

260 GOTC 170

270 REM END

280 PRINT "END CF DATA FILE"

290 REWIND

300 ¥ EECORD NO. X VALUE Y VALUE
310 % XXXX TTTNTY B,08. 88

Statement 150 searches the cassette tape for the header record of
"POINTS1", and positions the tape so that it is set to read the first data
record. This program is designed to operate on a 16 line CRT. The headings

387

are output on line zero by statement 180. The FOR/NEXT loop reads and outputs
14 records, f£illing all but the bottom line of the CRT. On the bottom line

a prompt appears (statement 250) informing the operator that the next 14
records can be disglayed by keying (EXEC).

Example 21.2 reveals the importance of having an end-of-file trailer
record. When a DATA 1OAD statement is executed, if the system reads the
special record saved by DATA SAVE END, several things happen. First of all,
the variables specified in the DATA LOAD statement, which would have been
assigned values had a normal data record been encountered, instead retain
their current values. Secondly, the DATA LOAD statement is terminated, and
the tape is repositioned so that the end-of-file trailer would be immediately
re-read on a subsequent DATA LOAD execution. Finally, a notation is made in a
special part of memory that an end-of-file trailer record has been read.

The ITF END THEN Statement

A special BASIC statement is available to test if an end-of-file trailer
has been read. The form of this statement is

I¥ END THEWN line numher

The IF END THEN statement checks the special part of memory to see if an end-

of-file trailer has been read during the last DATA LOAD statement. If it has

been read, IF END "THEN" effects a branch to the line number following "THEN'",
Thus, the IF END THEN statement can be used to exit from a record reading

loop when the end of a file is reached (provided that the end of the file

is marked with the TATA SAVE END trailer record.) IF END THEN may not be used
in the immediate mode.

In Example 21.2 the IF END THEN statement is used to exit from the
record reading loop (line 220) when the tape has reached the end-of-file
trailer.

It should be noted that the REWIND statement, line 290, is included at
the end of this program as an operator convenience. Tape cassettes should not
be removed frcm the drive unless they are rewound.

21-6 THE SKIP ANL EACKSPACE STATEMENTS

The SKIP and BACKSPACE statements are used to move the cassette tape a
specific distance forward or back, without reading the intervening values.
Each of these statements has three forms whose functions are summarized
below.

The SKIP Statement:

a) SKIP END Searches forward for the next DATA SAVE
END trailer record. Positions the tape
so that the tape drive head is in front
of the trailer record.

b) SKIP n Skips forward over the number of records
where n = expression specified by the truncated value of n.
If a trailer record is encountered, the
tape is positioned so that the tape drive
head is in front of the trailer record.

c) SKIP nF Skips forward over the number of trailer

268

S

where: n = expression records specified by the truncated value
of n. The tape is positioned so that the
tape drive head is immediately beyond
the nth trailer record. (Note: Program
file trailer records as well as data file
trailer records are counted by SKIP.)

The BACKSPACE Statement:

a) BACKSPACE BEG Searches backwards for a DATA SAVE OPEN
header record. Positions the tape so
that the tape drive head is at the end
of the header record; that is, in front
of the first data record in the file.

b) BACKSPACE n Backspaces over the number of records
where n = expression specified by the truncated value of n.
If a header record is encountered, the
tape is positioned so that the tape
drive head is at the end of the header,
in front of the first data record in the

file.
c) BACKSPACE nF Backspaces over the number of header
where n = expression records specified by the truncated value

of n. The tape is positioned ‘so that
the tape drive head is set to read the
nth header record.

The SKIP END statement is particularly useful when records must be added
to the end of a data file (provided, of course, that another data file does
not follow the end-cf-file trailer.) To do this a program can simply execute a
SKIP END statement and begin saving the new values with DATA SAVE. The
program should write a new trailer record, when all the new records have been
added.

Example 21.3 illustrates a possible use for skipping and backspacing
over individual records in a file. It operates on the file created by Example
21.1, with the DATA SAVE END trailer present. The operator enters a record
number, the program then SKIPs or BACKSPACEs the required number of records to
find the desired record and prints the record when it is found.

Example 21.3 Printing Selected Records from a File

110 REM PRINTING SELFCTED RECORDS FROM THE FILE

120 DIM N$Uu

130 SELECT PRINT 005

140 M = 300 :REM INITIAL MAXIMUM RECORD NUMBER ENTRY

150 REM FIND THE FILE

160 CATA LOAD "POINTS1"

170 P =1 :REM TAPE POSITIONED IN FRONT OF RECORD 1
180 REM OPERATOR ENTERS RECORD NUMBER SOUGHT

190 PRINT HEX(030A) :REM CLEAR SCREEN; LINE 1

200 INPUT "ENTER THE NUMBER OF THE RECORD TO BE PRINTED", R
210 IF R <€ 1 THEN 230 :REM TOO LOW?

220 IF R€= M THEN 260 :REM LOW ENOUGH?

230 PRINT "INVALID. REENTER": HEX(0DOC) ; TAB(64) ;3 HEX(OC)
240 GOTC 200

250 REM ERANCH ON POSITION OF TAPE RELATIVE TO RECORD SOUGHT

260 CN SGN(R-P)+1 GOTO 330, 310

159

270 REM TAPE POSITIONED BEYOND DESIRED RECORD

280 BACKSPACE P-R
290 GQIC 330
330 REM DESIRED RECORD IS BEYOND THE CURRENT TAPE POSITION
310 SKIE R-E
320 REM TAPE SET TO READ DESIRED RECORD
330 DATA LOAD N%, X, Y
340 IF END THEN 490 :REM ENTERED RECORD NUMBER TOO HIGH
350 CCNVERT N$ TC N
360 IF N<€» R THEN 570 :REM FILE OUT OF SEOUENCE
370 P =R + 1:REM UPDATE TAPE POSITION COUNTER
380 REM CUTFUT RECORE
390 PRINT HEX(0C); TAB(64); TAB(64); HEX(OAOAOR)
400 PRINTUSING 620
410 PRINTUSING 630, NS, X, Y
420 PRINT HEX(010A)
430 INPUT "MORE RECORDS (Y/N)", ES$
440 IF E$ = "N" THEN 590 :REM DONE?
450 Ef = n n
460 R =0
470 GOTO 190
480 REM ERRCR ROUTINES
490 PRINT "ERROR: RECORD NUMBER"™; R; "IS TOO HIGH"
500 EACKSPACE 1
510 CATA LOAD N%, X, Y :REM READ LAST RECORD
520 CCNVERT N$ TO M :REM PUT ACTUAL LAST RECORD NO. IN ¥
530 ERINT "THE HIGHEST RECORD NUMBER IS"; M
540 P =M+ 1 :REM UPDATE TAPE POSITION COUNTER
550 PRINT HEX (010A) ; TAB(64) ; HEX (0C)
560 GOTC 430
570 STOP "FILE OUT OF SEQUENCE. CANNOT BE PROCESSED"
580 REM END PRCGRAM
590 REWIND
600 ERINT HEX(03)
610 END
620 % RECORD NO. X VALUE Y VALUE
1Y I TTIN T $,800.8%

This program maintains in variable P the current tape position. It is
maintained as the record number which the tape head is set to read. When the
file is found (line 160), P is assigned the value since at this point a DATA
LOAD would read record number 1.

At first the maximum record number is not known. However, the
assumption is made that it is not larger than 300 (lines 140 and 220). The
grounds for this assumpticn, which is based on the record format and maximum
tape capacity, are discussed in Section 21-7.

Once a validated record number has been entered (lines 200-240), the
tape can be in any of three positions relative to the record sought: it can be
beyond the record; it can be set to read the record, or it may have to skip
ahead to find the record. Line 260 effects no branch under the first condition,
a branch to line 330 under the second, and one to 310 under the third.
Line 280 BACKSPACEs, or line 310 SKIPs, the required number of records, to
reach the desired record.

line 330 attempts to read the record. If an end trailer is read, then
the entered record number is greater than the number of records actually in
the file. 1If a data record has been read, it is checked to ensure that it is
the record sought (line 360), and the tape position, P, is updated. The

260

record is displayed, and the operator may then continue or end the progran.

If an end-of-file trailer is read (line 340), the error routine (lines
490-560) indicates the problem, and reads the preceding record to determine
the exact maximum record number. This maximum is then substituted for the
earlier estimate in M. Thus, the error cannot occur twice.

It would have been possible to SKIP END at the beginning of this progranm,
to determine the last record number in the manner used by the error routine.
However, this is quite time consuming, and offers no real advantages.

The operator of this program will quickly notice that backspacing over

records is much slowver than skipping over them. Por this reason it is
generally advantageous to process tape records sequentially.

21-7 EFFICIENT DATA STORAGE

How Data Is Recorded

In Section 21-3 we said that each DATA SAVE statement saves a single
record. That is, it collectively marks off the values it saves as a single
record. A single record can contain any number of values, and, therefore, it
is not strictly necessary to consider how data is recorded on cassette tape
in order to use the tape data file statements. However, knowing how data
is recorded can produce dramatically more efficient use of tape data files.

All recording on cassette tape is done in physical blocks. Each block
has an absolute capacity of 256 bytes (remember a byte is the amount of space
needed to store one alphanumeric character). The cassette drive always
records at least one block each time a DATA LOAD is executed.

If a record requires less than 256 bytes for storage on tape, the DATA
SAVE statement simply leaves empty space (garbage) between the end of the
record and the end of the 256 byte block. Reducing the amount of this wasted
space is an important objective for the programmer. It results in more
efficient tape utilization, and faster program execution.

In order to reduce this waste you must first know exactly how much space
is occupied by recorded values. Although each tape block has a physical
capacity of 256 bytes, the system automatically records certain control
information in addition to the actual data values. There are two types of
control information:

1. Block Control bytes.
2. Start of Value (SOV) control bytes.

The DATA SAVE statement always writes three Block Control bytes into
each block. Two of these occupy the first two byte locations in each block.
These are used to indicate whether the block is the first, last, or a middle
block in the record. They distinguish one record from the next. The third
Block Control byte follows the last byte of the last data value in the block,
and marks the end of valid data within the block. After subtracting the
three Block Ccntrol bytes, a total of 253 bytes is available for data values,
and Start of Value (SOV) bytes.

A single Start cf Value (SOV) byte precedes each value saved in a
record. This byte indicates to the system whether the value is numeric or
alphanumeric, and the length of the value in bytes. Consider, for example,
the X,Y coordinate record in the preceding sections. The storage space for

26/

the record is defined by:

120 DIM NSu

220 DATA SAVE DC ¥$, X, Y

and the record looks like this in a block

‘TOTAL USED = 26 BYTES TOTAL BLOCK = 256 BYTES TOTAL UNUSED = 230 BYTES

Y

-t

L’ N

SOV for SOV for SOV for
value of N$ value of X value of Y

4 bytes l 8 bytes
et ~ -~ —

8 bytes

N

Value of
Y

Value of
X

NN —

rvwswvv
7

T

L—‘d

= T

2 block
control
bytes 1 block
control
byte
End of
valid data

Figure 21.1 A Record in a Tape Block
Space requirements can be summarized as follows:

1. There are 253 bytes available for storage in each block after
allcwing for the block control bytes.

2. EFEach numeric value requires 9 bytes, 8 bytes for the value plus
1 byte for the SOV. (Numeric values may be specified in the DATA
SAVE statement by numeric variables, expressions, or numeric array
elements.)

3. Each alphanumeric value requires a number of bytes equal to the
dimensioned size of the specifying alphanumeric variable or array
element, plus one byte for the SOV; or, the number of characters
in the specifying literal string, plus one byte for the SOV. VWNote
that in the case of an alphanumeric variable or array element, it
is the dimensioned size, including all trailing spaces, which must
be counted.

4., If a value does not completely fit into the space remaining in a
block, it is automatically written in the next block. Values do not
overlap from one block to the next, though a single record may
require many blocks.

When entire arrays are saved in a record by using the standard array
designator, the values are saved element by element, row by row into the

x6-

=

record. Within the record there is no indication of whether a value was saved
from an array or any other specific source, and, therefore, values may be
loaded into array or scalar variables regardless of their source
specification.

Programming Techniques That Improve Storage Efficiency

As can be seen from Figure 21.1 the records saved by the program of
Example 21.1 waste a tremendous arount of tape space. Each record uses 26
bytes of a block, and wastes 230. As a result of the program of Example 21.1,
one tape record (the result of a single DATA SAVE statement) contains one data
record, that is, the data needed to specify a particular point in the X,Y
coordinate plane. DATA SAVE always creates one tape record and always uses at
least one complete blcck. There is no way to put more than one tape record
into a single block. However, since the concept of what constitutes a data
record is defined by the program, it is possible to let one tape record
contain several data records (in this case the data for several points). From
the point of view of the tape record, and the control information written with
a DATA SAVE statement, the several data records will *"look like" a single
record since they must be written collectively with a single DATA SAVE
statement. The programs that create and use the file must themselves
distinguish one data record from another within a single tape record.

Each point in our simple data file requires that two numeric values be
saved. The two values occupy a total of 18 bytes including the SOV bytes.
Since a total of 253 bytes is available per block for SOV!'s and data, we
could save 14 point srecifications in a block. These would occupy 252
bytes, leaving just one byte unused. However, as in Example 21.1, we may
wish to maintain some additional information in each block. For a blocked
file it might be a good idea to save in each block number, and a notation
indicating the number of points actually saved in the block. To accommodate
this information we reduce the number of points saved in each block to 13.

One way to save 13 point specifications is to simply use 13 sets of
variables in the DATA SAVE statement. For example, if the additional bhlock
information (block number, number of records), is in Bf, and the 13 points are
given by

(X,Y), (X0,¥0), (X1,¥l), (X2,Y2)...(X9,Y9)
(A,B), (A0,BO)

then the DATA SAVE statement would be

DATA SAVE BS$,X,Y¥,X0,Y0,%X1,Y1,X2,Y2,X3,Y3
X4,Y4,X5,Y5,x6,v6,%x7,Y7,X8,Y8,%X9,Y9,A,B,20,B0

However, this approach to saving the records is extremely awkward. A far
better approach is to put all the X values into a one-dimensional array,

X(), and all the Y values into a one-dimensional array, Y(). In this way
X(1) and Y(1) can define a point, as can X(2) and Y(2), X(3) and Y(3)...X(13)
and Y(13). The 13 points are saved as follows:

120 DIM X(13) Y(13) BS$6

400 DATA SAVE B$, X(), Y()

Saving multiple data records with a single DATA SAVE statement in this fashion
is often called "array-type blocking".

263

Example 21.4 shows a program that creates a data file in this manner,
saving 13 points per block.

Example 21.4 Array Type Blocking of a Data File

110 REM ARRAY TYPE BLOCKING OF A DATA FILE

120 DIM X(13), Y(13), R®l, BS6

130 REM NAME FILE IN HEADER RECORD

140 DATA SAVE OPEN "POINTS2"

150 REM SET UP PER BLOCK

160 B =B+ 1 :REM ELOCK COUNTER

170 REM 1LOOP TO ENTER VALUES FOR ONE BLOCK

180 FOR R = 1 TO 13 :REM 13 RECDS. PER BLOCK

190 PRINT HEX(03); "KEY S.F. 31 TO END PROGRAM"
200 PRINT "RECORD NUMBER="; (B-1)*13 + R

210 PRINT

220 REM RECEIVE RECORD VALUES

230 INPUT "X VALOUE", X(R)

240 INPUT "Y VALUE", Y(R)

250 PRINT

260 REM OPERATOR CHECK OF VALUES

270 R$ =" ":REM NO DEFAULT ENTRY

280 PRINT "CHECK VALUES"

290 INPUT "ENTER + TO ACCEPT, - TO REJECT", RS
300 IF R$ = "-w THEN 190 :REM REJECTED?

310 IF R$ = "+" THEN 340 :REM ACCEPTED?

320 PRINT HEX(0C); TAB(64); HEX (0COC): REM ENTRY ERROR
330 GOTO 280

340 NEXT R

350 GOSUB 390 :REM SAVE BLOCK OF RECORDS

360 GOTC 160

370 REM

380 REM SAVE BLCCK

390 CCNVERT B TO BS, (#%%%) :REM BLOCK NUMBER

400 CCNVERT R TC STR(B$,5), (##) :REM # OF RECDS. IN BLOCK
410 CATA SAVE B$, X, YO

420 RETOURN

430 REM

440 REM END PROGRAM

450 DEFFN' 31

460 IF R = 1 THEN 490 :REM ALL ENTERED RECORDS SAVED?
470 R=R-1 :REM R = NO. OF COMPLETED RECORDS
480 GOSUB 390 :REM SAVE LAST GROUP OF RECDS.
490 DATA SAVE END :REM MARK END OF DATA FILE

500 PRINT HEX (03)

510 END

In this program a FOR/WEXT loop (180-340) allows the 13 sets of point
values to be entered. The counter variable, R, is used as the specifying
subscript for the receiving variables (lines 230 and 240).

After 13 points have been entered, the loop terminates, and a record is
saved by the "save blcck" subroutine (lines 340, 350). The program then loops
back for more point entries.

The "save block" subroutine (lines 390-420) converts the block number
and record counter to alphanumeric characters. Both of these values are
assigned to B$, which has a length of 6 characters. Converting these numeric
values to alphanumeric fcrm reduces their storage space requirement from 18

267

e

bytes (2 numeric values and SOV's) to 7 bytes. In this program this isn't
strictly necessary, since the block could have accommodated two more numeric
values; however, it serves to illustrate a commonly used technigque.

The operator ends this prcgram by keying Special Function key 31 which
causes a branch to line 450. However, before prograexecution terminates a
check is made to see if all entered points have been saved. Unless the number
of points entered is a multiple of 13 when S.F. 31 is keyed, there are
left-over points not yet saved, that must be saved. If the record counter,

R, equals 1 at line 460, then all entered and accepted points have been
saved. In general, R-1 is equal to the total number of entered and accepted
points that have not yet teen saved. Line 480 saves the last block of
records, with the last two characters of B$ now containing a number less than
13. Pinally, line 490 saves the special end-of-file record.

Example 21.5 shows a program that reads and displays the data file
created by Example 21.4. It is functionally similar to Example 21.2.

Example 21.6 Printing the Array-Blocked Data File

110 REM PRINTING THE ARRAY BLOCKED DATA FILE

120 DIM X (13), Y(13), B$6

130 SELECT PRINT 005

140 REM FIND FILE

150 CATA LOAD "POINTS2"

160 REM READ AND PRINT

170 CATA LOAD BS, X(), Y()

180 PRINT HEX(03) :REM CLEAR CRT

190 IF END THEN 290 .

200 PRINTUSING 310: REM HEADINGS

210 CCNVERT STR(ES$,1,4) TO B :REM BLOCK NUMBER
220 CCNVERT STR (B$,5) TO N +REM NUMBER OF RECDS IN BLOCK
230 FOR J =1 TC N

240 PRINTUSING 320, J+(B-1)*13, X(J), Y(J)
250 NEXT J

260 IF N &€ 13 THEN 290 :REM NO MORE BLOCKS?
270 INPUT "KEY (EXEC) FOR MORE RECORDS", Z$
280 GOTC 170

290 REWIND

300 STOF "END OF DATA FPILE"

310 % RECORD NO. X VALUE Y VALUE

320 % 404 B RRELERE R EER_ERR

In this program, line 170 reads the entire block of records. Lines 210
and 220 convert the block number and number of records in the block to
numeric form. Every block except the last contains 13 significant records.
The loop at lines ZU40-250 displays the 13 records, each on a separate line of
the CRT. At line 270, the operator keys (EXEC) to get the next block of
records displayed.

After all records have been displayed, the program ends in either of two
ways. If the total number of records in the file is a multiple of 13, then
every block, including the last, is full. 1In this case, after the last block
of records has been displayed, line 170 reads an EXND trailer, and line 190
branches to end the program. Otherwise, lower case if the number of records
is not an exact multiple of 13, then the last block contains less than 13
records. (The FOR/NEXT lcop only displays as many records as are actually
present, since its vupper bound is N (line 230).) Line 260 tests if N is less
than 13, and ends the program if it is.

r6s”

21-8 SPECIFYING TAPE DEVICE ADDRESSES

A1l of the cassette operations in the preceding example programs have
occurred at the address selected for TAPE class I/0O operations. Master
Initialization selects address 10A for TAPE operations. Generally any
system that contains at least one cassette drive will have a cassette drive
with address 10A. If a system includes additional cassette drives, they
uswally are addressed as 10B, 10C, 10D, 10E, 10F, in that order.

If your system consists of just one cassette drive and that drive has
the address 10A, then you never have to specify any cassette address, since
Master Initialization automatically selects 10A for all TAPE operations.
However, if your system includes more than one cassette drive, then in order
to use any drive that has an address of 10B...l0F, you must in some way
specify its address.

There are three ways of specifying an address for a cassette operation:

1. An address may be directly specified in any tape cassette
statement. A directly specified address is always written in the
form

/XYY,

where xyy is the device address.
For example,
100 DATA SAVE /10C, OPEN "POINTS1"®

This statement writes a header record on the cassette tape mounted at devi
Additional examrples, for the statements we have considered, are:

100 DATA LOAD ,10B, N$, X, Y
100 CATA SAVE /10A, BS, X(), Y()
100 BPACKSPACE /10E, BEG

100 SKIP /10C, K2 F

100 DATA SAVE /10A, END

Each of these orerations takes place at the specified address.
When an address is specified directly in this fashion, the address
selected for TAPE operations is ignored.

2. A SELECT statement with a TAPE parameter can be executed.
Cassette statements can then be written without additional
specification, so that the selected TAPE class address is used.
For example the statement:

SELECT TAPE 10C

selects the cassette drive whose address is 10C for all subsequent
tape operations in which no additional specification is supplied.

3. A SELECT statement may be used to associate a tape cassette address
with a "file nunmber". If a cassette statement then contains a
"file number" specification, the address SELECTed for that "file
nunber" is used.

For example, this sequence causes the cassette operations to take place

26¢€

at address 10C.

120 SELECT #1 10C
130 DATA SAVE #1, BS$, X() Y(

260 CATA SAVE #1, END
270 REWIND #1

In the above example the SELECT statement at line 120 associates the
address 10C with "file number" #1. In the subsequent statements, #1 is
specified as the file number whose device address is to be used for the
operation.

The term "file number" refers to any of the following two-character
symbols: #1, #2, #3, #4, #5, #6. 1In cassette operations, unlike disk
operations, a variable may not be used to specify a file number.

File numbers are a useful means of specifying cassette addresses when a
single program uses more than one cassette, and when operator selection
of cassette address is desirable.

Example 21.6 shows a routine that might be used to allow an operator

to select, frcm three possible addresses, the addresses at which "input" and
"output" cassettes are mounted.

Exampie 21.6 Operator Selection of Tape Device Addresses

110 REM OPERATOR SELECTION OF TAPE FILE DEVICE ADDRESSES
120 REM SELECT INPUT FILE ADDRESS

130 GOSUB 2010 :REM DISPLAY ADDRESS MENU

140 REM KFYBOARD ENTRY

150 INPUT "ENTER 1, 2 OR 3 TO SELECT INPUT FILE ADDRESS", R
160 IF R = INT(R) THEN 200 :REM ENTRY IS INTEGER?

170 PRINT "INVALIC. REENTER"; HEX(ODOC); TAB(64) ; HEX(OC)
180 GOTO 150

190 REM ERANCH ON ENTERED VALUE

200 CN R GOTO 220, 230, 240

210 GOTO 170 :REM INVALID ENTRY

220 SELECT #1 10A :GOTO 260

230 SELECT #1 10E :GOTO 260

240 SELECT #1 10C

250 REM SELECT OUTPUT FILE ACDRESS

260 GOSUB 2010 :REM DISPLAY ADDRESS MENU

270 REM KEYBOARD ENTERY

280 INPUT "ENTER 1, 2 OR 3 TO SELECT OUTPUT FILE ADDRESS", R
290 IF R = INT(R) THEN 330 :REM ENTRY IS INTEGER?

300 PRINT "INVALID. REENTER"; HEX(ODOC) ; TAB(64) ; HEX(OC)
310 GCTO 280

320 REM ERANCH ON ENTERED VALUE

330 ON R GOTO 350, 360, 370

340 GOTO 300 :REM INVALID ENTRY

350 SELECT #2 10A :GOTO 380

360 SELECT #2 10B :GOTO 380

370 SEIECT #2 10C

2000 REM DISPLAY ADDRESS MENU SUBROUTINE

247

2010 PRINT HEX(C30AOAOAOAOA) :REM CLEAR CRT. LINE 5.

2020 PRINT , "1. 10a","3. 10C"
2030 PRINT , "2. 10B"; HEX(0l):
2040 RETURN

A subroutine (lines 2010-2040) displays the available addresses. The
operator enters 1, 2, or 3 to choose an address (line 150). An ON...GOTO
statement branches on the operator's entry (line 300) to select the desired
address for file number #1 (lines 220-240). The procedure is repeated for
the output file, whose address is selected for file number #2.

The program {(not shown) that follows this routine would include
file number #1 in all cassette statements operating on the "input" cassette,
file number #2 in the statements operating on the "output" cassette.

21-9 UPDATING CASSETTE DATA FILES

Any data file may become obsolete. Depending on the purpose of the
file, you may then simply destroy it by saving other data or programs over it,
or you may wish to update it, so that it is no longer obsolete. Typically, to
update a file, you may wish to add new records to the end of the file, add new
records in the wmiddle of the file, or change the values saved in existing
records.

If, when you create a new data file, you know that more records will
sometime have to be added to the end of it, then it is probably a good idea to
devote an entire cassette to the file. When new records must be added, your
program can simply SKIP END, and begin saving the new records, provided, of
course, that the cassette is not full.

Vhen existing records must be updated, or new records added to the
middle of a file, there is a preferred approach, and there is a less desirable
approach that can.,te used if absolutely necessary.

The preferred approach to updating a cassette data file is to create a
new updated file on another cassette, by copying from the 0l1ld file all records
which are acceptable, and substituting new updated records wherever necessary.
This method requires two cassette drives, and is sometimes called a
"father-son" approach to file maintenance. 1In general, the obsoleted file is
preserved at least until the new file contributes to a third-generation
updated file. Thus, should a file accidentally be destroyed, the last
updating of the file is all that has been lost. This form of copy-updating is
the only prudent approach for a file that must frequently be updated over a
long lifetime, and that would be difficult to reconstruct if accidentally
destroyed.

Example 21.7 shows a program that performs this type of updating on the
array-blocked file discussed in Section 21-7.

Example 21.7 Updating The Array-Blocked Data File

110 REM UPDATING THE ARRAY-BLOCKED DATA FILE

120 DIM X(13), Y(13), B$6

130 SELECT PRINT 005, #1 10A, #2 10B

140 PRINT HEX (0301)

150 INPUT "MOUNT OLD FILE - 10A, BLANK CASSETTE - 10B", 9%
160 DATA LOAD #1, "POINTS2" :REM FIND OLD FILE

170 CATA SAVE #2, OPEN "POINTS2" :REM SAVE NEW HEADER

180 REM

#5

o

190 REM LOAD NEXT BLOCK

200 CATA LOAD #1, BS, X(), Y()

210 REM DISELAY BLOCK

220 FRINT HEX (030A0A) :REM CLEAR CRT

230 IF END THEN 620

240 PRINTUSING 660: REM HEADINGS

250 CCNVERT STR(B$,1,4) TO B :REM BLOCK NUMBER

260 CCNVERT STR(B$,5) TO N :REM NUMBER OF RECDS IN BLOCK
270 PRINT HEX (0C)

280 FOR J = 1 TO N

290 PRINT

300 PRINTUSING 670, J+ (B-1)*13, X(J), Y(J);

310 NEXT J

320 PRINT HEX (010D) ;

330 REM KEYBOARD CHOICE - UPDATE? OR OK NOW?

340 INEUT "ENTER NUMBER OF RECORD TO BE CHANGED (0 = NONE)",R1
350 REM CK NOW?

360 IF Rl = 0 THEN 590 :REM SAVE BLOCK

370 REM OPERATOR ERROR?

380 IF R1&> INT(Rl) THEN 560 :REM NOT INTEGER?

390 IF Rl & 1+ (B-1)*13 THEN 560 :REM TOO LOW?

400 IF R1 > N+(B-1) *13 THEN 560 :REM TOO HIGH?

410 REM CHANGE A RECCRD

420 S = Rl- (B-1)*13 :REM S IS SUBSCRIPT OF DESIRED RECORD
430 PRINT HEX(030A0AOAOAOAOA); "RECORD NOW IS:"

440 PRINTUSING 660

450 PRINTUSING 670, R1l, X(S), Y(S)

460 PRINT HEX(0103)

470 INEUT "ENTER NEW X VALUE", X

480 INEUT "ENTER NEW Y VALUE", Y

490 INPUT "ENTER + TO ACCEPT, - TO REJECT NEW ENTRIES", Z9$
500 IF 29%<€P"+" THEN 430 :REM NEW ENTRIES REJECTED?

510 X(S) = X

520 Y(S) = Y

530 GOTO 220 :REM REDISPLAY BLOCK

540 REM

550 REM ERRCR ROUTINE

560 PRINT "INVALID. REENTER™; HEX(ODOC) ; TAB(64) ; HEX(0C)
570 GCTO 320

580 REM SAVE UPCATED BLOCK ON OUTPUT TAPE

‘590 DATA SAVE #2, BS, X(), Y()

600 IF N = 13 THEN 200: REM MORE BLOCKS?

610 REM END OF EROGRAM

620 DATA SAVE #2, END

630 REWIND #1

640 REWIND #2

650 PRINT HEX(03); "END OF PROGRAM"

660 % RECORD NO. X VALUE Y VALUE

670 ¥ Yy T TINTYT N IINTL

In this program file number #1 is used to specify the 0ld cassette, in
drive 10A,, file number #2 is used to specify the new cassette, in drive 10B.
At line 200 a block of records is read from the o0l1ld file. Lines 220 to 320
display the block of records ir a manner similar to that used in Example 21.5.
The operator can then enter a record number for a record to be changed, or
accept the block of records as currently displayed (line 340). If a record
is selected to be updated, it is displayed alone on the screen (lines 440,
450), and the operator enters and accepts the new values (lines 470-500).

The entered values are assigned to the block array (lines 510, 520), and the
entire block, as updated, is redisplayed. After a block is accepted (lineés

269

340, 360), it is saved on the new cassette (line 590). The program continues
until the end of the file is found (line 230, 600). Line 620 then saves an -
end of file record in the new file.

The DATA SAVE statement cannot be used to update a record or block of
records in the middle of a data file. PFor example, one might suppose that to
update a record in a tape cassette file, a program could simply read the
record, or block of records, backspace one record, or block of records, and
execute a DATA SAVE to write a new record over the 0ld one. This cannot be
done effectively. The DATA SAVE statement, used in this fashion, will not
position the new record exactly over the old one. Remnants of the 0ld record
will cause errors, when a later DATA LOAD is attempted, and prevent the file
from being read.

On systems that have two cassette drives, the copy-update technique as
illustrated in Example 21.7 should alvways be used for file updating. On
systems that have only one cassette drive, occasional updating of relatively
short-lived data files can be performed with the BASIC statement DATA RESAVE.
DATA RESAVE performs the same functions as DATA SAVE, except that it carefully
records the new record or block of records exactly over a previously recorded
record or block of records. Thus, DATA RESAVE permits single cassette
updating. Unlike the two-cassette "father-son'" approach, updating in place
with DATA RESAVE does not leave any back-up cassette. For this reason, DATA
RESAVE should only be used when the following conditions prevail:

l. Only one cassette drive is available.

2. The file to be updated need only be updated infrequently.
(Specifically the file should not be one requiring regular
and repeated updating, intrinsic to the file's purpose.)

3. The file, if accidentally destroyed at any time, can be
reconstructed without a disasterous interruption of operations.

Example 21.8 shows a modification of Example 21.7 that uses DATA
RESAVE to update a cassette file.

Example 21.8 Using DATA RESAVE to Update a File

110 REM UPDATING THE ARRAY-BLOCKED DATA FILE - ONE CASSETTE

120 DIM X(13), Y(13), BS6, FS$1

130 SELECT PRINT 005, #1 10A

140 PRINT HEX (0301)

150 INPOT "MOUNT FI1E TO BE UPDATED IN CRIVE 10A", Z9§
160 DATA LOAD #1, "POINTS2" :REM FIND OLD FILE

180 REM

190 REM IOAD NEXT BLOCK

200 DATA LOAD #1, BS, X(), Y()

205 F$ = ngn *REM SET BLOCK FLAG TO "U" = UNCHANGED.
210 REM LISFLAY BLOCK

220 PRINT HEX(030A0A) :REM CLEAR CRT

230 IF END THEN 630

240 PRINTUSING 6603 REM HEADINGS

250 CCNVERT STR(E$,1,4) TO B :REM BLOCK NUMBER

260 CONVERT STR (B$,5) TO W :REM NUMBER OF RECDS IN BLOCK
270 PFINT HEX (0C) ~

280 FCR J =1 TC N

290 PRINT

300 PRINTUSING 670, J+(B-1l)*13, X(J), Y(J);

310 NEXT J

a7e

320 PRINT HEX(010D) ;

330 REM KEYBOARD CHOICE - UPDATE? OR OK NOW? .

340 INPUT "ENTER NUMBER OF RECORD TO BE CHANGED (0 = NONE)",Rl
350 REM CK NOW?

360 IF Rl = 0 THEN 585 :REM RESAVE BLOCK, IF CHANGED.

370 REM CPEFATCE ERRCR?

380 IF R1 &> INT(RL) THEN 560 :REM NOT INTEGER?

390 IF R1 & 1+(B-1)*13 THEN 560 :REM TOO LOW?

400 IF R1 > N+(B-1)#*13 THEN 560 :REM TOO HIGH?

410 REM CHANGE A RECORD

415 F$ = "C" :REM SET BLOCK FLAG TO "C" = CHANGED

420 S = R1-(B-1)*13 :REM S IS SUBSCRIPT OF DESIRED RECORD
430 PRINT HEX (030A0OAOAOAOAOA); "RECORD NOW IS:"

440 PRINTUSING 660

450 PRINTUSING 670, R1l, X(S), Y(S)

460 PRINT HEX (010A)

470 INPUT "ENTER NEW X VALUE", X

480 INPUT "ENTER NEW Y VALUE", Y

490 INPUT "ENTER + 70 ACCEPT, - TO REJECT NEW ENTRIES", Z9$
500 IF Z9$<> "sn THEN 430 :REM NEW ENTRIES REJECTED?

510 X(S) = X

520 Y(S) = Y

530 GOTO 220 :RFM REDISPLAY BLOCK

540 REM

550 REM ERECR RCUTINE

560 PRINT "INVALID. REENTER"; HEX(0ODOC); TAB(64) ; HEX(0C)
570 GCTO 320

580 REM RESAVE UPDATED BLOCK IF NECESSARY

585 IF F$ = "g" THEN 600 :REM NO CHANGE TO THIS BLOCK
587 BACKSPACE #1, 1 :REM POSITION TAPE FOR UPDATE OF BLOCK
590 TATA RESAVE #1, BS, X(), Y ()

600 IF N = 13 THEN 200: REM MORE BLOCKS?

610 REM END OF PROGRAN

630 REWIND #1

650 PRINT HEX(03): "END OF PROGRAM"

660 % RECORD NO. X VALUE Y VALUE

670 % YTy I TEITITT

Only minor modifications are required to adapt the two cassette version
(Example 21.7) to single cassette (Example 21.8). Line 170 is eliminated. To
update the cassette, (lines 587 and 590), the tape is backspaced one record
and DATA RESAVE is used. With the one cassette system, if a block of records
is completely unchanged, there is no need to backspace and resave it, so a
procedure for detecting whether a block has been changed is added to this
program. When a new block is read, a flag, F$, is set to "U" to signify that
at this stage the tlock is unchanged. If the operator immediately accepts the
entire block as is (line 340), then the value "U" in F$ causes a branch (line
585) around the update routine. If any change is made to a block of records,
F$ is set to "C" (line U415) to ensure that an updated block will be resaved.

¥hen DATA RESAVE is used, the record to be saved must be absolutely

identical to the record being recording over; otherwise, the file is
destroyed.

271

CHAPTER 22: CHAINING PROGRAM MODULES

22-1 OVERVIEW

-
Sometimes a program cannot fit in the availalble system memory. 1In this
case it may still be possible tc accomplish the program's task with a
technique called "chaining", (sometimes also called "overlaying.")
To use chaining, a task to be programmed should first be broken down »

into two or more major sub-tasks or "phases." For example, many tasks may
easily be broken down into a set-up or data input phase, and a processing
phase. Sometimes a distinct third phase may be present in which an

output operation takes place.

Once the task has been bkroken down into several phases that follow upon
one another, the program can be broken down into several sub-programs, called
"modules", that each accomplish one phase of the total task. We have
presupposed that all of these modules will not fit into memory at one time;
however, since each accomplishes a distinct phase of the total task it may be
possible to execute these modules successively, letting one module replace the
preceding one in memory, and in this manner complete the entire task.

If a task has been programmed using three modules, the operator loads
the first module. When the task of the first module is complete, all (or some
portion) of the program statements of the first module are automatically
cleared; the second module is lcaded, and starts to execute. The BASIC
statements LOAD or LOAD DC are used to accomplish this linking of one module g)
to the next. Operator action is not required. The LOAD statement appears in
one module and, when executed, loads the next module. This second module may
contain a LOAD statement which loads a third module. This linking of modules
is responsible for the use of the term "chaining". Each time a new module is
loaded some portion of the previous module is cleared to make room for the
newv.

Four BASIC statements are available to facilitate program chaining.
Their purposes are summarized below.

‘Statement Purpose
COM Specifies a variable or array that contains data common

to several modules, and that is not to be cleared when
a new module is loaded.

LOAD Clears a sgpecifiable portion of the program currently
in memory, and clears all variables not designed as
common. Then loads a named program module into memory
frcm cassette tape, and initiates execution at a
specified 1line.

LOAD DC Same as LOAD except that the program module is loaded
frcm a cataloged disk.

COM CLEAR Changes the status of a variable from common to
non-common, Or Vice-versa.

An additional command is also available which has not previously been
discussed, and which is useful when programming in multiple modules. This
is the command

>74

P

CLEAR ¥N
The "N" parameter stands for "non-common" variables. CLEAR N clears all

variables not designated as common. CLEAR N leaves common variables
undisturbed.

22-2 THE LOAD STATEMENTS (LOATC and LOAD DC)

A LOAD statement, LCAD or LCAD DC, is used in a program to load
another program module. LOAD is a cassette statement that searches forward
through a tape for a named program module, and loads the module. LOAD DC
searches a disk catalog index for a named program module, and loads the
module from the sector addresses specified in the index.

In Chapter 4 the LOAD and LOAD DC commands were introduced. Though
there are some functional similarities between the LOAD commands and the
LOAD statements, the operations performed are not identical. Unlike the LOAD
commands, the LOAD statements have been specifically designed for chaining
program modules. LIOAD and LOAT DC are statements when they appear in a
nunmbered program line; otherwise LOAD and LOAD DC are commands.

The general fcrms of the LOAD and LOAD DC statements are:
LOAD STATEMENT

LOAD #n, r"name";? {lst line numberJ {, 2nd line number !
sxyy,) © -

where: #n = file number, #1-%#6, for which a cassette device
address has been SELECTed.

/Xyy = a cassette device address

"name" = name of program module to search for and load (1
to 8 characters).

1]

the number of the first line to be deleted from
the prcgram currently in memory, prior to loading
the new program module. After loading, execution
begins again starting with this line number.

1st line number

2nd line number = the nuwmber of the last line to be deleted from the
program currently in memory, before the new progranm
module is loaded.

LOAD DC STATEMENT

F #n,] name [lst, line numberJ [,an line numberJ
[4

LOAD DC R /XyYy
T
where: F = fixed platter or left platter
R = removable platter or right platter (middle on
2270-3)
T = "F" or "R" platter depending on device type code

in the device address.

373

#n = file number, for which a disk device address has
been selected, n is an integer 1-6 or a numeric
variable.

/XYy = a disk device address

name = the name of the cataloged program file to be
loaded into memory, expressed as either an
alphanumeric variable or literal string in quotes.

1st line number = the line number of the first line to be deleted
from memory, prior to loading the new program
module. After loading execution begins again at
this line number

2nd line numkter = the number of the last line to be deleted from the
program currently in memory, before the new program
is loaded. ’

LOAD and LOAD LC can be thought of as program statements that, in
effect, produce the following sequence of BASIC commands:

CLEAR P ’ Clear prcgram text from memory, beginning at "1lst 1line
number" (if specified) and ending at "2nd line number"
(if specified). If no line numbers are specified, all
program lines are cleared. If only "1st line number" is
specified, all program lines from lst line number to the
highest line number are cleared.

CLEAR N Clear all variables not specifically designated as
common variables. (See COM statement next section.)
Clear all FOR/NEXT and RETURN information.

LOAD (or LOAD DC) Load named program module.

RUN Run new program beginning execution at "1lst line number"
(if specified). If no line number specified, begin
at lowest line number in memory.

In summary, then, the LOAD and LOAD DC statements clear a specified
portion of the program text currently in memory, clear all variables which
have not been designated as coammon variables, load a specified program module,
and begin executing it. The LOAD or LOAD DC statement can itself be included
within the area to bte cleared. Before execution of the newly loaded module
actually begins, the system searches through the entire program text
allocating memory area tc variables.

For example, the statement
700 LOAD,10A, "LIN-EQU2" 100

clears all program text from line 100 through the highest numbered 1line,
clears all non-common variables, searches the cassette mounted at device 10A
for a program file named "LI¥W-EQU2" and loads the file. After the file has
teen loaded, the system scans the entire program text (old statements as well
as nevw) for variables, allocating memory space as needed, and initiates
execution at line 100. If there is no line 100 in the program an error
results.

a7t

b

The statenment
4040 LOAD DC T#3, "PAYMOD2"™ 900, 6020

clears all program text from lines 900-6020 inclusive, clears all non-common
variables, searches the disk catalog index of the disk mounted at the device

and location specified at file number #3, and locads the program module "PAYMOD2".

After the file has been loaded, memory space is allocated to variables, and
execution begins at line 900.

When a program module is loaded, a line in the incoming module that
has the same line number as a line already in memory replaces the old line.
However, a lOAD statement executes more quickly if program lines that have the
same line numbers as incoming programl#ines, have first been cleared (by
loading into the area cleared by the LOAD or LOAD DC statement).

If used in a wmultistatement line, LOAD (or LOAD DC) must be the last
statement in the line.

22-3 THE COM AND COM CLEAR STATEMENTS

In order to accomplish a programming task in several modules that,
because of memory limitations, cannot be accomplished in one module, each
module must, in some way, pass information cn to the succeeding module.
Broadly construed this "information"™ might include such things as a temporary
data file on tape or disk, or an invoice which has had the customer name and
address completed. Most frequently, though, information is passed to a
succeeding module by assigning it to variables or arrays that are not cleared
when the next module is loaded. Since such variables are common to hoth
modules, they are known as "common" variables. 1In BASIC any variable or array
can be established as a common variable or array by means of the COM
statement. If a variable has been established as a common variable it is
undisturbed by the execution of a LOAD or LOAD DC statement; its value and
dimensions pass intact to the next module.

The COM statement designates a variable as a common variable.
Othervise, it can ke thought of as exactly like DIM, except for two
differences: '

1. A "scalar" numeric variable can be included in a COM statement,
(since a program may require that such a variable be common to
several modules).

2. The COM statement (or statements) must be at a lower line number
than any lire on which there appears a DIM statement, or any
reference to any non-common variable.

Here is an acceptable use of COM statements:

10 COM X, Y, A$20, C$1l4, D$, R$1, KS$(4,4)8

20 COM R(12), S(1l4,1u), L$(6)2

30 DIM T$(14)8, T(1l4)

40 INPUT "NAME OF FILE", F$

50 DIM R2(12,12) .

60 INPUT "ENTER STARTING ARRAY VALUE", R2(1,1)

Notice that the scalar numeric variables X and Y have been designated as

common (line 10). Scalar alphanumeric variables can be established with any
desired character length (1-64). If no length is specified (D¥, line 10) the

275"

length is 16 characters. Numeric and alphanumeric arrays can be established,
just as in a DIM statement (lines 10 and 20). All COM statements must
precede any DIM statements and any references to variables (lines 30-50).

A DIM statement need only precede a reference to the variable
it dimensions (lines 50 and 60); it may follow other variable references
(F$ in line #40). However, a COM statement must precede all references to
non-common variables, and all DIM statements. If line 40 were changed to
line 5, this prcgram would not execute, since, then, a reference to a non-common
variable, F$, would precede a COM statement.

A common variable can only be cleared from memory by a CLEAR or CLEAR V
command, or by Master Initialization. Thus, it is unaffected by successive
LOAD operations, and is available in all succeeding modules. However, the
FASIC statement COM CLEAR is available to designate common variables as
non-common.* If COM CLEAR is used to designate common variables as
non-common, then the variables designated as non-common will be cleared from
memory when a LOAD or LOAL DC statement is executed.

*COM CLEAR is not included in the 2200S Instruction Set, but can be obtained
as a part of Option 24.

COM CLEAR does not itself clear any variables from memory; it merely changes
the designaticn of variables from common to non-common.

To understand what COM CLEAR does, one must have a figurative idea of
what it means for a variable toc be a common variable or a non-common variable.
He have said that during a process called "program resolution", which occurs
immediately after RUN(EXEC) is keyed, the system scans the entire program
text, in line number sequence, looking for variables and arrays, and
allocating memory space to each variable and array used in the program. Each
time it finds a variable in the program, it checks whether it has already
allocated space to that variable. If it has, it goes onj; if not, it allocates
the correct amount of space, and assigns the proper initial value. By this
process, variables are assigned memory space in the order in which they appear
in the program. Let us suppose that Figure 22.1 depicts the memory area used
for variables as defined by the program statements of Example 22.1 shown
below:

Example 22.1 Program To Illustrate Memory Allocation To Common and
Ncn—-Common Variables

10 coM X, AS, R2(6), NS (4)64
20 INPUT K$

30 DIM J(4,U)

40 FOR S£=1 1O 4

50 J(S,S) =1

60 NEXT S

276

S Memory Area
$> Used For

JQ) Variables

COMMON VARTABLE POIYTER K$ ~
%

(A1l variables below this
pointer are ccmmon variables.
The CCM variable pcinter N$()
protects them from being
cleared. when a LOAD .
statement is executed. All
variables above this R2() Bottom of
pointer are ncn-cosmmon and _ Area Used for
are cleared during execution AS N Variables
of a LOAD statement.) -

: J U

_

Figure 22.1 Commcn and Non-Common Variables Set-up by Sample Program

Since X is the first variable to appear in the program (in the COM
statement at line 10) it is the first variable for which space is allocated
in memory. 1In the figure, it appears at the bottom of the memory area used
for variables. The other commcn variables and arrays, A$, R2(6), and
N$ (4) 64, occupy the next successive areas of memory above X. Since common
variables must be specified at a lower line number than any DIM statement or
reference to a non-common variable, all common variables are allocated
contiguous memory space below all non-common variables. 1In the example
above, K$ is the first non-common variable, and all the variables which appear
in the program after K$ are non-common. To separate the common variables
from the non-ccmmon variables, and thereby mark the common variables as
common, the system uses the common variable pointer, shown in the illustration
as a large arrovw., The common variable pointer points to a particular place
in memory and says in effect, "All the variables below this location are
common variables." Whenever the system clears non-common variables, as it
does during a LOAD statement, it clears out all the variables down to the
common variable pointer. Variables below the ccmmon variable pointer are
left undisturbed.

The COM CLEAR statement has the following general form:
variable
COM CLEAR
array designator
If COM CLEAR is used without any variable specified, for example
70 COM CLEAR
it causes all common variables to become non-common variables. It does this
by simply moving the common variable pointer to the bottom of the memory area
used for variables. Thus, if statement 70 (above) were appended to Exanple

22.1, vwhen execution tegins the memory area for variables looks as it does in
FPigure 22.1, but after statement 70 is executed it will look this this:

277

COMMON VARIABLE POINTER

(after COM CLEAR)

J0

K$

NS ()

R2()

AS

— L

ar7e.

S

\‘/‘

This page intentionally left blank.

277

¥ NeT KeY toadd o mMANY

With the common variable pointer moved to the bottom of the memory

\/’ area, there are now no common variables. The variables which were common are

novw non-common, and will te cleared from memory if a LOAD statement is
executed (or a CLEAR N command is issued).

If a common variable or array designator is specified in the COY CLEAR
statement, then the specified variable and all variables defined after it in
the program become non-common. For example if this statement is added to
Example 22.1

70 COM CLEAR R2()

then after this statement is executed, memory looks like this:

J()
K$

NE ()

COMMON VARIABLE POINTER R2 ()
(After COM CLEAR R2()) — —

AS

As can be seen from the figure, R2() and N$() have become non-commow
as a result of 70 CCM CLEAR R2(). N$() is non-common since it was defined in
the program after R2() (see line 10).

It is apparent from this example that there is no possible means of
making R2() non-common and leaving N$() common. This could be done only if
R2() had been originally defined after N$() in a COM statement that looked
like this:

10 COM X, A%, N%(4)64, R2(6)

Thus, if COM CLEAR is to be used, the sequence of variables and arrays in
COM statements can be very important.

27¢

N

Ve can novw see that the COM CLEAR statement simply moves the Conmon
Variable Pointer to change the designation of variables from common to
non-common. It should not be altogether surprising, then, to find that the
COM CLEAR statement can be used for the opposite effect: to make non-common
variables into commcn variables. Por example, if statement 70 is

70 COM CLEAR S

then, after 70 is executed, the memory area used for variable storage
looks like this:

COMMON VARIAELE POINTER S
(after COM CIEAR S) L —

J0
K$

NS ()

R2()

AS

After executing COM CLEAR S, J() and K$ have been added to the group of
common variables, since J() and K$ were defined in the program before S.

A newly loaded module can add more common variables to the group of
common variables which have been passed to it by a previous program. It can
do this ty beginning with COM statements or by executing a COM CLEAR statement
vhich specifies a non-common variable.

Example 22.2 shows the COM statements and LOAD DC statements for
chaining a four-module program. Actual processing to be accomplished by the
modules is not shown.

Example 22.2 Chaining a Four-Module Program

110 REM MODULE 1 OF A 4 MODULE PROGRAM

120 COM N$30, D(8), C$2, F28$(4)8, AS(u) 30
130 DIM C$(u4,u4)2, K$24, R(10,10), S$8
140 SELECT #6 320 :REM PROGRAM MODULES ARE AT 320

150 REM FIRST MODULE PROCESSING STATEMENTS BEGIN HERE

i200 REM END OF FIRST MODULE PROCESSING STATEMENTS
1210 REM CLEAR ALL OF MODULE 1 AND LOAD MODULE 2
1220 LCAD DC T#6, "MOD-2"

*77

110 REM MODULE 2 OF A 4 MODULE PROGRAM
120 CCH M3$(U)60

130 DIM Q(2,2)

140 REM SECOND MODULE PROCESSING STATEMENTS BEGIN HERE

730 LCAD DC T#6, "MCD 3" 110, 740
740 REM LAST LINE TO BE CLEARED DURING LOAD
750 REM *%%x LINES 750 - 1110 ARE RETAINED INTO MODULE 3 **x

1110 REM LAST LINE OF MODULE 2

110 REM MODULE 3 OF A 4. MODULE PROGRAM

120 DIM K2%(2) 24

130 REM MODULE 3 CONTAINS LINES NUMBERED 110 - 700, 1120 - 1300
140 REM LINES 750 — 1110 ARE LEFT IN IT BY MODULE 2

700 REM FIRST SEGMENT OF MODULE 3 LINES ENDS HERE

Iines 750-1110 from module 2 will be here
during execution of module 3.

1120 REM SECOND SEGMENT OF MODULE 3 BEGINS HERE

1270 REM DESITGVATE NOW-COMMON ALL VARIABLES EXCEPT N$

1280 COM CLEAR T ()
1290 REM CLEAR ALL OF MODULE 3 AND LOAD MODULE U4
1300 LOAD DC T#6, "MOD 4w

110 REM HMODULE 4 OF A & MODULE PROGRAN
120 DIM R$1, Z$(2)60
130 REM MODULE 4 INCLUDES LINES 110 - 620

610 REM ENC OF PROGRAM
620 END

Module 1, (first box) establishes COM variables and arrays (line 120) as
well as non-ccmmon variables and arrays (line 130). At line 140 the address
of the disk containing the program modules is assigned to file number #6. (It
is important for the programmer tc be aware that the LOAD DC statement uses a
row of the device table much the way a data file does, and that, therefore,
if, by default or ctherwise, the LOAD DC takes place at a file number already
in use for a data file, the data file will be "closed" by the operation of the
LOAD DC.) Line 1220 of module 1 clears all of module 1, leaving only the COM
variables in memory.

Module 2 (second hox) adds the COM array "$() to those passed to it.
Line 730 clears line 110 to 740 and loads the third module. This however
leaves lines 750-1110 of module 2 in memory to become part of module 3. This
partial clearing technique may be used to pass ccmmonly used subroutines from
one module to the next, or simply to pass routines which must be executed in
both modules.

Module 3 receives all the COM variables established in modules 1 and 2.
It has two segments c¢f program lines, numbered 110-700 and 1120-1300
respectively. These sedgments will surround those left in by module 2 (lines
750-1110). Module 3 does not add any common variables. 1In fact it makes
non-common all the variables that were passed to it, except N$. It does this
at line 1280, by means of the COM CLEAR statement. The array D() specified in

&0

N

.

line 1280 was declared common bty module 1 (line 120). TIt, and all the
variable space allocated after it, are now non-common, which leaves only N$ as
common. All program lines are cleared by the statement at line 1300 of module
3 (including those lines left by module 2).

Module 4 is lcaded. Only N3 is passed to it from module 3. It
executes, and the entire program ends at line 620 of module 4.

2%/

WANG LABORATORIES
(CANADA) LTD.

49 Valleybrook Drive

Don Mills, Ontario M3B 256
TELEPHONE (416) 449-2175
Telex: 069-66546

WANG EUROPE S.A./N.V.
250, Avenue Louise

1050 Brussels, Belgium
TELEPHONE 02/6400617
Telex: 61186

WANG DO BRASIL
COMPUTADORES LTDA.

Rua Barao de Lucena No. 32
Botafogo ZC-01 20,000

Rio de Janeiro RJ, Brasil
TELEPHONE 226-4326, 266-5364
Telex: 2123296 WANG BR

WANG COMPUTERS

(SO. AFRICA) PTY.LTD.
Corner of Allen Rd. & Garden St.
Bordeaux, Transvaal

Republic of South Africa
TELEPHONE (011) 48-6123
Telex: 960-86297

WANG INTERNATIONAL
TRADE, INC.

836 North Street

Tewksbury, Massachusetts 01876
TELEPHONE (617) 851-4111
TWX 710-343-6769

Telex: 94-7421

WANG SKANDINAVISKA AB
Pyramidvaegen 9A

S-171 36 Solna, Sweden
TELEPHONE 08/27 27 95
Telex: 11498

WANG COMPUTER LTD.
Shindaiso Building No. 5
2-10-7 Dogenzaka Shibuya-Ku
Tokyo, Japan

TELEPHONE (03) 464-0644

WANG NEDERLAND B.V.
Damstraat 2

Utrecht, Netherlands

(030) 93-0947

Telex: 47579

WANG PACIFIC LTD.

902-3 Wong House

26-30, Des Voeux Road, West
Hong Kong

TELEPHONE 5-435229
Telex: 74879 WANG HX

WANG INDUSTRIAL CO., LTD.
110-118 Kuang-Fu N. Road

Taipei, China

TELEPHONE 7522068, 7814181-3
Telex: 21713

WANG GESELLSCHAFT M.B.H.
Merlingengasse 7

A-1120 Vienna, Austria
TELEPHONE 85.13.54, 85.13.55
Telex: 74640 Wang a

WANG S.A./A.G.
Markusstrasse 20

CH-8042 Zurich 6, Switzerland
TELEPHONE 41-1-60 50 20
Telex: 59151

WANG COMPUTER PTY. LTD.
55 Herbert Street

St. Leonards, 2065 , Australia
TELEPHONE 439-3511

Telex: 25469

WANG ELECTRONICS LTD.
Argyle House

Joel Street

Northwood Hills

Middlesex, HAGINS
TELEPHONE Northwood 28211
Telex: 923498

WANG FRANCE S.AR.L.
Tour Gallieni, 1

78/80 Ave. Gallieni

93170 Bagnolet, France
TELEPHONE 33.1.3602211
Telex: 680958F

WANG LABORATORIES GmbH
Moselstrasse 4

6000 Frankfurt AM Main

West Germany

TELEPHONE (0611) 252061
Telex: 04-16246

WANG DE PANAMA (CPEC) S.A.
Apartado 6425

Calle 45E, No. 9N. Bella Vista
Panama 5, Panama

TELEPHONE 69-0855, 69-0857
Telex: 3282243

WANG COMPUTER LTD.

302 Great North Road

Grey Lynn, Auckland

New Zealand

TELEPHONE Auckland 762-219
Telex: CAPENG 2826

WANG COMPUTER PTE., LTD.
Suite 1801-1808, 18th Floor
Tunas Building, 114 Anson Road
Singapore 2, Republic of Singapore
TELEPHONE 2218044, 45, 46
Telex: RS 24160 WANGSIN

WANG COMPUTER SERVICES
836 North Street

Tewksbury, Massachusetts 01876
TELEPHONE (617) 8514111
TWX 710-343-6769

Telex: 94-7421

DATA CENTER DIVISION

20 South Avenue

Burlington, Massachusetts 01803
TELEPHONE (617) 272-85650

™ (_

) 5

LABORATORIES, INC.
WANG 1 INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 851-4111, TWX 710 343-6769, TELEX 94-7421

Printed in U.S.A.
700-4081A
11-76-2C

Price: see current list

	Cover page
	Table of Contents
	Part I: Fundamentals of BASIC
	Chapter 1: Introduction to the Equipment In Your Wang System
	Chapter 2: Getting Started
	Chapter 3: Fundamental Instructions
	Chapter 4: Saving and Loading Programs
	Chapter 5: SELECT Statements and the Use of a Printer
	Chapter 6: Functions
	Chapter 7: Loops
	Chapter 8: Introduction to Alphanumerics
	Chapter 9: Debugging Aids and Miscellaneous System Features
	Chapter 10: The ON Statement, with GOTO
	Chapter 11: Lists
	Chapter 12: Supplying Constants: DATA, READ, and RESTORE
	Chapter 13: Introduction to Subroutines
	Chapter 14: The DEFFN' Statement

	Part II: Gaining Proficiency
	Chapter 15: Controlling Output Format with Image (%) and PRINTUSING
	Chapter 16: More About Alphanumerics
	Chapter 17: Controlling a CRT
	Chapter 18: Controlling a Printer
	Chapter 19: Tables (Two Dimensional Arrays)
	Chatper 20: An Introduction to Disk Data Files
	Chapter 21: Data Storage on Tape Cassettes
	Chapter 22: Chaining Program Modules

