2200

[=

LE

YD

¥

i
-

«iAEALARRARARRAARLARSALRARLRLLARL AL a,ﬁ.ﬁj

(WANG)

PROGRAMMING

Jack Jarvis & Company, Inc.
707 S. W. Washington Street
Portland, Oregon 97205
Telephone: (503) 224-7838

2200

BASIC

MANUAL

© Wang Laboratories, Inc., 1973

LABORATORIES, INC.

836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876, TEL.(617) 851-4111, TWX 710 343-6739, TELEX 94-7421

PREFACE

Wang Laboratories would like to take this opportunity to both congratulate and thank you for purchasing
the Wang 2200 system. With its expandable memory (from 4k to 32k}, and its powerful BASIC language,
the 2200 system offers the user infinite programming possibilities.

The 2200 BASIC Programming Manual is an introduction to the 2200 itself, the BASIC language, and
BASIC programming techniques.

In keeping with Wang’s progressive philosophy, the 2200A system is expandable with the following
peripherals: the 2215 (or 2222) Keyboard, the 2221 (or 2231) High-Speed Printer, the 2201 Output
Writer, the 2216 CRT Display Module, the 2227 Telecommunications option and others. The Model 2200B
in addition can have the following peripherals: the 2202 Plotting Output Writer, the 2203 Punched Paper
Tape Reader, the 2214 Marked Sense Card Reader, the 2230—1 (or 2230—-2, 2230—3) Disk Memory, the
2212 Flat Bed Plotter, and the 2207 Teletype Controller. Additional peripherals for the system are being
developed and will be announced shortly.

The combination of its extensive memory, BASIC language, and vast peripheral choice makes the 2200
system unique in its class of calculators.

TABLE OF CONTENTS

PARTI — THE BASICS OF THE 2200
CHAPTER 1 — Equipment Installation and POWER ON Procedure

Section 1—1 Installation .
Section 1-2 “POWER ON” Procedures

CHAPTER 2 — An Introduction to the 2200 CRT Display and BASIC Keyword
Keyboard

Section 2—1 The 2200 CRT Display
Section 2—2 The 2215 BASIC Keyboard .

CHAPTER 3 — Using The 2200 as a Calculator

Section 3—1 Order of Execution and the Use of Parentheses
Section 3—2 Keyboard Functions
Section 3—3 Numbers and Numeric Data

CHAPTER 4 — 2200 BASIC Errors and Error Messages
Section 4—1 Errors and What Can Be Done About Them
PART Il — ONE LINE PROGRAMMING .
CHAPTER 5 — 2200 BASIC Variables .

Section 5—1 The Assignment Statement .
Section 5—2 2200 Variables and Variable Names
Section 5—3 The CLEAR Command and Its Use in In|t|aI|2|ng Memory

CHAPTER 6 — Instructing The 2200 to Print Out More Than One Value Per Line .

Section 6—1 What Is Zoned Format?

Section 6—2 What Is Packed Format? . .

Section 6—3 Mixing Zoned and Packed Format . .
Section 6—4 Using the TAB({ Command For Format Control .

CHAPTER 7 — Using the 2200 With Reiterative Procedures (Looping)

Section 7—1 FOR-NEXT Looping .

Section 7—2 Special PRINT Situations Wlth Looplng .

Section 7—3 CRT Plotting Using a FOR-TO-NEXT Loop and the TAB(
Command

PART Il — PROGRAMMING THE 2200 .
CHAPTER 8 — Programming and Using The 2200

Section 8~1 The Basics of Entering and Executing a Program in Memory
Section 8—2 The Statement Line Number

Section 8—3 Using the STMT. NO. Key

Section 8—4 Executing the Program

Section 8—5 Changing a Program in Memory

Section 8—6 Listing a Program .

Section 8—7 Using the BASIC STOP Statement .

Section 8—8 Using the BASIC END Statement in a Program

Section 8—9 Other Uses of the END Statement

7

Page

w

W

13

13
14
17

21

21
23

24

24
24
26

30

30
32
32
34

38

38
40

41
43
44

44
44
44
45
46
47
48
49
50

CHAPTER 9 — Understanding Programming

Section 9—1 Flow-Charting .
Section 9—2 The Remark (REM) Statement

CHAPTER 10 — The Unconditional Branch
Section 10—1 The GOTO Statement .
CHAPTER 11 — The DATA and READ Statements .

Section 11—1 DATA and READ Statements .
Section 11—2 Using the RESTORE Statement .

CHAPTER 12 — Making Decisions .
Section 12—1 The Use of the IF-THEN Statement
CHAPTER 13 — Interactive Programming - Using the INPUT Statement

Section 13—1 The INPUT Statement . .
Section 13—2 INPUT With an Included Text Strlng .

CHAPTER 14 — Arrays, and Array Variables

Section 14—1 What Are Arrays?
Section 14—2 Naming and Dimensioning Arrays

CHAPTER 15 — Nested Loops .

Section 15—1 Nested Loops .
Section 15—2 Other Uses of Nested Loops

CHAPTER 16 — Alphanumeric String Variables

Section 16—1 String Variable - Names and Characteristics .
Section 16—2 Giving String Variables Values .

Section 16—3 Using String Variables .

Section 16—4 The Size of String Variables

Section 16—5 The STR{(Function .

Section 16—6 The LEN(Function .

CHAPTER 17 — Subroutines .

Section 17—1 “'Calling’” and Writing Subroutines .
Section 17—2 Nested Subroutines .
Section 17—3 lllegal Use of Subroutines

CHAPTER 18 — Single Line User Defined Functions

Section 18—1 Explanation of DEFFN Statement Format and Uses of DEFFN
Function .

CHAPTER 19 — The Special Function Keys .

Section 19—1 General DEFFN’ Verb . .

Section 19—2 DEFFN’ With Commonly Used Character Strlngs
Section 19—3 DEFFN’ Used With Special Subroutines .
Section 19—4 Argument Passing Capability . .
Section 19—5 Example Program “Calling”” Marked Subroutlne .

i

Page
51

51
b5

56
56
58

58
59

61
61
69

69
70

71

71
1

73

73
74

76

76
76
77
80
81
83

85

85
87
88

89

89
91

91
91
92
94
95

CHAPTER 20 — PRINTUSING and %-IMAGE Statement - Controlled Formatting

Section 20—1
Section 20—-2
Section 20—3
Section 20—4
Section 20—5
Section 20—6
Section 20—7
Section 20—8
Section 20—9

of Output

General Form of the PRINTUSING Statement

Over and Under Formatting in the IMAGE Statement
Use of Literals in an IMAGE Statement .

Scientific Notation in IMAGE Statement

Commas in IMAGE Statement

Reusing an IMAGE Statement .

Using “+"" or ="' in an IMAGE Statement .

Using $ in an IMAGE Statement .

Printing Out Strings and String Variables W|th PRINTUSING .

Section 20—10 Arrays With PRINTUSING .

CHAPTER 21 —

Section 21—1
Section 21-2
Section 21-3

CHAPTER 22 —

Section 22—1
Section 22—2
Section 22—3
Section 22—4
Section 22—5
Section 22—-6
Section 22—7

CHAPTER 23 —
Section 23—1
Section 23—2
Section 23—3
Section 23—4

APPENDICES .
Appendix A

Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
INDEX

Use of the Common (COM) Statement

General Form and Description of the COM Statement
Storage and Use of CLEAR With Common Variables .
Using COM Statements in Programs

Debugging

Hints For Debugging a Program

Using HALT/STEP as a Debugging Aid
HALT/STEP With Multi-Statement Lines
Other Uses of HALT/STEP Key .

Use of Program TRACE .

Using HALT/STEP and TRACE Together
Renumbering a Program .

The Hexadecimal Function [HEX ()]

What Is a HEX Code? . .

Format of HEX Function in a BASIC Statement L|ne

Special Characters and Cursor Controls Generated With HEX
Codes . .

Plotting Example .

Error Messages .
List of Error Messages .

Estimating Program Memory Requirements
Specifications .

Available Peripherals

Device Addresses For 2200 Peripherals
Hexadecimal Codes For 2216 (CRT)

CUSTOMER COMMENT FORM .

iv

Page

96

96
96
97
97
97
98
98
99
99
100

101

101
101
102

103

103
104
105
105
106
108
108

110

110
111

111
112

113

113
125

126
129
130
131
132
133
136

HOW TO USE THIS MANUAL

The 2200 BASIC Programming Manual is being provided with your 2200 System to enable you to instruct
yourself in the operations of the 2200. The manual is designed for the user who is only slightly familiar
with BASIC and is not at all familiar with the 2200.

This manual covers only instructions on the basic components of the 2200, namely the Central Processing
Unit (2200 CPU), the Cathode Ray Tube Display (CRT—2216) and the BASIC Keyword Keyboard (2215).

Instruction in the use of the remaining peripherals (i.e., Printers or Output Writers, etc.) is provided under
separate cover for each peripheral purchased.

The Wang 2200 has two operating modes, the immediate mode and the programming mode. Parts | and 11
of the manual introduce the 2200 using the Immediate Mode, or one-line programming. All the technigues
that can be done in the Immediate Mode are discussed; i.e., use of single statement lines and multi-statement
lines, how to do simple and complex calculations, how to format the display, and how to do repetitive
calculations in a single line (looping).

Once the technigues of the Immediate Mode are mastered, it is then a simple matter to progress to using the
2200 as a Programmable Calculator. Part |11 of the manual devotes itself entirely to writing Programs on the
2200 and the intricacies of the BASIC language hardwired into the 2200.

In addition to the 2200 BASIC Programming Manual, a Reference Manual is also provided with the equip-
ment. It is not recommended that the Reference Manual be used for instruction purposes, but in the future

as a quick refresher once you are familiar with the 2200 or as a means for familiarizing yourself with 2200
BASIC as used by the 2200.

In the Appendices of this Manual, additional information is provided. On the last page of this volume is a
Customer Comment form which we at Wang hope you will use for comments and suggestions, then mail
to us here at Tewksbury.

vi

Part |
—The Basics of the 2200—

INTRODUCTION

Part | begins your introduction in the basics of the 2200. First, a description is provided on how to install
and turn on your 2200 System. The remainder of Part | instructs you in how to enter and execute a single
statement line in the Immediate Mode, as well as introducing beginning BASIC. Even though you may be
familiar with the BASIC language it is recommended that Part | (and Part |I) still be read to acquaint
yourself with unique features of the 2200.

CHAPTER 1
EQUIPMENT INSTALLATION AND POWER ON PROCEDURE

A Typical 2200 System

CHAPTER 1
EQUIPMENT INSTALLATION AND POWER ON PROCEDURE

After unpacking and inspecting your equipment, the following procedure is used to install and turn on
your 2200 System.

SECTION 1 -1
INSTALLATION

The basic components of the 2200 are the Central
Processing Unit (CPU) and the Power Supply. All Fig. 1—1a
other pieces of equipment are considered periph-
erals and are attached to the CPU. The CPU is
divided into two main areas: the memory area and
the peripheral attachment area. A connector cord
from the CPU attaches to the power supply box.

(Fig. 1-1). “% POWER SUPPLY

MEMORY
CASSETTE AREA

KEYBOARD /

Install your system as follows:
1. Be sure the ON/OFF switch is OFF on the CPU.
2. Plug the main power cord from the Power
CTZNC;»%'CEER Supply Box into a wall outlet.
SUPPLY 3. Attach the power cord from the CPU to the
Power Supply Box.
permhERALS 4. Plug any peripherals having a power cord
CONNECTOR CPU (i.e. CRT) into a wall outlet.
5. Attach all peripherals to the CPU (i.e. Keyboard,
CRT, Tape Cassette.)
Be sure the locking clips are fastened when
The power supply box is described in Fig. 1—1a. devices are plugged into the CPU.

Fig. 1—1

CRT

Sopoopoaguacanoo \
ooopDoOggdgQoDT
D oopoonoadcooov
XX Q= £)
B SN SEEL. NN EANVSmm—
POWER KEYBOARD
CORD FUSE RESET FUSE + \
ON/OFF LIGHT

CPU CASSETTE
MAIN CONNECTOR v
POWER POWER SUPPLY
SWITCH —_—

Fig. 1—1b

PERIPHERAL
CONNECTORS

CHAPTER 1

EQUIPMENT INSTALLATION AND POWER ON PROCEDURE

SECTION 1 -2
“POWER ON"” PROCEDURES

After installation is complete the following “‘power

on’’ procedure is followed.

1. Turn the ON/OFF switches on the peripherals
to the ON position (including CRT).

2. Move the ON/OFF switch on the power supply
box to the ON position.

NOTE:

When the main power ONJOFF switch is turned
ON the system is automatically initialized, that
is the memory is cleared and the display appears
as .shown in Fig. 1—2. This process is called
Master [Initialization. The system is then ready
to use.

f
READY

Fig. 1—2

NOTE:
If READY does not appear immediately,
leave power ON for 15 sec. and then turn the
switch OFF, then ON again. READY will
then appear on the CRT.

CHAPTER 2 AN INTRODUCTION TO
THE 2200 CRT DISPLAY AND BASIC KEYWORD KEYBOARD

The basic 2200 unit is comprised of three parts — the Central Processing Unit, the Cathode Ray Tube (CRT)
Display, and the BASIC Keyword Keyboard. The following sections describe the procedures for using the
CRT Display and Keyboard to their best advantage, for solving problems.

SECTION 2 —1
THE 2200 CRT DISPLAY

The CRT Display is designed to enable the user to
more easily write programs and review results.
The CRT unit itself is composed of an 8x10% inch

Figure 2—1a shows the display as it appears
after the RESET key has been keyed, or after
MASTER INITIALIZATION has taken place.

screen, and two controls used to set the brightness
and contrast of the output as it appears on the
screen. The screen itself has a maximum capacity

of 16 lines, each 64 characters in length. (Fig. READY

2—1). If more than sixteen lines are entered at any .

one time, each new line is added at the bottom of 7

the CRT, moving the previously entered lines up; \

the line at the top of the CRT display is replaced CRT Cursor

by the line directly beneath it. Fig. 2—1a

The combination of READY and the colon tells
the operator that no processing is taking place
_] within the 2200, and that the 2200 is now READY
- to accept new information. The colon must appear

- in the screen, in order to enter any information into
the system.

nwmMmZ_ro

BWN =0

Next to the colon is a short “’hash’” mark referred
to as the “CRT Cursor’’. This mark denotes the
location where the next input characters will be
positioned in the display.

64 SPACES EACH
Fig.2 —1

SECTION 2 — 2
THE 2215 BASIC KEYBOARD

THE PURPOSE OF THE 2200 BASIC SYSTEM COMMANDS

In order to use the 2200 effectively, it is necessary to understand the functions of the various sections of
the 2215 keyboard. These include not only the 2200 BASIC keywords, mathematical functions and num-
bers, but what are referred to as ““the 2200 BASIC System Commands’’, located around the perimeter of the
keyboard. These commands are used to edit, execute and control the processing of all information entered
into the system.

The keyboard is similar to a typewriter keyboard in that there are upper case and lower case keys. To
obtain a capital letter on a typewriter you must touch the SHIFT key, which puts the typewriter into
upper case, then touch the appropriate key. To obtain lower case letters the typewriter must be in lower
case. To generate a single letter (e.g. A, or B} on the 2200, you must SHIFT before touching the appiopriate
key, as these characters are upper case. To generate certain BASIC key words (e.g. PRINT, END) you must

CHAPTER 2 AN INTRODUCTION TO
THE 2200 CRT DISPLAY AND BASIC KEYWORD KEYBOARD

be in lower case, therefore the SHIFT key isn't used. The use of the SHIFT key is explained throughout
this manual.

The following explanation of the keyboard with examples is presented in the same logical order as the key-
strokes used in evaluating a typical calculation.

THE RESET KEY

The RESET key is located in the upper right-hand 2. Terminates any processing taking place.

corner of the keyboard. L .
3. In terminating any processing, the RESET com-

Touch the RESET key. mand Unlocks the 2200 BASIC keyboard, allow-
This does three things: ing the user t(? enter new ins.truc.tions.from the
keyboard. While any processing is taking place,
1. Clears the CRT display, and prints the following the keyboard is locked.
in the display:

The RESET command does not alter the
memory in any way.

READY

Fig. 2 — 2

THE THREE FUNCTIONAL GROUPINGS
OF THE 2200 KEYBOARD

ZONE 5
SIXTEEN USER DEFINED SPECIAL FUNCTION KEYS

ZONE 3

BASIC LANGUAGE KEYBOARD KEYS AND ARITHMETIC N
ALPHA AND SPECIAL CHARACTERS OPERATORS EgIToAND
ROR
MATH FUNCTIONS
’ CORRECTION
ZONE 2 PUNCTUATION KEYS
NUMERIC ENTRY KEYS SYMBOLS

b))

CHAPTER 2 AN INTRODUCTION TO

THE 2200 CRT DISPLAY AND BASIC KEYWORD KEYBOARD

]
In the explanation of the 2200 keyboard, the fol-
lowing problem is solved: READY
Evaluate the expression ‘PRINT “ANSWER="__
36X8.25+ TANGENT OF 35 radians and CRT
print out the result, labeled “ANSWER”. Cursor

THE 2200 BASIC KEYWORDS — each of which
requires only one keystroke to generate — are the
green keys in the 4 row block on the left-hand
portion of the keyboard. (See photo on page 6.)

Touch the PRINT key. The CRT display looks
like this

(READY
:PRINT_

N__CRT
Cursor

Fig. 2—2a

NOTE:
When using the 2200 as a calculator, the
keyword PRINT must always be used to
instruct the 2200 to print out the results of
the calculations taking place.

All 2200 keywords are lower case (one keystroke,
no SHIFT). The top three rows are presented al-
phabetically for convenience ' . Each time one of
these keys is touched, the entire keyword, plus a
following space is displayed on the CRT, and
entered into the 2200 system.

These same keys when used in upper case (SHIFT
before touching) generate the alphabet, and a
number of other 2200 BASIC symbols. For ex-
ample: depress the SHIFT LOCK key and touch
keys” A NS W E R SHIFT=SHIFT".

Fig. 2—2b

Touching the SHIFT LOCK key locked the key-
board in upper case. Touching the SHIFT key
disengaged the SHIFT LOCK key, putting the
keyboard back into lower case. For single key-
strokes in upper case just touch SHIFT once
before the appropriate key.

Any characters included within a set of quotation
marks are collectively known as a /iteral string.
Although literal strings are not required, they are
often useful for labeling output. They are always
printed out exactly as they are represented in
quotes following a PRINT command.

THE NUMERIC KEYBOARD — the white keys
found in the center of the keyboard used to enter
all numeric data from the keyboard. (See photo
on page 6.)

THE MATHEMATIC KEYBOARD FUNCTIONS —
the green keys located to the right of the numeric
keys. These include the plus (+), minus (=),
multiply (*), divide (/), and power (1) operations,
left and right parentheses, and math functions.

TouchKey :2 36 x8:25
READY
:PRINT “ANSWER="; 36+8.25
4
CRT
Cursor

Fig. 2—2c

1 . L. . .
Some of the keywords on the lower row (blue) of this block serve an additional function, as system controls. These keywords are explained

in this text, as they are used.

2 . .) .
The use of the semicolon will be explained in a later chapter.

CHAPTER 2 AN INTRODUCTION TO

THE 2200 CRT DISPLAY AND BASIC KEYWORD KEYBOARD

Each of the keys of the mathematic functions has
an upper case function which is generated by
depressing the SHIFT key first followed by the
appropriate mathematic function key. Again the
SHIFT is turned off after touching the desired key.

Touch keys + SHIFT TAN (35)

THE CR/LF—EXECUTE COMMAND '

READY

:PRINT “ANSWER=""; 36%8.25 + TAN (35)_
CRT
Cursor

Fig. 2—2d

The CR/LF—EXECUTE command is used to process all IMMEDIATE MODE calculations. This is ac-
complished by touching the CR/LF—EXECUTE key after the complete line has been entered.

Continuing with the present example,

READY

:PRINT ““ANSWER="";36+8.25+TAN(35)__
CRT
Cursor

Fig. 2—2e

Touch the CR/LF-EXECUTE key.

(R EADY

:PRINT “ANSWER="'; 36+8.25+TAN(35)
ANSWER=297.4738147203

(The Answer)

Fig. 2—2f

When the CR/LF-EXECUTE key is touched, the
line is checked for BASIC grammatical correctness.
If the line is not correct, an error message is gen-
erated, signalling the mistake. (See Chapter 4 for
a full explanation of ERRORS and ERROR
MESSAGES.)

If the line is correct the line is immediately
executed, and cleared from the memory area. If
there was a line number in front of the statement
line, the 2200 then waits for its next instruction
(as is the case in Programming, discussed in Part
Il of this manual).

After the line is executed, the cursor on the CRT

moves to the first space of the next line and the
processing light on the keyboard lights up. The
new colon, “:”", does not appear until processing
has stopped and all output is displayed. The pro-
cessing light goes out.

Thus, to use the 2200 as a calculator, a 2200
BASIC line must be entered into the 2200 via the
keyboard each time it is to be executed, and the
CR/LF-EXECUTE key then touched. While the
2200 is processing the line, all the keys on the
keyboard (with the exception of the RESET key)
are locked. Processing as a calculator continues
until one of the following conditions occurs:

1. A result is arrived at implying that all instruc-
tions have been carried out. At this point, the
keyboard is unlocked and a (:) appears on the
CRT.

2. The RESET key is touched while the 2200 is
processing. All processing terminates and the
2200 clears the CRT display and prints, READY
(Fig. 2—2g).

Fig. 2—2g

3. A BASIC grammatical or operational error is
discovered by the 2200. This causes the ap-
propriate error message to be displayed, and

1
CR/LF—EXECUTE stands for Carriage Return/Line Feed.

CHAPTER 2 AN INTRODUCTION TO

THE 2200 CRT DISPLAY AND BASIC KEYWORD KEYBOARD

processing terminates. (Appendix A lists all the
errors and error messages.)

TO SUMMARIZE — the colon must appear in

the display before any line can be entered into
the 2200. Either Master Initialization or RESET

initializes the display. For an immediate calculation

The CRT control keys enable the user to either
“edit” any information before the CR/LF—EXE-
CUTE key is touched or to obtain special unusual
effects on the CRT under program control. The
CRT control keys are discussed in this section and
in more depth later in this manual.

There are three blue CRT control keys, located
along the right-hand edge of the keyboard. (See
photo on page 6.)

space

Touch the|"” ""|key several times. This causes the
CRT Cursor to move one space to the right, each
time the key is touched, enabling the user to enter
spaces in 2200 BASIC statement lines.

READY

444
Cursor moves along line to right
Fig. 2—2h

Touching this key at the end of a line causes the
cursor to jump to the first space of the next line.

i

Touch the| BACK | key several times. This causes
SPACE

the CRT cursor to move one space to the left, each
time the key is touched.

—

READY
EYY

Cursor moves along line to left

Fig. 2-2i

THE CRT CONTROL KEYS

with a printout, the keyword PRINT must precede
the calculation. To obtain the result of the line,
the CR/LF-EXECUTE key is touched. Once this
key is used, the line is lost, and must be rekeyed if
the results are to be repeated.

Now, touch the PRINT, SHIFT and A keys. The
CRT display is now

READY
:PRINT A _
\ CRT
Cursor
Fig. 2—2j

Touch the <— key once. This deletes only the
character “A’”’ from the CRT display.

READY
:PRINT _
A\ CRT
Cursor
Fig. 2—2k

Touching this key while entering a line causes the
CRT cursor to backspace a single space to the left
and delete the last keystroke entry from the CRT.

Touch the -— key again. This time, the entire
keyword PRINT is deleted because the keyword
was entered by touching a single key.

READY
'—\k\\\\\‘_~_ CRT
Cursor
Fig. 2—2i
Backspacing to delete with the -— key deletes
either a character or a whole word depending
upon how each was generated. The word PRINT

when generated by the PRINT key, is considered
as a single character and is deleted by striking the

CHAPTER 2 AN INTRODUCTION TO
THE 2200 CRT DISPLAY AND BASIC KEYWORD KEYBOARD

~— key only once. But if the word PRINT Touching the LINE key erases the entire line
was generated with upper case letters (e.g. P ERASE

R I N T) then each time the -— key is at which the cursor is located.

touched only one character at a time is erased. LINE

Both the -e— key and key work

ERASE
as described in both upper and lower case.

Key PRINT “ANSWERS ARE AS FOLLOWS”

READY
:PRINT “ANSWERS ARE AS FOLLOWS"

CRT /

Cursor

Fig. 2—2m

LINE

Touch | o AsE

show

key. This causes the display to

READY
CRT
Cursor
Fig. 2—2n

THE SPECIAL FUNCTION KEYS

i1
et
1A

f—
PO T,

s
:
=

Located at the top of the 2200 BASIC keyboard entry of special groups of characters, frequently
is a row of 16 keys, known collectively as the entered into the 2200. Chapter 19 describes the
Special Function keys. These keys enable the 2200 various uses of these keys, and the purposes
user to “customize” his calculator to meet specific intended for each.

programming requirements, and to facilitate the

10

CHAPTER 2 AN INTRODUCTION TO
THE 2200 CRT DISPLAY AND BASIC KEYWORD KEYBOARD

EXERCISES

1. Using the 2200 as a calculator, perform the following calculations. (Be sure to touch the PRINT key
each time a new line is entered):

14+6

8+6

8-12.66

.- 18 » 4,65
96/853

513
26+5+12+10
.7-12.6+8-.002
8x10+6+4
144 1t .5

T e M0 00 oo

2. Do the following, using the 2200 as a calculator.

a. i Print the sum of 86.2 and 155.86
ii Print the result of 85622 minus 1498
iii Print the product of -567 and 16.6
iv Print the quotient of 20 divided by 4.25
v Print the result of 17.3 raised to the 1.6 power
b. Find the sum of the 10 integers,1 thru 10.
Find the product of the twelve integers, 1 thru 12.
d. Assuming 365 days in a year, 24 hours in a day, find the number of seconds in a year.

o

1

CHAPTER 2 AN INTRODUCTION TO
THE 2200 CRT DISPLAY AND BASIC KEYWORD KEYBOARD

N
®

o TQ@ AP Qa0 oW

ANSWERS

KEYSTROKES
PRINT 1446 CR/LF-EXECUTE

. PRINT 8«6 CR/LF-EXECUTE

PRINT 8-12.66 CR/LF-EXECUTE

. PRINT -18%4.55 CR/LF-EXECUTE

PRINT 96/853 CR/LF-EXECUTE
PRINT 513 CR/LF-EXECUTE
PRINT 26+5+12+10 CR/LF-EXECUTE

. PRINT 7-12.6+8-.002 CR/LF-EXECUTE

PRINT 8x10+6x4 CR/LF-EXECUTE
PRINT 1441.5 CR/LF-EXECUTE

i PRINT 86.2+155.86 CR/LF-EXECUTE

ii PRINT 8522-1498 CR/LF-EXECUTE
ii PRINT -57x16.6 CR/LF-EXECUTE
iv. PRINT 20/4.25 CR/LF-EXECUTE

v PRINT 17.311.6 CR/LF-EXECUTE

b. PRINT 1+2+3+4+5+6+7+8+9+10 CR/LF-EXECUTE

e

PRINT 1%#2x3+4x5x6+7x8+«9x10x11x12 CR/LF-EXECUTE

. PRINT 365+24+60+60 CR/LF-EXECUTE

12

ANSWER

20

48

-4.66

-81.9
.1125439624853
125

53

2.398

104

12

242.06

7024

-946.2
4.705882352941
95.691588717
55

479001600
31536000

CHAPTER 3
USING THE 2200 AS A CALCULATOR

The material in the following Section explains the use of parentheses and the order of execution of algebraic
expressions. The 2200 follows all the standard accepted rules associated with algebra. Even though you may
be familiar with algebraic ordering, it is recommended that this section be read.

SECTION 3 -1

ORDER OF EXECUTION AND THE USE OF PARENTHESES

The exercises included at the end of the last section
demonstrated the use of the basic five arithmetic
operations: Addition, subtraction, multiplication,
division, and exponentiation. In those exercises,
for the most part, there was no question about the
priority, or order of execution of the arithmetic
operators used. As long as the operators are not
mixed within an expression, the expression is
simply evaluated left to right.

In most cases however, mathematical expressions
involve several different operators. For example,
consider the expression:

W xX1tY -2Z

How is this expression evaluated? The table below
provides the answer

Table 3—1

Order Of Execution
(Priority)

Operation Symbol

Exponentiation Computed 1st

Division /
multiplication *

Computed 2nd

Subtraction -
Addition +

Computed 3rd

Using the above priorities, all expressions are
evaluated left to right.

Thus the order of execution of W * Xt Y - Z is:

First, X is raised to the power Y. Second, the
result is then multiplied by W. Third, and finally,
Z is subtracted from the product.

This answers the questions of the order of execu-
tion. However, suppose this is not the intended
order. In this case, parentheses must be used to
indicate the order of execution intended. Thus,
if the product of W » X is to be raised to the
power Y, the expression would be written as

13

(WsX)tY-2Z

Fig. 3—1

Or, if X is raised to the power (Y-2Z), the expression
would be written as
W X1 (Y-2)
Fig. 3—1a
or, if W is to be multiplied by X1Y-Z, the
expression is written as
W (X1TY-2)

Fig. 3—1b

It is evident then, that parentheses are used to
alter the order of execution. Parentheses indicate
that the enclosed quantities are to be evaluated
first. When parentheses are used in an expression,
the order of execution becomes:

Table 3 — 2
Operation Symbol | Order of Execution
(Priority)
Expressions () Computed 1st

within Parentheses

Exponentiation t Computed 2nd

Computed 3rd

Division
Multiplication

Subtraction -
Addition

Using the above priorities, all
evaluated left to right.

Computed 4th

expressions are

CHAPTER 3
USING THE 2200 AS A CALCULATOR

Parentheses have an additional use as well. To cal-
culate 57°

Touch RESET
Key PRINT 51 -3 CR/LF-EXECUTE
The CRT display is

r
READY
:PRINTS5 1 -3

T ERR 15

\CRT

Cursor
Fig. 3—1¢
Two mathematical operator symbols cannot appear
next to each other; they must be separated using
parentheses. Touch RESET and rekey the problem.

—

READY
:PRINT 5 1 (-3)
8.00000000 E- 03

Fig. 3—1d

I I

Multiple sets of parentheses can be used as well.
For example, in the following expression, three
sets of nested parentheses are used.

(((7.3+4.2)12+6) +.5+17)/22

Fig. 3—1e

An unlimited amount of nesting of parentheses
is allowed on the 2200. Parentheses can and should
be used whenever there is any question as to the
order of execution of an expression. Their use
assures that the expression is executed exactly as
intended.

However, in using parentheses, there are two rules
which must be followed:

First, parentheses must always be balanced — there
must be an equal number of right and left parenthe-
ses.

3rd set

2nd set
VistsetN

(((7.3+4.2)>+6)"%+17) /22
Fig. 3—1f

Second, implied multiplication is not allowed;
that is, the expression X * (Y + Z) is correct,
while X (Y + Z) is not. When multiplication is
intended, the multiply key, (%), must be used.

SECTION 3 -2
KEYBOARD FUNCTIONS

In addition to the arithmetic operators, 2200
BASIC includes a set of 12 commonly used
mathematical functions, found as upper case on
the right-hand green keys of the 2200 keyboard.
Notice that, with the exception of the = and ARC
functions, a left hand (open) parenthesis is included
with each function. To use one of these functions

14

then, a right hand (closed) parenthesis must be
keyed following the last element of the function
argument. To generate an ARCSIN(, ARCCOS(,
or ARCTAN(function, the ARC key is touched
prior to the appropriate trigonometric function
key. Table 3—3 gives an entire list of these key-
board functions.

CHAPTER 3

USING THE 2200 AS A CALCULATOR

Table 3 — 3

Keyboard Function

' SIN(expression)
' cos(expression)
' TAN(expression)
ARC SIN(
ARC COS(
2 ARC TAN(expression)

expression)

expression)

ABS(expression)
INT(expression)

SGN(expression)

LOG(expression)

EXP(expression)

SQR(expression)

Meaning

Find the sine of the expression
Find the cosine of the expression
Find the tangent of the expression
Find the arcsin of the expression
Find the arccosine of the expression

Find the arctangent of the ex-
pression

Assign the value (3.14159265359)

Produce a random number between
Oand 1

Find the absolute value of the
expression

Take the greatest integer value of
the expression

Assign the value 1 to any positive
number, O to zero, and -1 to any
negative number

Find the natural logarithm of the
expression

Find the value of e raised to the
value of the expression

Find the square root of the ex-
pression

Example

SIN(n/3) = .8660254037841
COS(.69312) = .8868799122686
TAN(12)= -.6358599286636

ARC SIN (.003)= 3.00000450E-03
ARC COS (.587)=.943448079441
ARC TAN (3.2)= 1.26791145842

4+#P1=12.56637061436

RND(X)=.8392246586193

ABS(7+3.4+2)= 25.8
ABS(-6.537)=6.537

INT(3.6)=3
INT(-5.22)=-6
SGN(9.15)=1
SGN(0)=0
SGN(-.124)=-1

LOG(3052)= 8.023552392402

EXP(.33+(5-6))=
.7189237334321

SQR(18+6)=SQR(24)=
4.8989794856

1 Unless instructed otherwise the function is interpreted in radians. To use degrees, touch SELECT D CR/LF—EXECUTE once.
All following trigonometric expressions are then interpreted as degrees. To use grads, touch SELECT G CR/LF-EXECUTE.
To reset the 2200 to radian measure, touch SELECT R CR/LF—EXECUTE, or switch the 2200 OFF and ON.

2 The arctangent notation ATN(is also a recognized function notation, but must be keyed in directly from the keyboard.

15

CHAPTER 3
USING THE 2200 AS A CALCULATOR

1. Find the/114.6+53.47

Key PRINT SHIFT SQR(114.6/53.47) CR/LF-

EXECUTE ‘
The CRT display shows

—

READY

:PRINT SQR (114.6/53.47)
1.4639869882

Fig. 3—2

2. Find Log, 10
Key PRINT SHIFT LOG(10) CR/LF-EXECUTE

—
READY

:PRINT LOG(10)
2.302585092994

Fig. 3—2a
3. Find the SIN of 3.289 radians.

Key PRINT SHIFT SIN(3.289) CR/LF-EXE-
CUTE

-

READY
:PRINT SIN(3.289)
-.14687409221

Fig. 3—2b

EXAMPLES OF USE OF KEYBOARD FUNCTIONS

16

Unless instructed otherwise, trigonometric func-
tions are interpreted in radians. To use degrees,
key SELECT D CR/LF—EXECUTE once, before
entering the problem. All following trigonometric
arguments are then interpreted as degrees. The
2200 can be put into Gradian mode by Reying
SELECT G CR/LF—EXECUTE.

To reset the 2200 to radian measure from either
degrees or gradians, key SELECT R CR/LF—
EXECUTE, or switch the 2200 to OFF and ON
to reinitialize.

4. Find the COSINE 48°
Key SELECT SHIFT D CR/LF-EXECUTE
PRINT SHIFT COS(48) CR/LF-EXECUTE

r
READY
:SELECT D
:PRINT COS({48)

669130606358

Fig. 3—2¢

Return the 2200 to Radian mode by keying
SELECT SHIFT R CR/LF—EXECUTE.

5. Find the absolute value of the expression

1.68°> - 46
~ 285

Key PRINT SHIFT ABS ((1.6812-46)/28.5)
EXECUTE

—
READY

:PRINT ABS ((1.6812-46)/28.5)
1.515003508772

Fig. 3-2d

SECTION 3 -3

NUMBERS AND NUMERIC DATA

FLOATING POINT NUMBERS

Up to this point, entering numbers into the 2200
has been accomplished via the numeric keyboard,
by keying digits and decimal point in the appropriate
sequence. Thus, in entering the number 135.68,
the required keystrokes are 1 3 5

6 8 in that order. Similarly, entering the
number -.0085 requires the keystrokes -

0O 0O 8 b5

In cases such as these, the sign (where necessary)
and digits have been entered in a fixed sequence,

While fixed point format enables the user to enter
numbers as large as 9999999999999., or as small
as .0000000000001, there are obvious limitations.
Not only is 13 digits limiting in size in many cases,
but awkward to use as well (to be certain there are
the correct number of digits, they all have to be
counted).

To alleviate these problems, another format, re-
ferred to as floating point, may be used with
2200 BASIC. When floating point is used, the
number is represented as a fixed point number,
multiplied by an integral power of ten. Examples
of numbers represented in floating point are:

6.02 X 10%* 5,1 X 1075
195 X 10'% .016 X 10°
Fig. 3—3

Notice that in floating point, the decimal point is
optional, and as mentioned before, the power of 10
is an integer. Also, for numbers greater than zero,
a plus sign is assumed in both the exponent and the
fixed point portion of the number, if a sign is not
entered. When a floating point number is written
with the decimal point after the first non-zero
digit (e.g. 5.64E3 as opposed to b6.4E2 or
.0564Eb) it is said to be in Scientific Notation.

SCIENTIFIC NOTATION

17

with the decimal point in its true position. Num-
bers entered in this manner are known as fixed
point numbers, and their format is referred to as
fixed point format.

In fixed point format, numbers with up to thirteen
(13) digits, a decimal point, and a sign may be
entered into the 2200. When entering a number
greater than zero, a plus sign is implied, and need
not be entered.

Using floating point in the 2200 requires the
use of the letter ""E’’ to signify that an exponent
of 10 is being entered. To generate the letter ’'E”,

E
the SHIFT and|[END

keys are used.

Print out the number 5.675 X 10°
Key PRINT 5.675E4 CR/LF—EXECUTE

r
READY
:PRINT 5.675E4
56750
Fig. 3—3a

Print out the number 15.9 X 107 °
Key PRINT 15.9E-8 CR/LF—EXECUTE

(

READY
:PRINT 15.9E-8
1.59000000E-07

Fig. 3—3b

Other examples of the correct use of floating
point are given in Figure 3—3c.

CHAPTER 3
USING THE 2200 AS A CALCULATOR

NUMBERS AND NUMERIC DATA

VALID USE OF FLOATING POINT NOTATION

6.02 X 10%* entered as 6.02E24 printed as 6.02000000E+24
195 X 10'® entered as 195E18 printed as 1.95000000E+20
5.1 X 107° entered as 5.1E-5 printed as 5.10000000E-05
.016 X 10'® entered as .016E18 printed as 1.60000000E+16
-1.5683 X 10*° entered as -1.5683E40 printed as —1.56830000E+40
.00641 X 10° entered as .00641E5 which is equal to printed as 641

6.41E2

Fig. 3—3c

When entering numbers in floating point notation,
each can include up to thirteen digits, a decimal
point and sign, and a two-digit positive or negative
exponent. However, the keyword PRINT will
display only the first nine digits in scientific
notation, though the remaining digits are kept
internally.

8.7Eb.8
103.2E99

INVALID USE OF SCIENTIFIC NOTATION

The largest exponent which 2200 BASIC will
accept is E99. The smallest exponent is E-99.
The values of the exponents must always be in-
tegers — no decimals or fractions are allowed.
Examples of invalid numbers are given in Figure
3—-3d

Not valid because of the illegal decimal form of the exponent.
Not valid because in reduced form it is equivalent to 1.032E101,

an exponent greater than E99.

.87E-99

Not valid because it is equivalent to 8.7E-100.

Fig. 3—3d

18

CHAPTER 3

USING THE 2200 AS A CALCULATOR

EXERCISES

Evaluate the following expressions on the 2200. Use the keyboard functions wherever possible.

vi

vii

viii

Xi

2

575
.00575°

(-35)2

xii

xiii

Xiv

XV

XVi

XVii

xviii

/5 ++/8 » 92

Tangent 7/4 radians

Arc Sine .b

Log of+4/ 19.56

2
Integer 3.8% - (L)
.32

Absolute value of (18.2 - 167)

v/ 14.5-6

. ¢ .
Sign of the expression 15.8 - cosine 22 radians

19

CHAPTER 3
USING THE 2200 AS A CALCULATOR

Vi

vii

viii

Xi

Xii

Xiii

Xiv

XV

XVi

XVii

XViii

Problem

575°
.00575°

(-35)2
4.2

& -

62 62

V/5+/8x92

Tangent w/4 radians
Arc Sine .b

Log of4/ 19.5

Greatest integer

3#-(352
33

Absolute Value of
(18.2 -167)

Sign of the expression

v/ 14.5-6

___ e
Keystrokes Answers
Print 57512 = 330625

Print .0057513 =
Print (-35)12=

Print (1/35)14.2 =

Print 313+515=

Print 7x(813 + 5+«912) =

Print 512/6 + 5/612 + 512/612 =

Print 5x612/(5+612) =

Print 215614 =

Print SQR(36) =

Print SQR(1/36) =

Print SQR(5+SQR(8+912)) =
Print TAN #P1/4) =
Print ARC SINE (.5) =

Print Log(SQR(19.5)) =

Print INT(3.812 -(2/.312)12) =

Print ABS(18.2 - 1612) =

Print SGN(SQR(14.5-6)/15.8+COS (22)) =

15.8 - COS (22 radians)

20

1.90109375E-07

1225

3.27276041E-07

84375

6419

4.999999999999

4.390243902439

1048576

6

.16666666667

5.5186813754

1

.5235987755982

1.485207232792

-480

237.8

-1

CHAPTER 4

2200 BASIC ERRORS AND ERROR MESSAGES

The BASIC language was chosen for the 2200 because it is both powerful and easy to use. However,
2200 BASIC does require the user to follow certain rules. For example there are restrictions on the formats
of numbers, and on the structure of BASIC statements. There are also restrictions on the magnitude of

numbers used as arguments of functions.

To assure that the language is used properly, an extensive set of error detectors and identifiers is incor-
porated into the system. If an error occurs, the 2200 notes the fact by displaying an error message at the
location where the problem is found, and stops all processing. Appendix A explains all the error diagnostics,
and after the programmer has decided on the cause of the error, he may reenter the line correctly.

SECTION 41
ERRORS AND WHAT CAN BE DONE ABOUT THEM

Altogether, there are three types of errors a 2200

user can make:

1. A SYNTAX ERROR — an improper or illegal
format is used in an entered BASIC statement.
Examples include the improper use of the BASIC
keywords, and unbalanced parentheses.

2. AN ERROR OF EXECUTION — an error result-
ing from the execution of an otherwise legal
BASIC statement. Examples include such things
as attempting to take the square root of a
negative number.

3. A PROGRAMMING ERROR — The 2200 ex-
ecutes the statement, but the results obtained
are not correct, because the wrong information
or logic is used by the programmer.

Of these three types, 2200 BASIC error messages

cover the first two as follows:

A SYNTAX ERROR results when the required
form of a 2200 BASIC statement is violated.
Pressing a sequence of keys not recognized as an
accepted combination results in this type of error.
In general, an error message is displayed as soon
as the CR/LF—EXECUTE key is touched. Exam-
ples of this type of error include the improper use
of verbs, improper number format, the improper
use of operators and parenthesis, and the im-
proper use of punctuation.

ERROR EXAMPLE 1:
Key PRINT 3 * SQR (17 CR/LF—EXECUTE

21

The CRT display shows

READY
:PRINT 3 * SQR(17
TERR 05

Fig. 4—1
THE PROBLEM: A missing right parenthesis.

THE SOLUTION: Reenter the line correctly, with
balanced parentheses.

ERROR EXAMPLE 2:
Key PRINT PRINT 316.2 CR/LF—EXECUTE
The CRT display shows

READY
:PRINT PRINT 316.2
tERR 15

Fig. 4—1a

THE PROBLEM: The PRINT command appears
twice in the same statement.

THE SOLUTION: Reenter the statement correctly,
using PRINT only once.

CHAPTER 4

2200 BASIC ERRORS AND ERROR MESSAGES

ERROR EXAMPLE 3:

Key PRINT 56849.0658257851.3 CR/LF—
EXECUTE

READY
:PRINT 56849.0658257851.3
TERR 20

Fig. 4—1b

THE PROBLEM: More than 13 digits in the entered
number.

THE SOLUTION: Reenter the statement with less
digits.

AN ERROR OF EXECUTION results when an
illegal arithmetic operation is performed, or the
execution of an illegal statement or programming
procedure is attempted. This type of error differs
from a Syntax Error in the fact that the statement
itself uses the proper syntax; however, the execution
of the statement leads to an error condition.

ERROR EXAMPLE 4:
Key PRINT 18/(5-5) CR/LF—EXECUTE

-

READY
:PRINT 18/ (5-5)
PRINT 18/(5-5)

TERR 03

Fig. 4—1c
THE PROBLEM: Division by zero — a math error.

THE SOLUTION: Recheck the mathematics and
reenter the corrected statement.

22

ERROR EXAMPLE 5:
Key PRINT 1.23E60/4.95E-50 CR/LF—EXECUTE

-~

READY
:PRINT 1.23E60/4.95E-50
PRINT 1.23E60/4.95E-50
TERR 03

Fig. 4—1d

THE PROBLEM: Exponent overflow: the resulting
magnitude of the number calculated is greater than
10°°.

THE SOLUTION: Recheck the mathematics and
reenter the corrected statement.

THE PROGRAMMING ERROR

Assuming that a 2200 BASIC statement or program
is free of syntax and execution errors, it is possible
that a programming or logic error has been made.
For example, if, instead of using

b® —4ac
(-B+SQR(B12-4xAxC))/(2+A) = -b + ¥——=-

2a
Fig. 4—1e
the following is used:
2
-B+SQR(B12-4xAxC)/2xA = b + %

Fig. 4—1f
would not necessarily be correct.

(Notice the missing parentheses in Fig. 4—1f.)
Therefore the 2200 does only what it is told and
if a programming error has occurred the 2200 has
no way of knowing it.

Part i
—One Line Programming—

INTRODUCTION

Up to this point, all problems and solutions using the 2200 have revolved around the use of single BASIC
statements, composed solely of real numbers. Although this type of problem is very common, the material
in Part 1l demonstrates it is by no means the only type of problem found, nor the only type of problem the
2200 is capable of solving. Likewise, the single statement line is also not the only way in which the 2200
may be instructed to solve these problems.

Part Il of the 2200 BASIC Programming Manual introduces using the 2200 under program control.
These concepts are then covered in depth in Part lI1 of this manual. Included in Part Il is an introduction
to the use of variables, punctuation in PRINT statements for varying printout formats, and the use of
looping techniques.

Basic to this entire section of the manual is the concept of the 2200 statement line. A statement line is simply
a 2200 BASIC line, composed of one or more BASIC statements. Statements in a statement line are

separated by colons, generated by touching the SHIFT, and | g7 * | keys.
NUMBER

For example, enter the following statement line

PRINT 15:PRINT SQR(15):PRINT 151(1/3) CR/LF-EXECUTE

—

READY

:PRINT 15:PRINT SQR(15):PRINT 151(1/3)
15

3.8729833462

2.4662120743

Notice that there are three separate statements in the line, and that the statements are executed sequentially.
The results are printed in a column under the statement line. In a multiple statement line, the colons
serve to denote the beginning of a new statement.

23

CHAPTER 5
2200 BASIC VARIABLES

SECTION 5-1
THE ASSIGNMENT STATEMENT

Key X =5+ 19: PRINT X CR/LF—EXECUTE

/

READY

:X=5+19: PRINT X
24

Fig. 5—1

Notice that this line is actually a multi-statement
line composed of two separate BASIC statements.
In the first statement, the variable ““X" is given or
assigned a value (The expression 6 + 19”). This
type of statement is thus known as an assignment
statement, because the variable on the left is
assigned a value. The second statement simply says
to print out the value of X.

The colon *:"" is used to indicate the start of the
second statement. Notice that in the assignment
statement, an equal sign ="’ is used, and that the
variable (in this case ‘“X’’) assigned a value, is on

the left side of the equality sign. In an assignment
statement, the variable being assigned a value is
always on the left side of the equality sign.
Conversely, the expression or value assigned to the
variable is a/ways on the right side of the equality
sign. The value assigned can be an expression, a
constant or another variable. The followingsection,
discussing 2200 BASIC variables illustrates how
this is accomplished.

NOTE:
In the BASIC language, the verb LET s
quite often used in an assignment statement.
Thus the statement line

X=5+1719: PRINT X
could also be written
LET X=5+1719:PRINT X

with the SAME RESULTS. However, the verb
LET is OPTIONAL. This keyword is not
included among the 2200 BASIC keyword
block. To generate the verb LET, key SHIFT
LOCK, L, E, T, SHIFT.

SECTION 5-2
2200 VARIABLES AND VARIABLE NAMES

In general, a variable in 2200 BASIC is a set of
characters which represents a data value in the
2200 system. The value assigned to the variable
does not change until it is either assigned a new
value by an assignment statement, or until the
variable is cleared from the system, by using the
CLEAR command, as described in Section 5—3.
Once the variable is named the 2200 automatically
sets aside a storage location for that value.

Although there are many types of 2200 BASIC
variables, the most often used are what are known
as numeric scalar variables.

DEFINITION — A numeric scalar variable is a
variable which can represent only one numeric value
at a time (as compared to an array variable des-
cribed in Chapter 14.) The value assigned may be

any real number within the range of the 2200
(£107°° to + 10"°°).

In the 2200 BASIC a numeric scalar variable is
designated by a letter or a letter followed by a digit.
There are 286 variable names available in the 2200
system (A—Z, AC—Z9).

LEGAL NUMERIC SCALAR VARIABLE NAMES

X B
w A4

A 22

1 letter or 1 letter followed by one
digit

Fig. 5-2

CHAPTER b5
2200 BASIC VARIABLES

ILLEGAL NUMERIC SCALAR VARIABLE
NAMES

XX WL 5M C75

Fig. 5—2a

Numeric scalar variables can be used with all the
arithmetic (+, —, =, /, 1) operators. Until a numeric
scalar variable is used it is not in the system, and
no memory area is reserved for it.

Key PRINT Y CR/LF—EXECUTE
The CRT display shows

:PRINT Y
0

Fig. 5—2b

The reason a value of zero is printed for “Y" is
simply because no other value was given to "'Y"
by the program. When the 2200 is instructed to
printits value, thevariable is automatically assigned
avalue of “0"’. Therefore, undefined variables auto-
matically take on the value of zero.

Key PRINT X CR/LF—EXECUTE

f

READY
:PRINT X
24

Fig. 5—2c

The value 24 is printed for the variable "X’ if
CLEAR CR/LF—EXECUTE had not been keyed,
since the statement line in Figure 5—1 was
executed, and no other value was assigned to the
variable X", The memory retained the value as-
signed to X. Figure 5—2e gives examples of numeric
scalar variables and assignment statements.

A slight variation of the assignment statement
enables the user to assign several variables the
same value in one statement:

Key X,Y,Z=3.8: PRINT X: PRINT Y: PRINT Z
CR/LF—EXECUTE

READY

:X,Y,Z=3.8:PRINT X: PRINT Y: PRINT Z
3.8

3.8

3.8

Fig. 5—2d

Notice that the variables above are separated by
commas. The comma is generated by keying the

SQR(
9 key.

X = 5

F = 4/3+#P1«x713
Y3 = SIN (30)

X = X+1

vV = 1/3«#P|«R12xH
C = SQR(A12+B12)

The variable X is assigned the value of b

Thevariable F is assigned the value of the expression
4/3+#P1+713

The variable Y3 is assigned the value of the expression
SIN (30)

The variable X is increased (incremented) in value by 1
The variable V is assigned the value of the expression
1/3*#P1+R12xH, where the variables R and H have
been previously defined.

The variable C is assigned the value of the expression
SQR(A12+B12), where the variables A and B have
been previously defined.

Fig. 5—2e

25

CHAPTER b5
2200 BASIC VARIABLES

SECTION 5-3

THE CLEAR COVMIMAND AND ITS USE IN INITIALIZING MEMORY

In addition to MASTER INITIALIZING the 2200 (Turn on Procedure) the CLEAR command can also be

used to clear the 2200 memory. This process iﬁ accomplished by touching CLEAR, CR/LF—EXECUTE.
When this is done, all variables and program text = are removed from memory.

The CLEAR command can be used selectively to clear variables or program text, by following the CLEAR

command with the appropriate letter.
:CLEAR CR/LF-EXECUTE
:CLEAR V CR/LF-EXECUTE

:CLEAR P CR/LF-EXECUTE
:CLEAR N CR/LF-EXECUTE

clears all variables from memory, and all program
text as well, clears the entire memory.

clears all variables, but does not affect program text.
clears only program text. Does not affect variables.

clears only non-common variables. Does not affect
common variables or programming text. (The dif-
ference between common and non-common var-
iables is discussed in Chapter 20.)

The previous figures illustrated the use of the most
elementary multiple statement lines. The following
figures demonstrate more advanced multiple PRINT
statement lines. Notice in the following example
that the use of variables eliminates the need for
entering a complex expression more than once.

PROBLEM:
a. Evaluate the expression 33.4«L0G(18.66) + 5
b. Find the value of the square of the expression,
i.e.,
(33.4xLOG(18.66) + 5)
c. Find the value of the cube of the expression,
less 3, i.e.,
(33.4+L0OG(18.66) + 5)° -3

EXPLANATION:

In this three-part problem, the same expression,
(33.4+L0OG(18.55) + 5) appears three times. By
using a variable, and assigning it the value of this
expression, the problem can be simplified.

Key Z = 33.4xL0G(18.66) + 5 CR/LF—EXECUTE

Then part a) of the problem simply becomes
Key PRINTZ

part b) becomes
Key PRINT Z12

and part c) becomes
Key PRINT Z213-3

The CRT display shows

-

READY
:Z2=33.4xL.0G(18.66)+5

:PRINT Z
102.7411653269

:PRINT Z12
10555.747053

:PRINT Z213-3
1084506.7531

Fig. 5—3

As yet the term program text has not been explained. Very simply, all BASIC statement lines making up a program are called program text.
What is meant by a program will become clear in subsequent chapters. Program text is stored in a different place in memory.

26

CHAPTER b5
2200 BASIC VARIABLES

or, consider the following problem:

Y=3x(log, (158.2+3))> -4x(log, (158.2+3)) +
e? *(log, (158.2+3))

If X is assigned the value (log, (158.2)+3) then
Y =3X? - 4x + ez X?

and the statement line needed to solve the problem
is simply

X=LOG(158.2+3) :PRINT 3xX13-4xX+
EXP(2)xX12 CR/LF—EXECUTE

:X=LOG(158.2+3):PRINT 3+X 13-4+« X+EXP(2)+X 12
2021.301928801

Fig. 5—3a

27

CHAPTER 5
2200 BASIC VARIABLES

EXERCISES

1. Which of the following are not valid 2200 BASIC scalar variables?
X, K2,B,Y,M12, PQ, Z2Z, 2K

2. Which of the following are valid floating point numbers?

a. 29E144 d. 9849.92571E96
b. -2.8E-3 e. -13E-99
c. .0000987E-10 f. -13E99

3. Write the following algebraic expressions in a form which the 2200 can evaluate, if they are not useable
as they stand.
a. XYZ
b. (a-b) (at+b)
c. ax*-bx+c
d. S/T
e. ax5+at;)1 +8
(c®-d*)+2cd
ctd
4, Using the keyboard functions where applicable, write BASIC output (PRINT) statements to evaluate
each of the following:
(assume that all variables have been previously defined)

bl

- X
aY=sIN 2
b.A = COS § _ATN (4X%)
c.Z=¢ehVTH

d.B1 = Log, (M1-R1)

e. C = / Log_ (Sin(A/2))

28

CHAPTER 5
2200 BASIC VARIABLES

1.

2.

3. a)
b)
c)
d)
e)
f)

b)

d)
e)

M12, PQ, ZZ, 2K

b,c, d, e

Keystrokes for Exercises 3 and 4

XxY=xZ

(A-B) = (A+B)
A=X12-B=X+C

S/T

(A=X+B=Y/5=AxB)+8
((Ct3-D13) + 2+C-D)/C+D

ANSWERS

Y = SIN(X/2):PRINTY

A = COS(X/4)=ATN(4=X1(-3)):PRINT A
Z = EXP(-1/2)=SQR(T+4):PRINT Z

B1 = LOG(M1-R1):PRINT B1

C = SQOR(LOG{(SIN(A/2))):PRINTC

29

CHAPTER 6

INSTRUCTING THE 2200 TO PRINT OUT MORE THAN ONE VALUE PER LINE

— N

Up to this point, every PRINT command executed has resulted in the printing out of a number on a new
line; no more than one value has been printed on any one line. While this type of formatting satisfies
many output requirements, 2200 BASIC is capable of fermatting output in several other ways as well.
These include ““Zoned” format, ‘‘Packed’ format and “Tab” format.

SECTION 6—1
WHAT IS ZONED FORMAT?

The idea of zoned format refers to the fact that
the CRT display is divided into four 16-space fields
or zones.

(
:READY | ! |
16 Spaces! 16 Spaces } 16 Spaces | 16 Spaces
Zone #1 | Zone #2 ! Zone #3 i Zone #4

4 X 16 = 64 = Width of CRT

Fig. 6—1

Up to this point, all output has been printed one
value to a line, in the first zone only.

To generate more than one output value per line,
with each value in a separate zone, all variables,
numeric values andfor expressions should be in-
cluded inasingle PRINT statement, with COMMAS
separating the elements. This is known as ZONED
format.

For example, consider the following BASIC state-
ment, which prints out the four integers, 1 through
4, on one line, one value per zone.

Key PRINT 1, 2, 3, 4 CR/LF-EXECUTE

(
READY
:PRINT 1, 2,3, 4
1 2 3 4

Fig. 6—1a

Notice that a space is left for the implied plus
(+) sign, in front of each positive number.

30

Or consider a BASIC statement line which, for a
given radius R prints out the circumference of a
circle (27R), the area of a circle (wR?), and the
volume of a sphere (4/3wR>), all on the same
line (Fig. 6—1b).

READY
:R=2/3+(5.3+7): PRINT R, 2«#Pl«R #P1+R12,4/3+#P|+R13
8.2 51.56221195188 211.2406900274 2309.564877632

Fig. 6—1b

Notice that in these zoned PRINT statements, the
printout is accomplished by printing one value per
zone, beginning in the first zone. The comma
between values causes the value to be printed in
the next available zone.

Similarly zoned format may be used with alpha-
numeric characters enclosed in quotation marks
(referred to as a “’literal character string’’).

Key PRINT “SQUARE ROOT=", SQR(729) CR/

LF-EXECUTE

ﬁ
READY
:PRINT “SQUARE ROOT="", SQR (729)
SQUARE ROOT = 27
1st Zone 2nd Zone
Fig. 6 —1c

If the output generated by a PRINT statement
overlaps into the next zone, subsequent zoned
output starts at the beginning of the next available
zone.

CHAPTER 6

INSTRUCTING THE 2200 TO PRINT OUT MORE THAN ONE VALUE PE‘R LINE

Key PRINT “THE PROBABILITY IS”, 8/14
CR/LF—EXECUTE

—

READY
:PRINT “THE PROBABILITY IS”, 8/14

THE PROBABILITY IS 5714285714286
Zone 1 Zone 2 Zone 3
Fig. 6—1d

Because the literal string* “THE PROBABILITY
IS’ .is 18 characters in length, and extends into the
second zone, the number is printed in zone #3.

If more than four output values are requested in
a zoned PRINT statement, (as denoted by more
than 3 commas), the output continues in the first
zone of the following line.

Key PRINT 5, 512, 513, 514, 515,516, CR/LF-
EXECUTE
—
READY
:PRINT 5, 5t2,5%3,5%4,515,516
5 25 125 625
3125 156625

Fig. 6 — le

Similarly, multiple and/or leading commas may be
used in a PRINT statement to shift the printout
from zone to zone. The printout shifts one zone
for each comma included in the statement as

Fig. 6—1f shows. {(Note: There is no limit to the
number of commas which may be used.)

f

READY
:PRINT 5, 10
5 10
:PRINT,5,10
5 10
:PRINT5,, 10
5 10
:PRINT,5,, 10
5 . 10
Zone #1 Zone #2 Zone #3 Zone #4
Fig. 6— 1f

Commas may also be used as follows:

Key PRINT 5, :PRINT 10 CR/LF-EXECUTE

READY ,
:PRINT5, :PRINT 10!

|
|
5 10 I |
1st Zone | 2nd Zone : 3td Zone |

4th Zone
Fig. 6 —1g
Compare this with the following statement line

Key PRINT 5 :PRINT 10 CR/LF-EXECUTE

:PRINT5 :PRINT 10
5
10

Fig. 6 —1h

The difference in the output is caused by the
comma “,” following the first PRINT statement in
Fig. 6—1g, but not included in Fig. 6—1h. The
comma signifies that the following PRINT state-
ment is to continue on the same line, but in the
beginning of the next zone. If no punctuation is
included between the last element of the PRINT
statement and the colon, a subsequent PRINT
statement signifies the beginning of a new line.
The position on a new line is then determined
solely by the punctuation and spacing of the sub-
sequent PRINT statement.

*Literal strings are defined as any set of characters enclosed within quotation marks. The quotation marks and letters of the alphabet are
generated by touching the SHIFT key and the appropriate (upper case) keyword key, located on the left-hand section of the keyboard.
Spaces may be included in a literal string, and are generated by touching the —>key.

CHAPTER 6

INSTRUCTING THE 2200 TO PRINT OUT MORE THAN ONE VALUE PER LINE

SECTION 6—2

WHAT IS PACKED FORMAT?

While a zoned format enables the user to print
up to four values per line, each in a preset
location, a packed format results in the user being
able to print more than 4 values per line.

To generate packed format, SEMICOLONS are
used between each of the variables, numeric values,
expressions, andfor literal character strings, instead
of commas, in a PRINT statement.

For example, consider the following statement
lines and resulting ‘‘packed’’ output:

—

:PRINT 1;2;3;4;5;6;7;8,9; 10

1234567‘8910

PRINT -1;-2; -3; -4; -5, -6; -7, -8, -9; -10
-1-2-3-4-5-6-7-8-9-10

X = LOG(15%6.98-23.54) : PRINT X; EXP(X); X12; EXP {X12)
4.3966422514956 81.1599999976 19.32853093 247898743.8929

Fig. 6—2

Notice that in packed format, zones are ignored,
although, one space is still reserved for the sign
{a plus (+) sign is assumed, a minus sign is printed)
when printing out numeric values. Also, the semi-
colon places an extra space after a numeric value.
This is to assure some spacing between numbers.

SECTION 6-3

The actual number of data values and/or literal
strings which can be printed on a line is de-
pendent upon the length of the alphanumerics
themselves. However, the maximum number of
characters printed on the CRT on any one line is
64. Any output exceeding this continues in the
first space of the following line.

Key in the following 2200 BASIC statement
PRINT “SQUARE ROOT="; SQR(729)CR/LF-
EXECUTE

:PRINT “SQUARE ROOT="";SQR(729)
SQUARE ROOT = 27

Fig. 6—2a

Notice that a single space is left between the
literal printout character ‘="', and the numeric
value 27. The space is included as a ““place holder”
for the implied plus (+) sign of the numeric. No
extra spaces are added to the printout of literal
strings. The only spaces printed out with literal
strings are those included within the quotation

marks.

MIXING ZONED AND PACKED FORMAT

Zoned and packed formatting can be used together
to achieve a wider range of format control. For
example, enter the following mixed format line

X=15%(5.86+28) :PRINT“VALUE="; X, “NEW
VALUE=";X12 CR/LF-EXECUTE

32

:X=15%(5.86+28) :PRINT"VALUE="; X, “NEW VALUE=", Xt2

VALUE = 507.9 NEW VALUE= 257962.41
' .

Zone #1 Zone #2 ; Zone #3 éZone #4

Fig. 6—3
Notice that the use of the two commas caused the:
“NEW VALUE” literal string to be printed out

starting in Zone #3

CHAPTER 6
INSTRUCTING THE 2200 TO PRINT OUT MORE THAN ONE VALUE PER LINE

MIXING ZONED AND PACKED FORMATS
EXAMPLES OF ZONED AND PACKED PRINT STATEMENTS

:Z2=123.987:Y=.168:2=-32
- :PRINT X, Y, 2

123.987 .168 -32

:PRINT X, -14.7,2

123.987 -14.7 -32

:PRINT “ANSWERS:” ,X,Y,Z

ANSWERS: 123.987 .168 -32

:PRINT “A=", (212-12+X)/(X+Y+2Z)

A= 41.52518884201

:PRINT X,Y,ZX+Y+Z,-X,-Y,-Z

123.987 .168 -32 92.155
-123.987 -.168 32

:PRINT X,Y,Z:PRINT 2+X, (X+Z)}1Y

123.987 .168 -32
247.974 2.1374996116

o :PRINT X,Y,Z,:PRINT 2+X, (X+2Z)1Y,

123.987 .168 -32 247.974
2.1374996116

Fig. 6—3a

1 Notice the “‘trailing’”” comma in the first PRINT statement of the line, preceding the colon. “Trailing” punctuation tells the 2200
to continue the next PRINT statement on the same line, if possible.

CHAPTER 6

INSTRUCTING THE 2200 TO PRINT OUT MORE THAN ONE.VALUE PER LINE

SECTION 6 — 4
USING THE TAB(COMMAND FOR FORMAT CONTROL

In addition to using zoned and packed format in
2200 BASIC, another formatting tool is available,
which is analogous to the ‘’tab stop’ found on a
typewriter. This formatting tool is the TAB(
command, found in the 2200 keyword block on
the left-hand side of the 2200 BASIC keyboard.

When the 2200 encounters a TAB(command in a
PRINT statement, the CRT cursor or printing
device spaces over to the column position indicated
within the TAB(parentheses (a right-hand paren-
thesis must be entered) and then proceeds to
output the next part of the PRINT statement.

For example

Key PRINT TAB(10); 256 CR/LF—EXECUTE

(
: PRINT TAB (10); 25

25

11 spaces

Fig.6—4

The 2200 spaces over 11 spaces to column 10,
leaves a space for the implied plus sign and prints
the number 25 in columns 11 and 12.

NOTE:
There are 64 columns per line, numbered 0
thru 63. Thus the first column is numbered
column #0 and the 64th column is numbered
#63. Therefore a TAB(command of TAB
(10) actually spaces 11 spaces to column 10,

because the 1st column is numbered column
#10.

34

Or for example,
Key

PRINT TAB (512-3); ANSWER'’;SQR (17.3)
CR/LF—EXECUTE

f
:PRINT TAB(512-3); “ANSWER ="; SQR(17.3)
ANSWER = 4.1593268686

———— e e

722 spaces (i.e., 512-3 = 22)

Fig. 6—4a

In this case, the 2200 evaluates the TAB(
expression, spaces to the indicated column (22),
prints out the literal string “ANSWER="’, evaluates
the square root function, and prints out the result.

The contents of the parentheses of a TAB(
command can be any algebraic expression. How-
ever, only the integer portion of the resulting
evaluation is recognized. When using the CRT as
the output device, a number greater than 63 in a
TAB(command always results in the positioning
of the CRT cursor at the first column of the
following line; a number less than zero is ignored.

If the printing position of the 2200 is past the
requested tab location at the time the TAB(
command is encountered, the location of the CRT
cursor does not change at all, and the TAB(
command is ignored.

CHAPTER 6

INSTRUCTING THE 2200 TO PRINT OUT MORE THAN ONE VALUE PER LINE

For example,

Key PRINT TAB(20);20; TAB(10); 10 CR/LF—
EXECUTE

:PRINT TAB(20);20; TAB(10);10
20 10

N

22 spaces 1 trailing space plus
1 space left
- for implied "+ sign.
Fig. 6—4b

In this example, the 2200 spaces over 21 spaces to
colurnn 20, leaves a space for the implied plus
sign, prints the number 20 in columns 21 and 22
and then continues to the next part of the PRINT
statement, another TAB{ command. However, this
second TAB(command says to space over to
column 10. Since the CRT cursor is already past
column 10, this TAB(command is ignored, and
the 2200 goes to the next part of the PRINT
statement, which says to print the number 10.
A ““packed’’ format results.

Thus, to obtain a printout of the number 10 at
column 10, and the number 20, at column 20 in
the above example, the PRINT statement must be
rearranged as follows:

35

Key PRINT TAB(10); 10; TAB(20); 20

—

:PRINT TAB(10); 10; TAB(20);20
10 20

11 spaces

_———‘vw‘

22 spaces

Fig. 6—4c

NOTE:

When figuring what number to use within
the parentheses of a TAB(command, you
must remember that the number of spaces
the cursor moves is always one more than
the number indicated within the parenthesis,
because of the way the columns are num-
bered. (i.e. column 11 means 12 spaces.)
When printing numbers another space is left
for an implied plus sign. This means if you
use a TAB(20) to print a positive number the
number is actually printed in column 21,
21 spaces plus another space for the sign.
Therefore 22 spaces are left blank from the
beginning of the line.

CHAPTER 6
INSTRUCTING THE 2200 TO PRINT OUT MORE THAN ONE VALUE PER LINE

EXERCISES

| Using Commas and Semicolons
1) The 2200 BASIC Statement Line

A=21:B=3.1: C=4.1: PRINT C,B,A CR/LF—EXECUTE

produces which output line?

a) 3.1 2.1 4.1

by C B A

c) 4.1 3.1 2.1

d) C=2.1 B=3.1 A=4.1
e) 2.1 3.1 4.1

2) If W =5, write a statement line using a single PRINT statement and the W variable
which (when raised to various powers) will produce the following output:

5 25 125 625

))))

1st Column 17th Column 33rd Column 49th Column

3) How could the statement line in Exercise (1) be written to produce the following
output format?

a) 2.1
3.1 } In Print-Zone #1
4.1
b) 2.1
3.1 In Print-Zone #3
4.1
4) If G = -2, write a statement line using a single PRINT statement and the G variable

which will produce the following output:

T —2¢ 4 T -8 ? 16 ? -32 ? 64 ? —128T 256
Oth two one two one two one two
Column spaces space spaces space spaces space spaces

5) Knowing that commas and semicolons can be mixed in a PRINT statement, how would
a 2200 BASIC statement line be written which would produce the following output:
NOTE— Do in two different ways — (HINT: The statement uses literal strings.)

?(= 18.3 Y=1.20000000E —04
in 1st Column in 17th Column

Il Use TAB(commands instead of commas to complete Exercises 2 and 5.

36

CHAPTER 6
INSTRUCTING THE 2200 TO PRINT OUT MORE THAN ONE VALUE PER LINE

ANSWERS

I 1) Output Line #c):
4.1 3.1 2.1

2) W=5:PRINT W,W1t2, W13, Wt4, CR/LF-EXECUTE

3) a) A=2.1:B=3.1:c=4.1: PRINT A: PRINTB: PRINTC CR/LF—EXECUTE
b) A=2.1:B=3.1: C=4.1: PRINT A

3) a) A=2.1:B=3.1: C=4.1: PRINT A: PRINTB: PRINTC CR/LF—EXECUTE
b) A=2.1: B=3.1: C=4.1: PRINT,,A: PRINT,,B: PRINT,C CR/LF—EXECUTE

4) G=-2:PRINT G;Gt2; G13; G14; G15; G16; G17; G18 CR/LF-EXECUTE
5) PRINT “X=";18.3, “Y=""; 1.2E-4 CR/LF—EXECUTE
X=18.3: Y= 12E-4: PRINT “X="; X, “Y=";Y CR/LF—EXECUTE
Il 2) PRINTW; TAB(16); W12; TAB(32); Wt3; TAB(48); Wt4 CR/LF—EXECUTE
5) X=18.3: Y=1.2E-4:PRINT “’X=";X;TAB(16); ”"Y=";Y CR/LF—EXECUTE

37

CHAPTER 7

USING THE 2200 WITH REITERATIVE PROCEDURES (LOOPING)

Thus far in the discussion of the 2200, the execution of a statement line has resulted from the sequential
execution of each 2200 BASIC statement in a line. Until the entire line was completed after parts of a line
or even an entire line needs to be repeated over and over again. This is called looping. This chapter intro-
duces the FOR and NEXT statements which allows you to loop or perform repetitive procedures.

SECTION 7 —1
FOR/NEXT LOOPING

Suppose a summation procedure {such as for
integers 1 thru 25) is required. This problem
can be solved by entering one very long PRINT
statement:

PRINT 1+2+3+4+5+6+7+8+9....24+25 CR/LF

which would produce the answer, 325.

However, this method is both tedious and time
consuming. It is also very limited. What happens
when the summation of the integers 1 through
1000 is wanted?

Instead of solving such a problem by repetitively
entering numbers, 2200 BASIC enables the user to
easily accomplish this process with FOR/NEXT
statements. This same summation would be written
using the FOR/NEXT statements as shown in
Fig. 7—1 and the result in Fig. 7—1a.

FOR X=1T025: Y=Y+X: NEXT X: PRINT X, Y

SUMMATION OF \INCREMENT
COUNTER COUNTER

COUNTER
VARIABLE

CR/LF—EXECUTE

Fig. 7—1

:FOR X=1T025: Y=Y+X:NEXT X:PRINT X,Y
25 325

Fig. 7—1a

The FOR-TO statement serves to start the loop and
determines the number of times the loop is to be
repeated. In this example, the process is to be
repeated 25 times, therefore X =1 to 25. This is
called the counter.

The NEXT statement increments the counter and
serves to test for the outer boundary of the loop.
When the loop repeats 25 times in this example
the NEXT statement tests to see if this number
has been reached and if so terminates or stops the
looping.

Fig. 7—1b explains a little more about how the
loop is set up.

Analysis shows that for each value which the
variable X, the counter, is assigned ranging, 1 thru
25, the value of the variable Y is increased by
that value of X. Thus, the variable X acts as a
“counter’, and the variable Y acts as the summation
of X. The NEXT X statement then signals the 2200
to increment the variable X again, and the process
continues until the “counter’” variable — in this
case X — is assigned a value outside the range set
up in the FOR-TO statement.

At this point, the loop is ““exhausted”’, and the 2200
continues processing the rest of the line. In this
example the loop goes through 25 iterations,
after which a PRINT statement is encountered,
which prints the final value of X, and Y. (If the
PRINT command were included inside the loop
instead of outside, the values of X and Y would be
printed each time thé 2200 executed the loop.)

—>FORX=1£0T025 —>Y=Y+X

— e ———
FOR-TO statement sets
up the variable X as |
a counter from 1 to 256

where variable Y

Looping 25 Times

Reiterated statement

sums the values of X

NEXT X —— > PRINT XY

NEXT state—me?
increments counter
and serves as

boundary of “loop”

PRINT statement
PRINTS final X and

Y values.

Fig. 7—1b

38

CHAPTER 7
USING THE 2200 WITH REITERATIVE PROCEDURES (LOOPING)

]
The general format of a FOR-TO/NEXT state-
ment is as depicted in Fig. 7—1d.
starting value loop limit increment size
numeric composed of composed of composed of numeric
scalar any legal any legal any legal scalar
FOR variable | = expression T0 expression STEP expression NEXT variable
Fig. 7—1d
In general practice, the expressions which define above example. (STEP is a 2200 BASIC keyword,
the range of values of the FOR statement are generated by touching the STEP key, located in
integers, with the STEP size — an optional part of the keyword key block) The variable given in the
the statement — included only when the step size NEXT statement must be the same variable given
is other than “+1°"; when the STEP size is not as the FOR-TO statement variable.

included, it is assumed to be “+1", as it was in the

EXAMPLES OF FOR-TO/NEXT STATEMENT PAIRS

FOR X =5 to 500 E X takes on the 496 successive values 5,6,7....498,499,500

NEXT X

FOR X=5TO 500 STEP 5 X takes on the 100 successive values 5,10, 15....495,500

NEXT X

FOR A =SQR(2)+2 TO SQR(100)+2 { A takes on 9 successive values 3.414, 4.414, 5.414,....9.414,
NEXT A 10.414, 11.414

FOR W =100 TO 25 STEP—2 W takes on the 38 successive values 100, 98, 96....28, 26

NEXT W

FORG=-10to +10STEP .4

NEXT G 2 G takes on the 51 values -10, -9.6, -9.2....-.4,0,+.4,....+9.6, +10

Because of the range of values and the step size, each of the variables in the above FOR-TO/NEXT
statement pairs takes on a number of successive values. However, consider what happens in the fol-
lowing situations:

= EP
EI%)R(TZZ 10TO 15STEP 10 E In the loop Z takes on the single value 10: loop is executed only once.

FOR Y6 =52.3TO 100 STEP —1{ In the loop, Y6 takes on the single value 52.3: Loop is executed
NEXT Y6 only once.

EE)R(-;-F-F 10701 € In the loop T takes on a single value 10: Loop is executed only once.

In these last three examples the loop is executed only once because of the increment defined in the STEP.
In the loop [For Z = 10 to 15 STEP 10], the first loop occurs but if you added 10 to 10, you get 20, the
limit of the loop is only 15, therefore this is exceeded or can’t be reached and the 2200 stops.

39

CHAPTER 7

USING THE 2200 WITH REITERATIVE PROCEDURES (LOOPING)

SECTION 7-2

As mentioned in the discussion following Fig. 7—1b
inclusion of the PRINT statement inside the loop
causes the 2200 to print out a running account
of the variables X and Y. If the statement line is as
follows, the output consists of a single column:

Key CLEAR CR/LF '

Key

FOR X =1TO25:Y=Y+X:PRINT Y:NEXT X
CR/LF — EXECUTE

—
READY
:FOR X=1T025:Y=Y+X:PRINT Y: NEXT X

1
3
6

’
’

276
300
325

Fig. 7—2

The reason for this format is the structure of the
PRINT statement: No punctuation is included in
the PRINT statement following the variable Y.
Thus, each execution of the PRINT command

. . 2
causes a printout on a separate line

The format of this output can be changed to
zoned or packed, by including after the variable
name, a comma or semicolon respectively in the
PRINT statement:

SPECIAL PRINT SITUATIONS WITH LOOPING

Key CLEAR CR/LF—EXECUTE '

Key
FOR X=1T025:Y=Y+X:PRINT Y,:NEXT X
CR/LF—EXECUTE

This generates zoned output, as Fig. 7—2a shows.

-

READY

:FOR X=1T0O25: Y=Y + X: PRINT Y,: NEXT X
1 3 6
21 28
55 66
105 120
171 190
253 276

Fig. 7—2a

To generate packed output (Fig. 7—2b),

Key CLEAR CR/LF—EXECUTE '

Key

FOR X=1T025:Y=Y+X:PRINT Y; :NEXT X
CR/LF—EXECUTE

READY
:FORX=1TO 25: Y =Y + X: PRINT Y;: NEXT X
1 3 6 10 15 21 28 36 45 655 66 78

153 171 190 210 221 253 276 300 325

91 105 120 136

Fig. 7—2b

Packed output created by semicolon following last
element in PRINT statement.

TThe CLEAR command is used here to clear the variable Y from the system. Otherwise, when the new statement line is executed, the

initial value of Y will be 325, left over from the execution of Fig. 7—1b.

2When this statement line is executed, the results are displayed on the CRT with such rapidity, that the output is difficult to follow, unless
the 2200 is instructed to “‘pause” after every line of output. To instruct the 2200 to pause for “’n’’ 1/6 seconds after every line of output.

n CR/LF—EXECUTE, where n is any integer between 0 and 9, and each “n’

represents a 1/6 second pause.

Key SELECT P
SELECT P 4 = pause 4 x 1/6 sec., or 2/3 seconds after each line of output.
SELECT P9 =

To turn off a ""Pause’’,
key SELECT P CR/LF—EXECUTE

40

pause 9 x 1/6 sec., or 1% seconds after each line of output.

CHAPTER 7

USING THE 2200 WITH REITERATIVE PROCEDURES (LOOPING)

SECTION 7-3
CRT PLOTTING USING A FOR-TO/NEXT LOOP AND THE TAB(COMMAND

Knowing that the TAB(command can be used for
positioning output, a simple CRT plotting routine
can now be written using a FOR-TO/NEXT loop,
and a PRINT statement with a TAB(command.

For example, the following statement line causes
the 2200 to plot a diagonal line of 11 plus signs
(+) down the CRT, starting in the first colunn:

Key
FOR X=0TO10:PRINT TAB(X),"+":
CR/LF—EXECUTE

The CRT display shows

-

READY
:FOR X=0 TO 10:PRINT TAB(X);"+":NEXT X

NEXT X

Fig. 7—3

Each time the variable X is assigned an integer
value, the PRINT TAB(statement says to tab to
the column denoted by the value of X, and print
a "+, then move to the next line and continue
the process. This happens a total of eleven times,
producing the diagonal line of eleven “+'"'s down
the CRT display.

If a semicolon is included in the PRINT statement
following the ““+", the result is different.

Key

:FOR X=0TO10:PRINT TAB(X);"+"";: NEXT X
CR/LF—-EXECUTE

41

/
READY
:FOR X=0 TO 10:PRINT TAB(X);""+";:NEXT X

+H++HHHH+

Fig. 7—3a

This is because the last semicolon in the PRINT
statement signifies that the printout is to con-
tinue on that line, instead of starting on a new line
each time the loop is executed.

Consider now the function f(x) = X2, If graphed
on regular graph paper, the result is a parabola.
The same thing can be accomplished on the 2200
CRT in one statement line (Fig. 7—3b):

Key

FOR X=1TO8:PRINT TAB(X12-1);0": NEXT X
CR/LF—EXECUTE

~

READY
:FOR X=1TO 8: PRINT TAB (X12-1); “0”: NEXT X

Fig. 7—3b

The result above is for positive values of X. The
number 8 was chosen because8 t 2 - 1 = 63, which
just fits within the range of the CRT screen.

CHAPTER 7

USING THE 2200 WITH REITERATIVE PROCEDURES (LOOPING)

— -

By changing the range of the values of the
FOR-TO/NEXT loop, a complete parabola can be
generated. For example

Key

FOR X =-6 to 6:PRINT TAB(X12);X12: NEXT X
CR/LF—EXECUTE

produces the results found in Fig. 7—3c.

(READY

:FOR X =~6 TO 6 :PRINT TAB(X12) ;Xt2: NEXT X

36
25
16
9
4
1
0
1
4
9
16
25
— 36
Fig. 7—3c

The PRINT command can be used also to skip lines
or to complete partially used lines. For example

Key

FOR X=1TO 5: PRINT X: PRINT: NEXT X
CR/LF—EXECUTE

-

:FOR X=1TO 5: PRINT X: PRINT: NEXT X
1

2

3

Fig. 7—3d

Notice the skipped lines in the printout. The
statement line has two PRINT statements, the
second of which causes the extra spacing in the
printout.

Now key

FOR X=1TO5:PRINT X;:NEXT X:PRINT"DONE"
CR/LF—EXECUTE

:FOR X=1TO5:PRINT X;:NEXT X:PRINT “DONE*
1 2 3 4 5 DONE

Fig. 7—3e
Key

FOR X=1TO5:PRINT X;:NEXT X:PRINT:PRINT
““DONE" CR/LF—EXECUTE

-

1 2 3 4 5

DONE

Fig. 7-3f

The extra PRINT statement is the reason for the
difference in the output format. Without the extra
PRINT statement, the literal string “DONE" is
printed on the same lines as the digits 1 through 5.
(The trailing semicolon in the PRINT X statement
has held the cursor on that line) The blank PRINT
statement in the second example causes the CRT
to skip to the start of the next line before
executing the next PRINT statement (PRINT
"DONE").

:FOR X=1TO5:PRINT X;:NEXT X:PRINT:PRINT “DONE"

Part il
—Programming The 2200—

INTRODUCTION TO PROGRAMMING

The previous seven chapters illustrated the use of the 2200 as a calculator (i.e. the immediate mode). The
immediate mode obtains fast results for one-time calculations.

Multi-statement lines in the immediate. mode add the ability to generate lists, or tables of results. For
example, FOR 1=10 to 20:PRINT I, I15, I17:NEXT I.

Now desired is a method of entering a set of 2200 BASIC statements once, and executing them as many
times as necessary. The 2200 enables the user to enter a set of 2200 BASIC statements to be stored in the
system’s memory, displayed on the CRT, and/or saved on cassette tapes.

Consider Fig. A, a BASIC program, and compare it to Fig. B

Fig. A Fig. B

10 FOR X =1T0 25 FOR X = 1TO 25: Y=Y+X:NEXT X:PRINT X,Y
20Y = Y+X

30 NEXT X

40 PRINT X,Y

What do these two examples have in common? What are their differences?

First, both figures contain the same four statements in the same order. However, Fig. A is written in
column form with numbers in front of each statement (i.e., statement line numbers), whereas Fig. B is
written in line form with colons between statements ' . In Fig. A, the statement line numbers define the
order of the statement lines, and also identify each one. Fig. A is called a 2200 BASIC program which, when
entered into the 2200, can be “executed” over and over again, by simply pressing RUN CR/LF-EXECUTE;
the statement line in Fig. B, because it is an immediate mode statement line, must be reentered every time it
is needed.

Thus, a 2200 BASIC program is a group of BASIC statements entered into the 2200, with statement line
numbers to identify each statement line. The program, once it is entered, can be executed as many times as
needed.

1 In actual practice more than one statement can be included (separately) in each program line of a 2200 BASIC program, bu using colons
for separators. However, for reasons of simplicity, each statement in this example is given on a separate line.

43

CHAPTER 8

PROGRAMMING AND USING THE 2200

SECTION 8-1
THE BASICS OF ENTERING AND EXECUTING A PROGRAM IN MEMORY

Writing a 2200 BASIC program involves entering a
set of 2200 BASIC statements into the 2200, with
statement line numbers. Before entering a new
program into the 2200, it is best to clear the
memory area by keying CLEAR CR/LF—EXE-
CUTE.

This assures that the memory area is free of all
program text and variables. The 2200 is now ready
to accept a new program.

ENTERING A PROGRAM IN MEMORY
Entering a program into memory via the 2200
BASIC keyboard:

1. First, enter the statement line number.

2. Next, enter the BASIC statement line, following
the statement line number.

3. Touch the CR/LF-EXECUTE key, which enters
the statement line into memory.

4. Repeat the first three steps as many times as
needed to enter the entire program.

Result — The 2200 is “programmed’’ with the
statement lines entered.

EXECUTING A PROGRAM IN 2200 MEMORY
USING THE RUN COMMAND

Once a program is in memory, keying RUN CR/LF-
EXECUTE executes the program. When RUN is
executed, the 2200 does the following:

1. Scans the entire program for variable names,
and sets aside space in memory for each of them.

2. Initializes all variables to zero".

3. Checks to assure that no logic errors have been
made in program.

4, Once Steps 1, 2, and 3 above are completed, the
program lines are executed sequentially, and all
instructions are carried out.

SECTION 8-2
THE STATEMENT LINE NUMBER

As mentioned, the statement line number serves
two purposes: first, it denotes the order in which
the statements are to be executed; and second, it
identifies each individual statement line.

The line number associated with any 2200 BASIC
statement can be any positive one, two, three, or
four digit number. The numbers may be uniform-
ily spaced (1,2,3... or 10,20,30...) but need not be.
Program lines can be numbered 1,5,15,37,42. How-
ever, in general practice, the initial sequence is

generally 5,10,15,20... or 10,20,30,40..., to allow
ample “‘space” for later insertion of lines.

There are two ways to enter a statement line
number:

1. The statement line number can be generated by
using the numeric keyboard, or

2. The statement line number can be generated by
keying the STMT. No. key, before entering each
statement line.

SECTION 8-3

USING THE STMT. NO. KEY

Consider Fig. A again. Notice that the line numbers
are incremented by tens. Although these numbers
could be entered by using the numeric keyboard,
the STMT. NO. key enables the user to accomplish
the same results by a single keystroke. Each time
the STMT. NO. key is touched at the beginning of

a new line, a line number ten more than the
highest line number already in memory is placed at
the start of the new line.

With the excepuion of certain variables predefined as common. See Chapter 20 for an explanation of common variables.

44

CHAPTER 8

PROGRAMMING AND USING THE 2200

Thus, to enter the program in Fig. A into the
2200's memory using the STMT. NO. key, the
following procedure is used:

1. Key CLEAR CR/LF—EXECUTE to clear the
memory area.

2. Key STMT. NO., followed by FOR X
TO 256 CR/LF—EXECUTE.

The CRT display shows

i
—

READY
:T0OFOR X =1TO 25

Fig. 8—3

Notice that keying the STMT. NO. key gen-
erates the number “10"” followed by a space.

3. Key the STMT. NO. key again, followed by
Y=Y+ X CR/LF-EXECUTE.

4. To finish entering the program, key in the
statement line numbers and statement lines, in
the order indicated. The final result should
appear as in Fig. 8—3b.

f

READY ,
:1T0 FOR X=1TO 25
:20Y=Y+X

:30 NEXT X

:40 PRINT XY

Fig. 8—3b

RESULT: The program has been entered in
sequential line order. Although using the STMT.
NO. key assures that the lines are entered in
sequential order (10,20,30 etc.), they need not
be entered in that order. For instance, if the pro-
gram were entered as in Fig. 8—3c, the program
would be executed in exactly the same order as in
Fig. 8—3b. This occurs because the 2200 executes

4 them in numeric order. Entering a program in
READY other than sequential order, however, precludes the
.10 FOR X = 1TO 25 use of the STMT. NO. key.

2207 =Y + X 4
_ READY
:40 PRINT X,Y
20Y=Y + X
Fig. 8—3a :10 FOR X=1TO 25
Notice that touching the STMT. NO. key :30 NEXT X
generates the number *“20” followed by a space. —
Fig. 8—3c
SECTICN 8—4

EXECUTING THE PROGRAM

To execute the above program

Key RUN CR/LF-EXECUTE

READY

:T0FOR X=1T0O 25
20Y=Y + X
:30 NEXT X
:40 PRINT X,Y
:RUN
25 325

Fig. 8—4

45

When the 2200 executes a RUN command, it
reinitializes all non-common program variables. To
RUN the program again,

Key RUN CR/LF-EXECUTE a second time.

Notice the final values of X and Y are again
printed out (See Fig. 8—4a). Any program can be
executed as many times as desired, simply by key-
ing RUN CR/LF-EXECUTE. Specifying a line
number after keying RUN (i.e., RUN 30 CR/LF-

CHAPTER 8
PROGRAMMING AND USING THE 2200

EXECUTE) signifies that you can run a program 4z
starting at line 30 and continue to the end. The READY
General Form of the RUN command is as follows: 10 FOR X = 1 TO 25
RUN [line number] 20 Y=Y + X
where the square brackets indicate that the line 130 NEXT X
. . :40 PRINT XY
number is optional.
:RUN
25 325
:RUN
25 325
SECTION 8-5

CHANGING A PROGRAM IN MEMORY

Once the lines of a program are put into memory,
the lines remain there until cleared from the system,
or until they are redefined. New lines can be added
at any time.

TO REDEFINE A STATEMENT LINE: once it is
entered (i.e., after the CR/LF-EXECUTE key is
touched), reenter the same statement line number,
followed by the new statement line. Thus, to change
line 20 from

20Y=Y+X

to the line

20Y=Y+X12
the new line, with the same line number, must be
entered. Keying CR/LF—EXECUTE, erases the
previous line and enters the new one (provided
both lines have the same line number).
TO DELETE A LINE FROM MEMORY: key in
the number of the statement line, and key CR/LF—
EXECUTE.
TO INSERT A NEW LINE: enter an appropriate
statement line number which can go in the middle
of program, followed by the new statement line.
For example
Suppose the line

Z=Y-X

is to be included between line 20 and line 30.

46

Ve
10 FOR X=1TO 25
20Y =Y + X12

:30 NEXT X

:40 PRINT XY

Fig. 8—5

This can be done by entering any statement line
number from 21 thru 29, inclusive, generated via
the numeric keyboard. The statement line, Z=Y-X,
follows the number.

Thus, entering the line

23Z=Y - X CR/LF-EXECUTE

automatically is entered internally in the proper
sequence. Enter the line by keying 23 Z=Y-X
CR/LF. Then key LIST EXECUTE (Section 9-6).
The CRT shows the complete program with the
new line inserted in the proper place (See Fig.
8--5a).

(

:LIST

10 FOR X=1T0 25
20Y =Y + X12
23Z2=Y - X

30 NEXT X

40 PRINT XY

Fig. 8—5a

CHAPTER 8
PROGRAMMING AND USING THE 2200

To delete line 23 from the program, simply key
23 CR/LF-EXECUTE

The line is no longer in memory.

TO ENTER A NEW LINE AT THE END OF A
PROGRAM: enter an appropriate line number (or
touch the STMT. NO. key), and enter the new line,
at anytime.

SECTION 8—-6
LISTING A PROGRAM

USING THE LIST KEY

Once a program has been entered, it should be
listed, in order to check that all statement lines
have been entered in the proper order. On the
2200, a program can be listed by touching LIST
CR/LF-EXECUTE

Thus, to list the program in Fig. 8—ba,
LIST CR/LF-EXECUTE

4 READY

:LIST

10 FOR X =1TO 25
20Y=Y+X
232=Y-X

30 NEXT X

40 PRINT X,Y

Fig. 8—6
Even if a program is entered ‘‘out of order” as,
in Fig. 8—3c, the listing will be “in order”.

USING LIST S TO DISPLAY 15 LINES AT A
TIME

For longer programs (longer than 15 lines) which
cannot fit entirely on the CRT display, the use of
LIST S CR/LF-EXECUTE is suggested. This causes
the 2200 to display the first 15 lines of the
program. To continue listing, key CR/LFEXECUTE
and the next 15 lines of the program are listed.
This procedure can be continued until the entire
program has been listed.

LISTING A PARTICULAR SECTION OF A PRO-
GRAM

A particular line or set of lines can be listed, by

specifying which lines are desired in the LIST
statement. The general form of a LIST statement:
LIST [S] [line number [, line number]]

NO. OF FIRST STMT. NO. OF LAST STMT.
LINE TO BE LISTED LINE TO BE LISTED

For example, the statement line
LIST 10, 30 CR/LF-EXECUTE

produces the result

:LIST 10,30
10 FORX=1TO 25
20 Y=Y+X
23 2=Y-X
30 NEXT X
Fig. 8—6a

If only one particular statement line is desired, in-
clude only that statement line number in the
LIST statement. Thus, the statement

LIST 20 CR/LF-EXECUTE

produces the result

—

:LIST 20
20Y=Y+X

Fig. 8—6b

Another way to list longer programs is to initiate
a Pause (SELECT P) ! prior to listing a program.
This allows the user to scan the program, as it is
slowly displayed on the CRT.

1 When this statement line is executed, the results are displayed on the CRT with such rapidity, that the output is difficult to follow, unless
The 2200 is instructed to ‘‘pause’” after every line of output. To instruct the 2200 to pause for “'n’’ 1/6 seconds after every line of output.

Key SELECT P n CR/LF—EXECUTE, where n is any integer between 0 and 9, and each “‘n’’ represents a 1/6 second pause.

SELECT P4 =
SELECT P9 =

To turn off a “"Pause”’,
key SELECT P CR/LF—EXECUTE

47

pause 4 x 1/6 sec., or 2/3 seconds after each line of output.

pause 9 x 1/6 sec., or 1% seconds after each line of output.

CHAPTER 8
PROGRAMMING AND USING THE 2200

SECTION 8—7
USING THE BASIC STOP STATEMENT
Consider the following program from Fig. 8—3b. printed when the STOP statement is executed.
Key this program. This capability allows the programmer to insert
messages directly into the STOP statement, without
4 adding a separate PRINT statement. For example,
READY consider the outlined program in Fig. 8—7b.
:10 FOR X =1T0 25
20 =Y + X ﬁ
:30 NEXT X READY
*40 PRINT X, Y :10 FORX=1TO 25
— 20 Y=Y +X
' :30 NEXT X
Fig. 8—7 :35 STOP “xx%%xxxEND OF CALCULATION %"
. :40 PRINT XY
Although these statement lines represent a complete .50 STOP ““THIS IS LINE #50"
program, an additional statement canbe included
anywhere in a program to signal the 2200 to stop Fig. 8—7b
processing. This statement is called the STOP state- When this program is executed, the following
ment, and generally consists of a statement line display is produced.
number, followed by the BASIC keyword STOP.
Continuing with the above program, QADY
Key STMT. NO. STOP CR/LF-EXECUTE 10 FORX=1T0 25
20 Y=Y +X

When the 2200 executes this STOP statement

during the course of the program’s execution, the :30 NEXT X
word STOP is printed on the display. :35 STOP “xxxxxxEND OF CALCULATION®**+""
:40 PRINT XY
Key RUN CR/LF-EXECUTE :50 STOP “THIS IS LINE #50”
:RUN
& STOP#*xxxxEND OF CALCULATION
READY LR R X X
:10 FOR X =1T0 25 Fig. 8—7c
320 Y=Y+X Execution of the STOP statement does not affect
28 SIFEI)I(\ITI');(Y any variablgs or program text. It simply stops pro-
.50 STOP gram execution.
:RUN After program execution has stopped due to a
25 325 STOP statement, the user can:
STOP 1. Use the 2200 as a calculator and immediately
. execute statement lines, without statement line
) numbers (immediate mode).
Fig. 8—7a
2. Printout a variable in the program for inspection.
STOP ““d”” AND CONTINUE 3. Redefine a variable used in the program to see
Any number of STOP statements can be used in a how this affects results.
program allowing the user to halt execution at a 4. Change the program flow, and instruct the
predetermined place in the program. If a literal 2200 to continue execution at a different pro-
string is included in the STOP statement, it is gram line.

48

CHAPTER 8

PROGRAMMING AND USING THE 2200

5. Key CONTINUE CR/LF-EXECUTE which con-
tinues program execution immediately following
the STOP statement.

Continue with the above example by keying
CONTINUE CR/LF. Execution continues with line
40:

~
STOP#x%%xxEND OF CALCULATION %% % %%
:CONTINUE

25 325

STOP THIS IS LINE #50

Fig. 8—7d

SECTION 8—-8

USING THE BASIC END STATEMENT IN A PROGRAM

In addition to using the STOP statement, there is
another statement which can be used to terminate
program execution, known as the END statement.
The END statement line consists simply of a state-
ment number, followed by the BASIC keyword
END:

100 END

The END statement is optional in 2200 BASIC.

If used the END statement can appear anywhere

in a program and performs two functions:

1. Halts program execution.

2. Displays the total amount of unused memory
remaining at the time the statement was execu
ted.

NOTE:
Program execution STOPS automatically when
all statements are executed. Therefore END
or STOP need not be used for this purpose.
However if you have several programs in
memory, then either a STOP or END state-

ment must be used to separate them.

For example, clear the memory (by touching
CLEAR CR/LF-EXECUTE) and reenter the pro-
gram in Fig. 8—7 again. Include the statement line

50 END

When the RUN CR/LF—EXECUTE keys are
pressed, the following results ! :

[

READY

:TOFOR X=1T0 256
20Y=Y+X

:30 NEXT X

40 PRINT X, Y

:50 END

:RUN

25 325

END PROGRAM
FREE SPACE = 3324

Fig. 8—8

The Free Space number is an integer number repre-
senting the approximate number of bytes 2 re-
maining for storing additional program text or
variables. The 2200 requires approximately 700
bytes as a work area while executing statements.
These 700 bytes of the 4096 in a 4k machine are
not available to the User. (700 bytes are set aside
for a work area in all size machines.) Therefore,
the above program in a 4k system requires 772
bytes of memory (i.e. 4096-3324=772, 772-700
=72 for the program itself). See appendix B for
further discussion on ““housekeeping spaces’’.

1 The memory area represented in that of the 2200, with 4k bytes (4096 bytes} of memory.

2 A byte is comparable to a programming step.

49

CHAPTER 8

PROGRAMMING AND USING THE 2200

SECTION 8—9
OTHER USES OF THE END STATEMENT

Whenever the END statement is keyed, the 2200
displays the “FREE SPACE" at that time.

Key CLEAR EXECUTE
Thus, if the END statement is keyed after the 2200
memory area has been cleared, the CRT display

shows the full available memory, since none has
been used.

/

READY
:END

END PROGRAM
FREE SPACE = 3398

Fig. 8—9
FREE SPACE is always this amount in a 4k
system as long as:

1. No variables have been defined ! and
2. There is no program text in memory ' .

Thus, executing the statement lines
A =358/41 :PRINT LOG(A)CR/LF-EXECUTE
END CR/LF-EXECUTE

produces the result

/

:A = 358/41 :PRINT LOG(A)
2.166960919696

:END

END PROGRAM
FREE SPACE = 3386

— Fig. 8—9a
Since the variable (A) requires storage in memory,

12 bytes are lost in the available FREE SPACE.

However, if the statements

CLEAR EXECUTE
PRINT LOG(358/41) CR/LF-EXECUTE
END CR/LF-EXECUTE

are executed, there is no loss of FREE SPACE,
since no program text was used and no variable
appeared in the statements: Fig. (8—9b)

—
READY

:PRINT LOG (358/41)
2.166960919696

:END

END PROGRAM
FREE SPACE = 3398

Fig. 8—9b

When entering a program into memory, any
variables within the program must be considered
along with the actual program text, when figuring
the total memory requirements for “running’”’ a
program (See appendix B).

1 Variables are stored in a separate section of the memory as compared to program text. Each requires different amounts of storage. See Ap-

pendix B for storage requirements,

CHAPTER 9
UNDERSTANDING PROGRAMMING

When a programmer decides to write a program, he (or she) does not sit down and immediately enter it.
Rather, a knowledgeable programmer begins by thoroughly analyzing the problem. If careful analysis is
done in the beginning, fewer problems will crop up later. Part of this analysis process often includes a

flow-chart.

SECTION 9-1
FLOW-CHARTING

A problem should be carefully analyzed and
defined before writing a program to solve the
problem. In defining the problem, the programmer
should —

— First, determine the output needed — the
answers wanted.

— Next, determine the data needed, and how
to enter it into the program.

— Finally, determine the computations needed
to arrive at the answers, including alternative
courses of action.

The amount of work required by this last step of
analysis depends upon the complexity of the

problem. In many cases, a flow-chart of all the
processing which is to take place can help simplify
the analysis process. A flow-chart helps to crystalize
the programmer’s thoughts, by allowing one to
illustrate on paper the exact order in which
processing is to take place.

Fig. 9—1 gives some of the standard forms used in
flow-charting.

Fig. 9—1a is an example of a flow-chart.

FLOW-CHARTING
FLOW-CHARTING SYMBOLS

D

— An oval indicates a starting or stopping operation

: — Arrows indicate the direction of flow through the diagram. Every connect-

l ing line should have an arrow on it.
— A rectangular box indicates an operation (i.e., addition, squaring, etc.).
NO — Adiamond indicates adecision (i.e., if YES; if NO), question or comparison.

YES

— A large circle indicates where the program continues at some point. These
points are identified by the same letter.

— A printout or display of any type (usually an answer).

— The Predefined Process Symbol, generally used to represent a Subroutine.

Fig. 9—1

51

CHAPTER 9

UNDERSTANDING PROGRAMMING

PLACE KEY IN

‘ START lr }

CAR
IGNITION

CALL REPAIR
MAN TO FIX

EXAMPLE OF A FLOW CHART

NO TEST VES DRIVE TO
TO SEE IF WORK
START
\
ENTER
PARKING
LOT
NO YES
Y Y
GO TO
PARK STREET
Y
TEST
STOP YES TO FIND A
SPOT
Y
DOUBLE
PARK PARK
Y y
STOP STOP
Fig. 9—1a

52

CHAPTER 9
UNDERSTANDING PROGRAMMING

The following is an example flow chart for solving the problem C =/ A% + B*, where A is assigned a value
of 10, and B a value of 22.

Notice the relationship between the Flow Diagram and the Statements in the Program.

FLOW DIAGRAM

‘ BEGIN ’

/

ASSIGN /_., 10A = 10
VALUE OF
10TOA 20B = 22
30C = SQR (A12+B*12)
ASSIGN 40 PRINTA,B,C
VALUE OF
227T08B 50 END
FIND SQ
ROOT OF
AZ + B2 -
READY
:10 A=10
y :20 B=22
:30 C=SQR (A2 + B12)
DISPLAY :40 PRINT A,B,C
RESULT :60 END
:RUN
10 22 24.166091947
END PROGRAM
FREE SPACE = 3305

Fig.9—1b

53

CHAPTER 9

UNDERSTANDING PROGRAMMING

How would a FOR/NEXT loop be represented? Consider the following example, a summation of the first

25 integers.
< BEGIN ’
Y
SET UP
VARIABLE
X AS COUN-
TER FROM
1TO 25 \
[10FOR X=1T0O 25
A e L 20Y=Y+X
TO
SUMMATION 30 NEXT X
y / 40 PRINT X, Y
/ , BOEND
INCREASE
XBY 1
—
READY
10 FOR X=1T0O 25
20Y=Y + X
TEST 30 NEXT X
TO SEE IF :40 PRINT X, Y
:50 END
:RUN
25 325
;mg END PROGRAM
SUMMATION ‘ FREE SPACE = 3324
Fig. 9—1c¢

Notice that the FOR/NEXT loop has an automatic
test built into it. As long as the variable X is less
than, or equal to 25, the program flows from
step 20 to step 30, and back to step 20 again.

A FOR/NEXT loop is an example of a “’conditional

branch’’* because the loop depends (is conditional)
upon the value of the variable (here, X) at a given

time.

*A conditional branch as well as its definition is discussed in Chapter

12

54

CHAPTER 9
UNDERSTANDING PROGRAMMING

Flow charting not only helps to crystalize the programmer’s thoughts, but also is a key to understanding
how the program accomplishes the results intended. The flow-chart helps a user to understand what the
purpose of the program is. The flow-chart is thus an important part of what is known as the documen-
tation of a program — explanatory material included with a program to aid others in understanding and

executing a program.

SECTION 9-2
THE REMARK (REM) STATEMENT

REM statements are used to insert explanatory
comments or remarks into a program and can
be included anywhere in a program. Unlike the
PRINT, FOR/NEXT, and ASSIGNMENT state-
ments, all of which are executable, the REM
statement is nonexecutable — that is; when the
2200 comes upon a REM statement during the
course of program execution, it does not execute
the statement. The REM statement serves only as a
programming aid, however it does take up memory
space since it is a statement.

Consider the program in Fig. 9—2, which has three
REM statements. (Note that the REM key appears
on the 2215 keyboard).

Notice that the REM statements (lines 20, 40, and
60) are not printed when the program is executed
and have no effect on the output, they appear
only when the program is listed. REM statements

. do not require quotation marks.

-
READY

:30 PRINT “RADIUS”, “AREA"
:60 FORR=5TO 15 STEP 5

70 A=#PI xR 12
:80 PRINTR, A
190 NEXT R

:100 END

:RUN

END PROGRAM
FREE SPACE 3129

:60 REM AREA COMPUTED IN STATEMENT 70 -

:10 PRINT “THIS PROG. COMPUTES THE AREA OF 3 CIRCLES"”
:20 REM STANDARD FORMULA FOR AREA IS USED

:40 REM FOR/NEXT LOOP USED TO ASSIGN 3 VALUES

THIS PROGRAM COMPUTES THE AREA OF 3 CIRCLES

RADIUS AREA

5 78.563981633975
10 314.159265359
15 706.8583470578

Fig. 9—2

55

CHAPTER 10
THE UNCONDITIONAL BRANCH

As mentioned in Section 9—1, a FOR/NEXT loop is an example of a conditional branch — conditional upon
the value of the variable in the FOR statement; as long as the FOR variable is within its assigned limits,
the NEXT statement causes the program flow to branch back for another iteration.

However, another type of branching is often desired which causes program flow to branch to another
location all the time regardless of the assigned values of any variables in the program. Such an unconditional
branch, in BASIC, is accomplished through the use of the GOTO statement.

SECTION 10-1
THE GOTO STATEMENT
Consider the program and associated flow chart in GOTO statement forms an infinite loop; program
Fig. 10—1. Enter the program, SELECT a half- execution does not terminate by itself.

second pause (SELECT P3), and RUN.

Notice that, in the flow chart, the GOTO state-
ment is represented by connecting lines with an
arrow head. In this particular program then, the

The General Form of a GOTO statement is
GOTO line number

10 P=1
20 Q=21P

30 PRINT ““POWER=";P, “Q="";Q

40 P=P+1
SET INITIAL
POWER / 50 GOTO 20
TO1
/ / 4 READY
¢ :10P =1
:20 Q = 21P
FINDO \F”;LUE :30 PRINT “POWER=";P, “Q=";Q
RAISED TO & :40 P=P+1
THE POWER :50 GOTO 20
:SELECTP
¢ :RUN
POWER =1 Q=2
PRINT POWER / A POWER = 2 Q=4
AND RESULT POWER = 3 Q-8
INCREMENT / POWER = 332 Q= 8.74900289E+99
POWER 20Q = 2tP
BY1 1 ERR 03

Fig. 10—1

56

CHAPTER 10
THE UNCONDITIONAL BRANCH

Consider Fig. 10—1a which uses two GOTO
statements.

This program does not form ‘an infinite loop
because of the END statement entered in line 50.
Consider what might happen if line 50 were not

entered.
10J=25:K=15
20 GOTO 60
ASSIGN J=25 /3OZ=J+K+L+M
ASSIGN K=o ;' 40 PRINT 2, Z/4
50 END
, 60L=80:M=16

START

3| FINDsSumOF

J+K+L+M 70 GOTO 30

PRINT SUM /
AND
AVERAGE
A /Y (READY
:10J=26: K=15
“ :20 GOTO 60
:30Z2=J+K+L+M
:40 PRINT Z, Z/4
:50 END
:60L=80:M=16
ASSIGN L=80 :70 GOTO 30
ASSIGN M=16 [€—— :RUN
136 34
* END PROGRAM
FREE SPACE = 3251

Fig. 10—1a

57

CHAPTER 11
THE DATA AND READ STATEMENTS

Thus far in this manual, we have only looked at one method of assigning values to variables in a program.
Generally, each variable that receives a new value requires a separate assignment statement; for example:

10 LET A=17.3

20 B=239:C=-11.4:D = 1.3E4

30 LET E = SQR (A*2+B12+C12+D12)
40 PRINT "“E="; E

Using separate assignment statements in this way becomes inconvenient if there are many values to be
assigned. The DATA statement and the READ statement combine to make the task of assigning many
values to variables more efficient.

SECTION 11-1
DATA AND READ STATEMENTS

The DATA statement is used to store numeric and
alphanumeric data in a program. The statementcan
only be used in the program mode, and consists
of the BASIC keyword DATA followed by one
or more values separated by commas:

100 DATA 17.3, 23.9, -11.4, 1.3E4

The system automatically sets a data pointer to
the location of the first value. It uses this pointer
to keep track of the next value to be used in
the program.

It does not matter whether all the data is in-
cluded in one DATA statement or several. The
statements below are equivalent to the previous
example. ’

100 DATA 17.3
110 DATA 23.9,-11.4
120 DATA 1.3E4

Fig. 11—1

The order in which the data appears, however, is
important. When the values are stored, they are
stored in sequential order as they appear in the
program statements. The data pointer is always
initially set to the first value stored.

In order to use the values that have been stored,
it is necessary to assign variable names to each value
before it is used. This is the purpose of the READ
statement. The READ statement is composed of

the BASIC keyword READ followed by one or
more variable names separated by commas (See
Fig. 11—1a).

10 DATA 17.3,23.9,-11.4, 1.3E4
20 READAB,C,D

Fig. 11—1a

The READ statement in line 20 sequentially
assigns the four values in the DATA statement to
the variables in the READ statement. Thus A =
17.3, B = 23.9, C = -11.4, and D = 1.3E4; these
values may now be used in subsequent calculations.
All the data does not need to be read at one time
with a single READ statement. If fewer values are
read than have been stored, the data pointer auto-
matically keeps track of the last value read (See
Fig. 11—1b and Fig. 11—1c).

GEADY
:10 DATA 17.3,23.9,-11.4
:20 DATA 1.3E4

:30 READ AB

:40 PRINT”A="; A, “B="B

:60 READ XY

:60 PRINT “X="; X, “Y=":Y

:RUN '

A=17.3 , B=23.9

X=-11.4 Y=13000
Fig. 11—1b

CHAPTER 11
THE DATA AND READ STATEMENTS

:10 READ AB,C.D

:20 E =SQR(A12+B12+C12+D12)
:30 PRINT “E=""; E

:40 DATA 17.3, 23.9, -11.4, 1.3E4
:RUN

E= 13000.03848

Fig. 11—1c

SECTION 11-2

USING THE RESTORE STATEMENT

The examples given in Section 11—1 show the READ statement(s) reading data values sequentially from
DATA statements. However, once the programs are executed, the data in the DATA statements can not be
re-used, unless the programs are RUN again. A method is required that allows the data to be read more
than once within a program. This is accomplished through the use of the RESTORE statement.

The RESTORE statement resets the pointer,
which allows the data in the DATA statement
to be re-used without having to RUN the pro-
gram again.

GENERAL FORM
RESTORE [expression] !

The expression ‘in the RESTORE statement is
evaluated by the 2200 and truncated to an integer.
The value of the integer represents the position
of the next data value to be retrieved by the READ
statement. For example, if the value of the ex-

pression is 3, the next READ statement will re-
trieve data, beginning with the third data item
stored. If the [expression] is omitted, the next
READ statement will retrieve data starting with
the first data item stored.

Consider the program in Fig. 11—2. Statement
line 20 restores the data pointer, starting at the
first value (line 40). Compare this program to
the one in Fig. 11—2a, where line 20 restores

the data pointer to the third value (line 40).

! [1 = optional, not required.

59

CHAPTER 11
THE DATA AND READ STATEMENTS

Execution of line 20 restores the entire data string,
beginning at the first value.

-

:10
:20
:30

READ M, N, O,P

RESTORE

READQ,R,S, T, U

:40 DATA 100, 200, 300, 400, 500, 600, 700
:50 PRINTM;N:O;P:Q;R;S;T; U

:RUN

100 200 300 400 100 200 300 400 500

Fig. 11—-2

EXAMPLES OF RESTORE AND RESTORE n

Execution of line 20 restores the data string begin-
ning with the 3rd value, 300.

~

:10
:20
:30

READ M, N, O, P

RESTORE 3

READQ,R,S, T, U

:40 DATA 100, 200, 300, 400, 500, 600, 700
:50 PRINTM;N;O:P;:Q;R;S;T; U

:RUN

100 200 300 400 300 400 500 600 700

Fig. 11—2a

The RESTORE command can also be used to
skip over values in a DATA statement. Consider
Fig. 11—2b. Notice that the execution of state-
ment line 20, RESTORE b5, causes the 2200 to
skip to the fifth data value for the subsequent
READ statement in line 30.

The RESTORE command can thus be used to reset
the data pointer to any item in the stored data. In
situations where there are multiple data state-
ments, data values are stored sequentially, be-
ginning with the first value in the lowest numbered
DATA statement line. Any attempt to RESTORE
to a non-existent data value (i.e., — RESTORE 8
or higher in Fig. 11—2b) results in an error message
and termination of the program execution.

60

:10 READ M, N

:20 RESTORE 5

:30 READ O, P

:40 DATA 100, 200, 300, 400, 500, 600, 700
:50 PRINT M; N; O; P

:RUN

100 200 500 600

Fig. 11—2b

CHAPTER 12
MAKING DECISIONS

One of the most important capabilities of a calculating/computing system is the ability to test values and
make decisions. When such a test or decision occurs within a program, the resulting program flow is made
conditional upon the relationship tested.

In BASIC this concept is known as a conditional branch. This chapter serves to introduce the concept of the
conditional branch as it is used in 2200 BASIC.

SECTION 121
THE USE OF THE IF/THEN STATEMENT

Among the programming concepts introduced in
the flow-charting section of Chapter 9, was the
idea of a decision. Briefly, a decision is represented
in a flow-chart as a diamond (Fig. 12—1)

g

START
YES BRANCH 4
Bl READ S
NO BRANCH
Fig. 12—1
Although a FOR/NEXT loop has a built-in test, , >10
BASIC enables the programmer to directly specify §:
other decisions, giving an even greater programming
flexibility. <
Consider the flow-chart in Fig. 12—1a. <10 Y
What is happening?
1. A value is read for a variable S (from a DATA LET3 LET2
statement). T=8 T=8
2. The value is tested. If it is greater than 10, the

— value is squared and assigned to the variable T.
Ifit is less than or equal to 10, the value is cubed,
and assigned to the variable T.
3. The values of S and T are printed. PRINT
4. The 2200 is directed back to read another value S.T
for S, and the procedure is repeated, until there
are no more data values.

L(,

Fig. 12—1a

- 61

CHAPTER 12
MAKING DECISIONS

What are the program lines which correspond to the
flow-chart? The READ S process is a READ
statement; the assignment and PRINT statements

The Program

are familiar. The test however, is accomplished
through the use of an IF/THEN statement. The
associated program is given in Fig. 12—1b.

The CRT Display

10 READ S
READY
20 IF S> 10 THEN 60 .10 READ S
:20 IF S > 10 THEN 60
30 T=513 .30 T = S13
:40 PRINTS, T
40 PRINTS, T ‘50 GO TO 10
:60 T = S12
50 GO TO 10 :70 GO TO 40
:80 DATA 2,5, 11,3
60 T=S12 :90 DATA -8, 13, 10
:RUN
70 GO TO 40
2 8
80 DATA 2,5, 11, 3 5 125
11 121
90 DATA -8, 13, 10 3 27
-8 -512
13 169
10 1000
10 READ S
* ERR 27
Fig. 12—1b

Analyzing the program line by line:

Statement line 10 says to READ a value from a
DATA statement. Statement line 20 contains the
conditional |F/THEN branch. The 2200, in exe-
cuting statement line 20 in the program, looks at
the value of S, which has been read, and checks
whether the condition in the statement is true. If
the statement is true, the 2200 branches to the
number mentioned in the statement. If the state-
ment is not true, the 2200 goes to the next BASIC
statement in sequence, whether the statementisin
the same statement line, or is in the following
statement line.

62

The first value for S in this program is 2; since 2 is
not greater than 10, the 2200 does not jump to line
number 60. |t goes instead to the next statement in
the program; in this program, the next statement
is statement line 30.

Observe that the use of |IF and GO TO statements
force the 2200 to follow the paths shown in the
flow-chart. Note the placement of the GO TO
statements in line numbers 50 and 70.

There are 7 decisions made during the execution of
this program. In two of the decisions, the 2200 goes

CHAPTER 12
MAKING DECISIONS

to statement line 60; in five, the 2200 goes to
statement line 30. In this example, when the 2200
runs out of data, processing stops and an error
message is printed.

Thus, in this example, the IF/THEN statement
allowed the 2200 to differentiate between values
less than 10, and values greater than or equal to
10. The general format of an IF/THEN statement
is illustrated in Fig. 12—1c.

GENERAL FORMAT

50 IF
S —
line number

the key word IF

a condition to be tested

w=2 THEN 100

-

Y

the key word THEN

\J

\
a line number showing

where to go if the
condition tested is true

Fig. 12— 1¢

The key part of the IF/THEN statement is the
condition to be tested. The condition is always
composed of three parts:

1. The “subject’” -- part to be tested
2. The “object” -- part the test is made against
3. The “relation’” -- type of comparison to be made

— The subject and object are expressions and must
appear on either side of the relation.

— The relation can be any one of the six given in
Fig. 12—1d.

! The line number following the keyword THEN must be somewhere in the program.

63

CHAPTER 12
MAKING DECISIONS

Relation. Generated by
= equals = key
> greater than > key
< less than < key
> =greater than or equal > and= keys
< =less than or equal < and = keys
<> not equal < and > keys
Fig. 12—1d

EXAMPLES OF LEGAL IF/THEN STATEMENTS

10 IF X>Y THENSO
15 IF T6< 14 THEN 80
20 IF 16>15+TTHEN 80
35 IF AtB<>CtD THEN 14
50 IF SQR (M+7)-L<=0THEN 100
Fig. 12—1e
EXAMPLES OF THE IMPROPER USE OF IF/THEN STATEMENTS

25 1FW=X GO TO LINE 70 - improper form - should be

20 IF W= X THEN 70
40IFY <7 THEN GO TO50 - improper form - should be

40 IF Y <7 THEN 50

If the value of C does equal the value of 4 + B,

the 2200 jumps to line number 21 because the
20 IFC =4 » B THEN 21 2200 finds that the condition to be tested is true.
21 PRINT C Observe, though, that if C does not equal 4 « B,

the 2200 goes to the same place. Thus, in this
example, the |IF/THEN statement is meaningless.

Fig. 12— 1f

64

CHAPTER 12
MAKING DECISIONS

Given the previous information, reconsider the
program in Fig. 12—1b. How can this program be
altered to enable the 2200 to sense when all
appropriate data has been read? One way is to
add on an extra item of test data (for example,
9999) which can be tested immediately after the
READ statement. If the value read was found to be
the test value, execution would be halted, via a
transfer in the program, to an END or STOP
statement. Otherwise, the program would continue
to be processed.

The operation described above is a common
programming procedure. To change the program
three additional statements must be included: an
IF/THEN statement, another DATA statement,
and an END or STOP statement. Fig. 12—1g shows
the changed program, and the results. Notice the
position in the program of the IF/THEN and
END statements. (the only requirement for the

READY

:10 READ S

:15 IF S =9999 THEN 110
:20IF S> 10 THEN 60
:30T=S13

{40 PRINTS, T

:560 GOTO 10

60 T=S12

:70 GOTO 40

:80 DATA 2,5,11, 3
:90 DATA -8, 13, 10
1100 DATA 9999

:110 END

:RUN

2 8

5 125
11 121
3 27
-8 -612
13 169
10 1000

END PROGRAM
FREE SPACE = 3226

Fig. 12—1g

65

S —

extra DATA value is that it be the last data value
available in the program).

Fig. 12—1h and 1i represent examples of the use
of the RESTORE command with an IF/THEN
test for a test entry of 9999. In the following
example (Fig. 12—1h), a number of students have
taken a test, and the difference between each grade
and the average grade of the class is desired for
each student.

A DATA statement is used to read the grades and
calculate the average of the class. A test data value
is included at the end of the DATA string, and an
IF/THEN statement is used to test for this value,
whichs signifies all data values have been read.
Following the reading of all data, the RESTORE
statement restores the data for another execution.
A FOR/NEXT loop is used for this process, with
the number of loops controlled by the number of
grades previously read in the program (i.e., N).
The differences are calculated, and all the data
is printed.

10
20
30
40
60
70
80
90
100

105
110

120
130
140
150

SN=0

READ X

If X =9999 then 80
N=N+1
S=8+X

GO TO 20
RESTORE

A=S/N
FORI=1toN

READ X
PRINT I, X, X-A, A

NEXT I

DATA 84, 63, 77,93, 47,72
DATA 86, 58, 75, 66, 9999
END

Fig. 12—1h

CHAPTER 12
MAKING DECISIONS

(BEGIN)

N=N+1
ADD GRADES
TO SUM
§=8+X

RESTORE
DATA

Y

CALCULATE
OVERALL
AVERAGE

GRADE

Y
READ IN

GRADE

Y

PRINT
AVERAGE &

EACH <_—I
STUDENT'S

LooP
N-1
TIMES

DIFFERENCE

END

Fig. 12—1i

66

S OONOCAWN=

o

C
Z

84
63
77
93
47
72
86
58
75
66
END PROGRAM
FREE SPACE=3143

11.9
-9.1
4.9
20.9
-25.1
-1
13.9
-14.1
29
-6.1

72.1
72.1
72.1
72.1
72.1
72.1
72.1
72.1
72.1
72.1

CHAPTER 12
MAKING DECISIONS

Fig. 12—1j is a flow-chart representing the solution must be compared to one another, which involves
to the problem of determining which of three the use of an IF/THEN statement.

different given numbers is the largest. The values

‘ BEGIN ’
{Assume A # B # C)

READ
A,B,ANDC

LET
L=A
A
COMPARE
LET BANDC
=B

LET

L=C
Y -) Y

PRINT
L,A,B,C

A

Fig. 12—1j

67

CHAPTER 12
MAKING DECISIONS

S —

Since it is assumed that the three values are The 2200 is then instructed to go back and repeat
different, there is no need to test for the ““equals” the process. Again, as in previous examples, looping
condition. The largest value, when found, is terminates when the 2200 runs out of values in

assigned to the variable L,
are printed.

and all four variables the DATA statements. Fig. 12—1k shows the
associated program.

The CRT Display

~

READY

:10 READ A, B, C

:20 IF A>B THEN 90
:30IF B> C THEN 70

40L=C

:60 PRINT L, A, B, C

:60 GO TO 10

:70L=8B

:80 GO TO 50

90 IF A>CTHEN 110
1100 GO TO 40

110L=A

1120 GO TO 50

:130 DATA3,1,4,9,2,6,7,8
:140 DATA2,7,6,5,1,2,3
:RUN

4 3 1 4

9 9 2 6

8 7 8 2

7 7 6 5

3 1 2 3

10 READ A, B, C

tERR27

T Fig. 12—1k

68

CHAPTER 13

INTERACTIVE PROGRAMMING — USING THE INPUT STATEMENT

By using assignment, READ and DATA statements, a programmer is able to enter all the necessary data,
prior to running the program. These statements require that data be contained within the actual program
text. Should the programmer wish to alter the data in any way he must change one or more complete state-
ment line. This approach is an effective means of storing constants that remain the same each time the
program is executed, but it is not suited to assigning values that may change each time the program is
executed. The INPUT statement allows the user to key in data after program execution has begun. The

data does not become a part of the program text.

SECTION 13-1

THE INPUT STATEMENT

The BASIC INPUT statement allows the user to enter variable values at selected points in a program, while

the program is running. Fig. 13—1 is a simple example of the use of the INPUT statement.

FLOW DIAGRAM PROGRAM
10 INPUT X, Y
20 PRINT X, X12,Y, Y12
30 END
INPUT
X, Y
PRINT
X, X2, v,v2
Fig.13—1
When a program with an INPUT statement is (
executed, the 2200 continues executing line by READY
line until program flow reaches the INPUT state- 10 INPUT
ment. The 2200 then stops execution and prints : Ut XY ;
out a question mark ““?”’. The user is then expected :20 PRINT X, X12,Y, Y12
to enter data values, one for each variable named in :30 END
the INPUT statement, separated by commas. When :RUN
the CR/LF key is touched, program execution 73,4

continues.

Fig. 13—1a gives the results of executing the
program in Fig. 13—1.

3 9 4 16

END PROGRAM
FREE SPACE = 3340

Fig. 13—1a

69

CHAPTER 13

INTERACTIVE PROGRAMMING — USING THE INPUT STATEMENT

Notice that statement line 20 requests a value for
two separate variables. Thus, when the program
is run, the question mark signifies that two values,
separated by a comma, are required. If less than
the required number of values (which in this case
is two) are given before the CR/LF—EXECUTE
key is touched, the 2200 will continue putting
“?'" 's in the display until all the requested values
have been entered. If more values are entered than
required, the additional values are ignored. The

General Form of the INPUT statement is:

INPUT variable [{variable }] ,
INPUT ““literal string’’, variable [{variable } el

where the literal string is used to identify the
requested input there is no limit to the number
of characters that may appear in the string as
long as the maximum line length does not exceed
192 keystrokes.

SECTION 13-2
INPUT WITH AN INCLUDED TEXT STRING

The general form of the INPUT statement allows
for the inclusion of a literal string in quotation
marks, before the INPUT variable(s). When the
statement is executed, the literal string is printed
out followed by a question mark. This feature
allows the programmer to output a message to the
user before the required data is keyed in.

< BEGIN >

INPUT #

TEST FOR
NEG VALUE
#L0?

YES

PRINTOUT

#and#

PRINTOUT
NO REAL ROOTS
OF s

Fig. 13—2 is an example of the use of an INPUT
statement containing a literal string. The program
itself is set up as an infinite loop, because the GO
TO statements at lines 50 and 70 always direct
program flow back to the first statement line.

10 INPUT “NEXT VALUE", S

20 REM TEST FOR NEG. VALUE

301F S<OTHEN 60

40 PRINT “SQUARE ROOT OF"; S; “IS"”; SQR(S)
50 GO TO 10

60 PRINT “NO REAL ROOTS OF”; S

70GOTO 10

e

READY

:10 INPUT “NEXT VALUE", S
:20 REM TEST FOR NEG’ VALUE
:30 IF S <0 THEN 60

:40 PRINT “SQUARE ROOT OF"’;S;"’S”;SQR(S)
:560 GOTO 10

:60 PRINT “NO REAL ROOTS OF"’;S
170 GOTO 10

:RUN

NEXT VALUE?

Fig. 13-2

1 [1 = optional

70

CHAPTER 14
ARRAYS, AND ARRAY VARIABLES

In addition to the simple (scalar) numeric variables described and used thus far, 2200 BASIC can define

and use array variables.

SECTION 141
WHAT ARE ARRAYS?
COLUMNS
7 6 5 4 9 r r r r r
11 12 13 14 15
R 1 @ 2 2 r21 @ r23 r24 r25
ARRAY

o) 6 2 1 4 10 _ r r r r r
=R= 31 32 33 34 35
w 5 11 4 9 r r r r r
41 42 43 44 45

Fig. 14—1

An array is simply a set of numbers arranged in a
table, such that each number is uniquely identified
by its position. In 2200 BASIC, arrays can have
either one or two dimensions. In two dimensional
arrays, each element is identified by its numerical
row and column position.

Consider Fig. 14—1 which represents a square
array, of 5 columns and 5 rows. A square array
has the same number of rows as columns.

The array is called R {).

Notice that each e/lement of the R array on the
left is associated with a subscripted letter on the
right. The circled number 9 is in row 2 and also
in column 2. Standard mathematical subscript
notation indicates this by “r .. In 2200 BASIC
a statement assigning the value of 9 to the element
in the 2nd row and 2nd column in this R array is:

R(2,2) =9

Likewise, the circled number 10 is in row b5,

column 2, and is identified as “r52". In 2200
BASIC the notation is simply:
R(5,2)

The first subscript denotes the row, and the second
subscript denotes the column, in which the element
appears.

An array may consist of either a single row or
single column, as in Fig. 14—1a.

r1

b}

r

i

Row Array
Fig. 14—1a

Column Array

SECTION 14-2
NAMING AND DIMENSIONING ARRAYS

In 2200 BASIC, agrray variable names are the same
as simple (scalar) numeric variable names except
for the appropriate subscripts enclosed in paren-
theses. There are therefore 286 array names
available. (A-Z, A0-Z9). The subscripts contained
in the parentheses describe a particular element’s
position in the array.

EXAMPLES OF LEGAL ARRAY NAMES

A(5) M(20)
X4(8,6) P3(10,10)
Fig. 14—2

CHAPTER 14
ARRAYS, AND ARRAY VARIABLES

Before an array or any of its elements can be used
space must be set aside in memory for the entire
array. This is accomplished using a DIM (dimen-
sion) statement. The maximum size of either di-

mension (i.e. number of rows or number of
columns) is 255. The General Form of the DIM
statement is as follows:

GENERAL FORM

DIM ‘dim element’ [{‘dim e|ement'} .

numeric array variable

where ‘dim element’ = { alpha array variable ' [integer] 0 < integer < 65
alpha scalar variable ' [integer]

Examples of dimensioned numeric array variables
DIM A(5,2)

DIM A(5,2), B(3,1)
DIM B(6,1), C(3,2), E(5,1)

DIM E1(5)

Reserves space for a 2 dimensional array of 10
elements (5 X 2)

Reserves space for two, 2 dimensional arrays of 10
(56X 2)and 3 (3 X 1) elements

Reserves space for three, 2 dimensional arrays of 6,
6, and 5 elements respectively.

Reserves space of a single dimension array of 5
elements

Space can be reserved for more than one array in
a single DIM statement by separating the entries
for array names with commas. The DIM statement
must appear before any use of the variables in a
program, and the space to be reserved for the array
must be explicitly indicated. Subscripts cannot be
variables or variable expressions, but must be
integer values (1 to 255). The numeric value of the
subscript cannot be a zero.

Once a numeric array is dimensioned, the initial
value of each element is O, and each element can
be used like a regular variable, (Fig. 14—2a) 2 .

READY

:10 DIM X(5,5), W(8, 10)
:20 X(1,3)=25x6.342
:100 IF W(8,5) <13 THEN 50
1120 Y=W(2,3) = X(3,2)
Fig. 14—2a

Except in the DIM statement, array subscripts
can be any variable or variable expression whose
value is greater than O and less than 256. Thus,
the subscript can be computed. Fig. 14—2b is an

example of a program which computes the position
of the array and assigns the value of 5 for each
element. In this example, a FOR/NEXT loop is
used to change the subscript, from element to
element of the array.

READY

:10 DIM X(100)
:20FOR1=1T0O 100
:30 X(1) =5

:40 NEXT I -

Statement 10 — sets aside 100 spaces in memory
for array X.

Statement 20 — sets up a counter where | goes
from 1 to 100. | is a variable to represent the
subscript of array X.

Statement 30 — assigns the value 5 to every
element in the array X where | will go from 1 to
100 (x,, X, X5, X, « vt XIOO)'
Statement 40 — increments the counter by one
each time the program loops.

Fig. 14—2b

1 Alphanumeric variables are discussed in Chapter 16.

2 . .
The subscript of the first element of an array is always 1"
message to be generated.

, never “0”. Thus, X(1) is proper, whereas X(0) is not, and causes an error

CHAPTER 15
NESTED LOOPS

Earlier in this volume the FOR/NEXT loop was introduced and explained. All of the examples showed only
one loop within a program. A programming technique called nested loops can be done on the 2200.
Nested loops are loops within loops. This chapter uses nested loops to show you how to set up a two-
dimensional array in memory and assign values to each element of the array.

SECTION 15-1
NESTED LOOPS

In the last chapter a FOR/NEXT loop was used
to define and establish a single dimension array.
This did not involve any complex programming;
since this type of array was only a single dimen-
sion. There was no question as to which element
was being referred to, or the order in which the
reference was made.

The situation with two dimensional arrays in-
volves somewhat more programming. A natural
question at this point is: “If a single dimensional

array uses a single FOR/NEXT loop, could two
FOR/NEXT loops be used with a two dimensional
array?’”’ The answer is “'yes’’. The concept involved
is a loop within a loop, and is referred to as
nested loops.

Consider Fig. 15—1, which shows a nested loop
approach to establishing all elements of the array
and assigning each the value 1",

10 DIM X(5,3)
—— 20FORB=1TO5

ol _
Ol N 30FORC=1TO 3
TIN 40 X(B,C) = 1
EE 50 NEXT C
R R

60 NEXT B

70 END

X X X
1,1 1,2 1,3
X X X 5
2,1 2,2 2,3
R
X{5,3) = X5, X, X, o
3 s) o
w
X401 X4 X4,3
S
X
X1 5,2 Xs.3
3 COLUMNS

Fig. 156—1

When this program is executed, the X array is
dimensioned as 5 by 3, and 15 spaces are set
aside in memory for this array. Statement line
number 20 sets up a FOR/NEXT loop, where the
row position is given the name B and a counter is
set up from 1 to 5. Statement line # 30 sets up a
FOR/NEXT loop, where the column position is
given the name C and a counter is set up from 1 to
3. Execution of both of these statements the
first time results in the subscripts of array X
being assigned the value of X, . Therefore, when
statement number 40 is executed XB’C, or X, N is
set to equal 1. Statement number 50 is then
executed which results in C being incremented
by 1 and tested to see if C has reached three. If
not, statement 40 is executed and Xy . now
equals X, 2 and X1,2 is set to equal 1. This
continues until the inner loop or C = 3 is satisfied
or X, , = 1. Then statement # 60 is read. Since
this is part of the outer (B) loop, B is incremented,
by 1 and tested to see if equal to 5, if not B is

73

set to 2 and statement 30, 40, and 50 are repeated.
This results in X2,1' being set to X2 L X2’2, and
X2‘3. This process continues until B is set to 3,
4, and 5 respectively, and is terminated when
Xy ¢ = X, 5, or the last element of the array Is
defined and set to equal one. Then statement 70

is executed and the program ends.

Thus the key to understanding nested loops, is
that the inner loop goes through an entire pro-
cessing, for each time the outer loop goes through
one process. When the inner loop is finished the
program jumps back to the outer loop and the
process starts again until the outer loop is com-
pleted. There can be any number of nested loops.
The only requirements are that each loop have a
different counter variable (variables B and C in the
previous example), and that the loops not overlap,
that is the inner loop must be satisfied or completed
before trying to go back to the outer loop, An
example of this is shown in Fig. 15—1a.

CHAPTER 15
NESTED LOOPS

ILLEGAL Loop OVERLAP
—— 10 FORI1 =1TO5
— 80 FORJ=1TO3
—> 100 NEXT I
—» 200 NEXTJ

Fig. 15—1b is another example of a nested loop
with an array. In this case, the elements of the 4 by

4 array are assigned different values increasing from
1 to 16.

Fig. 156—1a
PROGRAM OuUTPUT
f

10 DIM F2 (4,4) :RUN
20 FOR I=1TO 4
30 FOR J=1 TO 4:N=N+1 1 2 3 4
40 F2 (1,J)=N
50 PRINT F2 (1,J), 5 6 7 8
60 NEXT J 9 10 11 12
70 PRINT
80 NEXT | 13 14 15 16
90 STOP

STOP

Fig. 15—1b
SECTION 15—2

OTHER USES OF NESTED LOOPS

The use of nested loops is not restricted to arrays.
There are many situations where an evaluation of
an expression with several variables is required.
Nested loops become valuable in these situations,
because they enable a programmer to hold one
variable at a constant value, while varying the value
of another over a range of values. The process can
thus automatically be repeated for another con-
stant value, while the second (or third, fourth, ...)

variable again takes on a set of values.

Fig. 15—2 is an example of such a situation as
applied to a mortgage payment calculation. Notice
that both NEXT statements appear in the same
statement line — line 60. However, the NEXT N
statement precedes the NEXT | statement. Thus,
the FOR/NEXT N loop is completely within the
FOR/NEXT | loop, as required.

SAMPLE PROGRAM — NESTED LOOP

MORTGAGE PAYMENT PROBLEM, letting interest rate and loan period vary

GIVEN: (P)

(P) 75

CHAPTER 15
NESTED LOOPS

where P is the principal or amount borrowed (in dollars)

| is the interest rate which is expressed as a yearly rate; i.e., 6 percent per annum is
equivalent to .06.

N is the number of years representing the period of the loan.
M is the amount of the monthly mortgage payment.
IFP = $40,000, then
M = (40000 = 1/12)/(1-(1+1/12) * (-N « 12)

If we let interest vary from 7%% to 9% in %% increments and let the number of years of
repayment vary from 20 to 30 yrs. in b year increments the problem becomes

10 PRINT "AMOUNT BORROWED", "“INTEREST RATE”, “NO. OF YEARS”; " MO. PYMT.”
20 FOR | =.075TO .090STEP .005 :REM INTEREST RATE VARIES

30 FOR N=20TO 30STEP 5 :REM YEARS OF REPAYMENT VARIES OVER EACH INTEREST RATE
40 M= (40000) « (1/12)/(1-(1+1/12) 1 (-N=12))

50 PRINT “$40,000"”, 100«1, %", N; TAB(45); "$'"; M

60 NEXT N:NEXT |

70 STOP

/
:RUN
AMOUNT BORROWED INTEREST RATE NO. OF YEARS MO. PMNT.
$ 40,000 7.5 % 20 $ 322.2372774218
$ 40,000 7.5 % 25 $ 295.5964711202
$ 40,000 7.5 % 30 $ 279.6858034216
$ 40,000 8 % 20 $ 334.5760276139
$ 40,000 8 % 25 $ 308.726487759
$ 40,000 8 % 30 $ 293.5058295595
$ 40,000 85 % 20 $ 347.1292933536
$ 40,000 85 % 25 $ 322.0908333922
$ 40,000 8.5 % 30 $ 307.5653934374
$ 40,000 9% 20 $ 359.8903823416
$ 40,000 9% 25 $ 335.6785454527
$ 40,000 9% 30 $ 321.849046778
STOP

Fig. 15—-2

75

CHAPTER 16

ALPHANUMERIC STRING VARIABLES

Thus far, literal strings have been used as headings or labels for PRINT, STOP, and INPUT statements.
These literal strings don’t change, and are always printed as represented. String variables are variables whose
value are literal strings. The value of string variables can be altered at will.

SECTION 16—1

STRING VARIABLE — NAMES AND CHARACTERISTICS

String variables are distinguished from numeric
variables in two ways. First, string variables have
different names than numeric variables. A string
variable is denoted by a letter or a letter and a
digit, followed by a “’$’* (dollar sign). There are a
total of 286 string variable names.

LEGAL STRING VARIABLE NAMES

A4$ W3$
X$ Z6$

Fig. 16—1
Second, unlike numeric variables, which can only

represent numbers, string variables can represent
any string of symbols, letters, or digits.

SIZE OF STRING VARIABLES

Until a string variable is assigned a value, it is
assumed to consist of one space. This compares
to numeric variables, which assume a value of O,
before they are assigned some other value. Unless
specified otherwise in a DIM statement, the
maximum number of alphanumeric characters a
string variable can assume is 16. This compares to
the maximum number of digits a numeric variable
can assume which is 13. If an attempt is made to
assign a literal string of greater length to a string
variable, the additional characters are simply ig-
nored.

SECTION 16—-2

GIVING STRING VARIABLES VALUES

String variables, like numeric variables are assigned
values by Assignment statements, READ/DATA
statements, and INPUT statements. Except for
INPUT statements, the characters and spaces must
all be enclosed in quotes.

Some examples of Assignment statements and
READ/DATA statement are shown in Figs. 16—2
and 16—2a.

ASSIGNMENT STATEMENT

vVé$ = “JOE SMITH”
F$ = “MAPLEST.”
X4$ = "“Gb42H-16#"
w$ = “152,760"

Fig. 16—2

10 READ A$, B$, C$

80 DATA “OHIQ”, “MISSOURI", “INDIANA", "NEW YORK"’, .

Fig. 16—2a

The situation with INPUT statements is somewhat
different. Alpha characters need not be included in
quotation marks. |f quotation marks are not used
commas and carriage returns act as string termi-
nators, and leading spaces are ignored. Thus, if
commas or leading spaces are to be included in the
literal string in the INPUT statement, the string
must be included in quotes. Fig. 16—2b shows the
results of responding to an INPUT request with
quotes and Fig. 16—2c¢ without quotation marks.
Notice that in the case of no quotes, only the first
two parts, as denoted by commas, are picked up.
The rest is ignored.

CHAPTER 16
ALPHANUMERIC STRING VARIABLES

s

:10 INPUT Y$, Z$

:20 PRINT Y$:PRINT Z$

:RUN

? “PARK, MARY J.”, “JONES, STANLEY F.” CR/LF
PARK, MARY J.

JONES, STANLEY F.

Fig. 16—2b
With Quotation Marks

-

:10 INPUT Y$, Z$

:20 PRINT Y$: PRINT Z$

:RUN

? PARK, MARY J., JONES, STANLEY F. CR/LF
PARK

MARY J.

Fig. 16—2c
Without Quotation Marks

SECTION 16-3

USING STRING VARIABLES

Once a string variable is given a value, it may be

used with all the relational operators, shown in
Fig. 12—5.

Fig. 16—3 gives some example of string variables
with relational operators.

80 IF Z$ = ""ABC” THEN 200
0 W$ = A$
130 IF B$ < A$ THEN 150

IF/THEN EQUALITY STATEMENT
ASSIGNMENT STATEMENT
IF/THEN INEQUALITY STATEMENT

Fig. 16—3
However, string variables and strings cannot be used

with the arithmetic operators (+, —, *,/, 1), as
shown in Fig. 16—3a

ILLEGAL USE OF STRINGS
PRINT C$, C$ 1 2 —Strings can’t be raised to a power

W$ = 123" — Literal strings assigned are numeric which is O.K.

V$§ = 456" However, since they are in quotes and are assigned
to a string variable, they cannot be arithmetically
manipulated.

Y$ = W$+VS$ —Strings can’t be added regardless of what characters

they represent.
Fig. 16—3a

ALPHANUMERIC ORDERING

A natural question arises at this point, regarding
the last example of Fig. 16—3, an IF/THEN
inequality statement.

Two string variables are compared by the re/ative
alphanumeric characters composing them. The
ordering is given in Fig. 16—3b.

Notice that the letters of the alphabet are ordered
as expected — A is less than B, islessthan C. .. Z.
Also notice that the numerals O thru 9 are as ex-
pected, and numerous symbols fall throughout.
When a comparison of strings is made, the strings
are compared on a character-by-character basis.

77

ALPHANUMERIC ORDERING

“LOWEST"”

| (SPACE) 0 A P
N " 1 B Q
C # 2 C R
R $ 3 D S
E % 4 E T
A ! 5 F U
S (6 G \Y)
|) 7 H W
N * 8 I X
G + 9 J Y
R , : K Z
A - ; L 1
N Y . f M

K / = N

> 0] “HIGHEST"

——
INCREASING RANK

Fig. 16—3b

Short strings are filled out with trailing spaces to
allow for comparisons with longer strings. These
trailing spaces have no effect otherwise. Fig. 16—3c
gives some examples of string comparisons.

CHAPTER 16
ALPHANUMERIC STRING VARIABLES

EXAMPLES OF ALPHANUMERIC COMPARISONS

“JOHN SMITH” < “WILLIAM JONES"
“SMITH, JOHN"” > *JONES, WILLIAM"”
IIABCII < l’CBAI'

comparison stops after first character: J<W
comparison stops after first character: S>J

comparison stops after first character: A<C

“ABC’” > "“-ABC” because of leading space, string comparison stops after first character :"’ A"">""—"'

1921 PARK DRIVE” < “’A” because 1" < A"

1921 PARK DRIVE"” > "-A" because 1" > *'-"" (space)

“X-"="X" because '"X" is considered to have trailing spaces, filled out for comparison.

“X" > “-X" because “-"" (space) < “X"

Fig. 16—3c

Figures 16—3d & 16—3e are examples of a com-
monly used programming technique, where string
variables aid in the creation of conversational
programming. Statement 10 is an INPUT state-
ment with literal string, used to indicate that a
number is required. The INPUT is assigned to a
numeric variable. Statement line 20 then asks
whether the user desires the square or cube of the
number previously entered. The INPUT is assigned
to a string variable. Statement line 30 then checks
to see if the request was for a squared number,
which if true causes program flow to go to
statement line 50, setting the power to 2. If the
request of the second INPUT statement is not
squared, program flow after statement line 30
continues to line 40, where the response is

78

checked against CUBED. If this condition is
met, program flow goes to statement line 60,
where the power is set to 3. If the request of the
second INPUT statement is neither SQUARED
nor CUBED, Program flow comes to the second
statement in statement line 40, which causes a
printing of the statement BE MORE SPECIFIC,
after which program flow is directed back to the
second INPUT statement. This allows the program
to handle virtually any response to the second
INPUT statement. A recognizable response (here
SQUARED or CUBED) causes the program flow
to loop back and continue requesting until a
recognized response /s given.

CHAPTER 16

ALPHANUMERIC STRING VARIABLES

EXAMPLE OF STRING VARIABLES IN A CONVERSATIONAL PROGRAM

10
20
30
40
50
60
70
80

INPUT “WHAT NUMBER DO YOU WANT TO WORK WITH", X

INPUT ““DO YOU WANT IT SQUARED OR CUBED", N$

IF N$ = “SOQUARED"” THEN 50

IF N$ ="“CUBED"” THEN 60: PRINT “BE MORE SPECIFIC"”: GO TO 20
P=2: GOTO 70

P=3

PRINT X; N$; “="; XtP: PRINT

GOTO 10

‘ BEGIN)

-«

INPUT “

INPUT
COMPUTATION
REQUEST

SET A
POWER
=2

REQUEST
CUBED

SET
POWER
=3

PRINT QUTPUT #
& COMPUTED
RESULT

[y
——

Fig. 16—3d

79

CHAPTER 16
ALPHANUMERIC STRING VARIABLES

-

READY

:30 IF N$ = “SQUARED’’ THEN 50

:60P =2: GOTO 70

:60P =3

:70 PRINT X; N$; “="; X1P: PRINT
:80 GOTO 10

:RUN

5 SQUARED = 25

:10 INPUT “WHAT NUMBER DO YOU WANT TO WORK WITH"", X
:20 INPUT “DO YOU WANT IT SQUARED OR CUBED"”, N$

:40 IF N$ = “CUBED” THEN 60 :PRINT “BE MORE SPECIFIC” : GOTO 20

WHAT NUMBER DO YOU WANT TO WORK WITH? 5
DO YOU WANT IT SQUARED OR CUBED? SQUARED

WHAT NUMBER DO YOU WANT TO WORK WITH?_

Fig. 16—3e

Notice also the form of the first PRINT statement
in line 70.

SECTION 164

Both INPUT responses are used as well as the

answer.

THE SIZE OF STRING VARIABLES

In SECTION 16—1, it was mentioned that the
standard size of a 2200 string variable is 16 charac-
ters. If a string variable is shorter than 16 characters,
the remaining positions are considered to be
trailing spaces. |f more than 16 characters are
assigned to a string variable, the excess characters
beyond 16 are ignored.

2200 BASIC however, allows a user to change the
size of a string variable from 16 characters to any
number of characters from 1 to 64. The result is a
compacted or extended string variable. This is
accomplished, using the DIM statement. The maxi-
mum number of characters desired is given, fol-
lowing the string variable name without parentheses.
In Fig. 16—4, A$ is set to a maximum length of
36 characters, B$ to a maximum of 64, and C$ to
a maximum of 7.

DIM A$36, B$64, C$7

Fig. 16—4

This use of the DIM statement differs from its use
as described in SECTION 14—2, in that the string
variable still only represents a single ‘‘value”. In

80

this case however, the ‘“value’” in terms of absolute
size is changed.
Fig. 16—4a shows the results of using a DIM state-

ment to alter the maximum length of a string
variable.

K READY
:A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
:PRINT A$
ABCDEFGHIJKLMNOP
:DIM B$5, C$20
:B$, C$=""1234567890ABCDEFGHIJKLMN"
:PRINT B$, C$
12345 1234567890ABCDEFGHIJ

Fig. 16—4a

Without the DIM statement, assigning a string of
26 characters to a string variable (here A$) results
in its picking up only the first 16 characters.
However, by changing the length (here B$ to 5,
and C$ to 20) results in the string variable

CHAPTER 16
ALPHANUMERIC STRING VARIABLES

picking up its respective maximum number of
characters.

STRING ARRAYS

Arrays of string variables can also be dimensioned
just as numeric variables can. The maximum sub-
script is again 255. The maximum number of
characters which each string array element can
assume is 16 characters, unless the size of the
string variable is set at another value. Elements
of string arrays can be dimensioned from one to
sixty-four characters in length. Fig. 16—4b gives
both situations.

DIM A$(5,5), B$(25)
DIM X3%(5,5)50

Fig. 16—4b

In the first DIM statement, the string array
A$ () is defined as a two dimensioned array
having 5 rows and 5 columns. The string array
BS$ () is defined as a one-dimensioned array with
25 elements. The maximum length of the individu-
al string elements in A$ () and B$ () is sixteen.
The second DIM statement defines a two-dimen-
sional string array of five rows and five columns,
in which each element can assume up to fifty
characters.

SECTION 16-5
THE STR(FUNCTION

Although string variables cannot be added, sub-
tracted, etc., they can be manipulated. There are
two functions which allow the user to analyze the
length of string variables and to access the char-
acters which compose them. One of these functions
is the STR(function.

The STR(function enables the usar to extract,
examine and/or replace portions of string variables.
The function is generated by keyingS T R (

GENERAL FORM

STR{string variable name, expression [,expression]}

Where 1st expression = starting character in string
2nd expression = number of consecutive characters.
(The specification of 2nd expression is optional.)

From the general form of the STR(function,

STR(A$,3,4) means

Starting with the 3rd character of A$, take 4
characters, i.e., the 3rd, 4th, bth, and 6th.

STR(AS$,3) means

Starting with the 3rd character, take remainder
of the string A$.

Examples using the STR(function
Assuming B$=""ABCDEFGH"

10 A$=STR(BS,2,4)
20 STR(A$,4)=B$
30 STR(AS$,3,3)=STR(B$,5,3)

40 IF STR(B$,3,2)=""AB"THEN 100

50 READ STR(A$,9,8)

81

--A$ is set to ‘BCDE".
---Characters 4 through 16 of A$ are set to ““ABCD-

EFGH".

--The 3rd, 4th, and bth characters of A$ are set

to “EFG”.

---Characters “CD’"" of B$ are compared to the

literal string “AB”.

--Characters 9 through 16 of A$ receive the next

data value.

CHAPTER 16

ALPHANUMERIC STRING VARIABLES

Fig. 16—5 is a programming example using the
STR{(function. As the REM statements indicate,
the credit card number keyed, via the INPUT
statement in line 50, is checked for membership
year and credit rating. Both these pieces of infor-
mation are “‘imbedded’’ in the credit card number.

Notice the last 2 DATA values. The ZZZZZ is a
piece of test data, checked for by the IF/THEN
statement in statement line 60. The variable S serves
as a counter, to check the number of transactions
processed.

EXAMPLE OF PROGRAM USING THE STR({ FUNCTION

10 REM CREDIT CARD MEMBERSHIP AND CREDIT CHECK
20 REM DATA TAKEN IN VIA READ STATEMENT

30 S=0 :PRINT

40 INPUT “NAME", N$

50 IF N$="2ZZ2ZZ' THEN 110 :S=S+1

60 INPUT “CREDIT CARD #', C$

70 PRINT “CUSTOMER’S NAME", “CARD NO.",”
80 REM CHAR 16 IS CREDIT RATING

90 PRINT N$, C$, 19; STR(CS, 9, 2), STR(CS, 16)

100 GOTO 40

110 PRINT “ALL CARDS PROCESSED", S; “TRANSACTIONS"
120 END

TYPICAL CREDIT CARD

f

DREXEL
DEPARTMENT STORES
8X36-41—-68379A-8
JOHN DOE GOOD THRU 6-75

_ J

__MEMBER SINCE", “CREDIT RATING""

READ IN
NAME

READ IN
CREDIT CARD #

!

PRINT CUSTOMER'’S
NAME, CARD NO.,
MEMBER SINCE,
CREDIT RATING

A v

PRINT NAME,

NUMBER, AND
CHARACTERS

11,12, AND 16 V
PRINT OUT <

END MESSAGE

Fig. 16—5

82

CHAPTER 16
ALPHANUMERIC STRING VARIABLES

s

:RUN

NAME? “DOE, JOHN"

CREDIT CARD #? 8X36-41-68379A-8
CUSTOMER’S NAME CARD NO.

DOE, JOHN 8X36-41-68379A-8
NAME? “SMITH, W.C.”

CREDIT CARD #? 4X52-61-72594C-5
CUSTOMER’'S NAME CARD NO.

SMITH, W.C. 4X52-61-72594C-5
NAME? “JONES, ROBERT"

CREDIT CARD #? 5X19-71-60127L-1
CUSTOMER’'S NAME CARD NO.

JONES, ROBERT 5X19-71-60127L-1
NAME? “2Z2Z2z22"

ALL CARDS PROCESSED

END PROGRAM
FREE SPACE = 2987

MEMBER SINCE
1968 8

MEMBER SINCE
1972 5

MEMBER SINCE
1960 1

CREDIT RATING

CREDIT RATING

CREDIT RATING

3 TRANSACTIONS

Fig. 16—6

The STR(function can be used anywhere a string variable is needed and it can be used with string arrays.

SECTION 16—6

THE LEN(FUNCTION

The LEN{ function is used to determine the
length of an alphanumeric string, excluding trailing
blanks. This ability to determine the number of
significant characters in a string becomes useful
during a number of alphanumeric computations.

The LEN(function gives a numeric value and as
such can be used whenever a numeric variable is
legal.

The function is generated by keying L E
N ()

GENERAL FORM

LEN (string variable)

Some examples of the use of the LEN(function
are as follows:

(READY

:10 DIM B$ (5) 49

:30 PRINT LEN (B$(1))
:RUN

47

83

:20 B$ (1) = “LAST NAME, FIRST INITIAL, CITY and STATE, ZIP CODE"

CHAPTER 16
ALPHANUMERIC STRING VARIABLES

4 —
READY READY
:10 LET A$ = “ABCDEF” :10 INPUT J$
:20 PRINT LEN (A$) :20 A = 5xSQR (LEN(J$)+2)
:RUN _ :30 PRINT “A="; A
6 :RUN
? ABCDEFG
'_ A=15
READY

:10 INPUT “WHAT IS YOUR NAME”, N$

:20 IF LEN (N$) > 4 THEN 50

:30 PRINT N$; “ IS A VERY SHORT NAME."”
:40GO TO 10 .

:50 PRINT N$; “ 1S A LONG NAME."”"

:60 GO TO 10

:RUN

? WHAT IS YOUR NAME? MICHAEL
MICHAEL IS A LONG NAME
WHAT IS YOUR NAME?

84

CHAPTER 17
SUBROUTINES

A subroutine is a program within a program or a group of statements which are to be used over and over
again. Rather than writing these statements into the program each time they are used, they can be written

once and referred to each time they are needed.

SECTION 17-1

“CALLING” & WRITING SUBROUTINES

The General Form of a Subroutine is as follows:
GENERAL FORM
GOSUB line number

where line number is the number of the line
beginning the subroutine.

Subroutines are accessed using a GOSUB statement
(Fig. 17—1).

N

10 GOSUB 150

Directs program execution
to start subroutine begin-
ning with line 150.

Fig. 17—1

The GOSUB statement tells the 2200 to transfer
execution of the program to another line (here
line #180) which is the first line of the subroutine.
All subroutines must end with a RETURN state-
ment (Fig. 17—1a).

(

10 GOSUB 150
20

150X = SQR(A12+B12)

200 RETURN-

Returns control to
statement 20.

Fig. 17—1a

85

The RETURN statement tells the 2200 to go back
to the statement immediately following the GOSUB
statement which sent the 2200 to that subroutine.

The RETURN statement must be the last executable
statement on a line if it is in a multi-statement
line. Non-executable statements (e.g. REM, DATA)
can be included on the same line after a RETURN
(Fig. 17—1b).

EXAMPLES OF LEGAL AND ILLEGAL USE OF
RETURN IN MULTISTATEMENT LINES

LEGAL
50 RETURN: DATA 5.6, 18, 100
100 X=10: RETURN:REM SUBROUTINE ENDS

ILLEGAL
150 RETURN: C=SQR(10)
170 RETURN: PRINT X:

Fig. 17—1b

Consider the example in Fig. 17—1c which illus-
trates a program which uses the same subroutine
more than once. Notice the flow of the program.

CHAPTER 17

SUBROUTINES

SUBROUTINES

PROGRAM PROGRAM FLOW
Directs program 100 READA,B,C 100
execution to 200
subroutine at 200 GOsUB 2000 2000
line 2000 300 PRINT X .
20;50 Returns to statement
300 immediately following
. . the GOSUB which
Directs program 800 A=J*Q “called’’ the subroutine.
execution to 810 B=P-L
subroutine at .
line 2000 820 C=(W+X)*2Z 800
— > 830 GOSUB 2000:PRINT X g;g
: 830
2000
Directs program 1200 A =149 : l
execution to 1210 B =SQR (46 + W) 2050
subroutine at 830
line 2000 1220 C=12.6
— 1230 GOSUB 2000
1240 PRINT X
1200
1210
1220
: 1230
1990 END 2000
2000 K= (A *B)-C
Subroutine 2010 |F K> 1500 THEN 2040
2020 X=0 .
2050
2030 GOTO 2050 1240
2040 X=1 .
L—» 2050 RETURN
2060 DATA 40, 30, 25) Fig- 17-1c
1990
Comment: The 2200 keeps track of the statement following each GOSUB statement so when a

RETURN is executed the 2200 returns to the statement immediately following the
last executed GOSUB statement.

What is happening in this program? The GOSUB
statement at line 200 causes the 2200 to jump
to statement number 2000. It then executes state-
ments 2000 to 2050, where it encounters a
RETURN, and executes the RETURN and re-
turns to the statement following the last executed
GOSUB (i.e. 300 PRINT X).

Statements from 300 — 830 are executed and the
2200 branches back again to the subroutine at line

2000. This time line 2060 returns execution to
the statement PRINT X in line 830.

86

CHAPTER 17
SUBROUTINES

|
SECTION 17-2
NESTED SUBROUTINES
Subroutines can call other subroutines. That is, This is called Nesting Subroutines. Unlimited
from within one subroutine you can go to another nesting of subroutines is allowed on the 2200
subroutine and return back to the original sub- (Fig. 17-2).
routine.
EXAMPLE OF NESTED SUBROUTINES
SHOWING PROGRAM FLOW
10 GOSUB 30 _ Transfers to 30
20 PRINT Q: STOP -
30 REM THIS IS ASUBROUTINE -
40
SUBROUTINE (50
60 ... Transfers to 150
70 GOSUB 150 »
80 PRINTQ ==
SUBROUTINE 90
100 RETURN: REM END OF SUBROUTINE 30 »——

110

1.50 REM THIS IS A NESTED SUBROUTINE =
160

NESTED
SUBROUTINE

260 RETURN: REM END OF NESTED SUBROUTINE »———
Return to 80

Fig. 17—2

87

CHAPTER 17
SUBROUTINES

SECTION 17-3
ILLEGAL USE OF SUBROUTINES

Subroutines and FOR/NEXT loops should never only one of a matching set of FOR and NEXT
overlap — that is a subroutine should never contain statements. For example

100 GOSUB 180

— 150 FOR1=1TO 10

FOR/NEXT

LOOP 180 REM START SUBROUTINE —

200 NEXT I — SUBROUTINE

240 RETURN —

Fig. 17-3

88

CHAPTER 18
SINGLE LINE USER DEFINED FUNCTIONS

The 2200 allows the user to create his own special functions by using the DEFFN statement. The DEFFN
statement allows the programmer to define mathematical functions of one variable which can be used like
any keyboard function. The General Form is shown in Fig. 18—1.

GENERAL FORM OF DEFFN STATEMENT

DEFFN a (v) = expression
Keyboard Function Dummy Equals Any expression
“DEFFN" Name Variable Sign Containing the

Dummy Variable

where a is any letter or digit
v is a scalar numeric variable

Fig. 18—1
Some examples of user functions are shown in Fig. 18—1a.

EXAMPLES OF USER DEFINED FUNCTIONS
10 DEFFN F(X) =SQR(X+9)-X
20 DEFFN E(G) =(4+xG+6)/G
30 DEFFN 8(L) =4271tL
40 DEFFN 2(Y) =Y*TAN(Y/2)
50 DEFFN 3(A) =A13.6-A%2

Fig. 18—1a

SECTION 18-1
EXPLANATION OF DEFFN STATEMENT FORMAT
AND USES OF DEFFN FUNCTION

1. The function ““‘name’ (in Fig. 18—1,) can be 3. The function definition (DEFFN statement)
any number (0—9) or letter (A—2Z) - a total can appear anywhere in a program.

of 36 functions. 4. A function can be used in a program just like

2, The “"]dummy variable’”” (in Fig. 18—1) can be any keyboard function. The user function is
any numeric scalar variable. It is solely a place referenced by using the FNa (expression) for-
holder, and has no effect on a variable of its mat where a is the name of the function and
same name used somewhere else in a program. expression is any numeric expression.

89

CHAPTER 18

SINGLE LINE USER DEFINED FUNCTIONS

10 DEFFNF (X)=X13-4*X+6

20 Y =FNE (2)\ expression

Therefore " whose value
Y=213-4*2+6 is assigned to .
name of the dummy
function variable X.
Fig. 18—1b

5. The function FNF(X) can be referenced as many
times as needed in a program just like any key-
board function. A function cannot refer to itself,
but it can refer to other functions (Fig. 18—1c).

f

:10 DEFFN1 (X) = 4+«X12+ SQR (X + 1)
:20 DEFFN2 (Y) = FN1(Y) + 10

:30 A = 2xFN2(3)

:40 PRINT FN1(3), FN2(3), A

:RUN
38

48 96

Fig. 18—1c¢c

But functions cannot refer to each other (Fig.

18—1d).

(

=5+ 2 « FN X(B)
=FNA(Y) - 4

10 DEFFN A(B)
20 DEFFN X(Y)

Function A refers to function X and function
X refers to function X.

Fig. 18—1d

Fig. 18—1e is an example of a program which
makes use of a DEFFN function in a FOR/NEXT
Loop.

EXAMPLE PROGRAM:

FUNCTION WITH VARIABLE VALUE

10 REM LOOP PROGRAM FOR THE AREA OF CIRCLES
20 DEFFN C(R) =mxRt2

30 PRINT “RADIUS”, “AREA"

40 FORI=1T010

50 PRINT I, FNC(I)

60 NEXTI

70 END

e

READY

:10 REM LOOP PROGRAM FOR THE AREA OF CIRCLES
:20 DEFFN C{(R) = #P1xR12

:30 PRINT “RADIUS”, “AREA"

:40 FOR1=1TO 10

:50 PRINT I, FN C(1)

160 NEXT I

:70 END

:RUN

RADIUS AREA
1 3.14159265359
2 12.56637061436
3 28.27433388231
a4 50.26548245744
5 78.53981633975
6 113.0973355292
7 153.9380400259
8 201.0619298298
9 254.4690049408
10 314.159265359

END PROGRAM
FREE SPACE = 3246

Fig. 18—1e

920

CHAPTER 19
THE SPECIAL FUNCTION KEYS

At the top of your keyboard there is a group of sixteen Special Function Keys. This unique feature of the
2200 allows the user to customize the 2200 in the following ways: (1) to write and store in memory
commonly used character strings for text entry, and access these strings with a single keystroke (i.e.
touching a special function key), (2) to write and store special subroutines which can be accessed directly
from the keyboard (special function key) or from a program, and (3) to provide argument passing capa-
bility. Each of these uses is clearly illustrated in this Chapter. The DEFFN’ verb in BASIC allows the user
to perform the above mentioned techniques.

SECTION 19-1

GENERAL FORM DEFFN’ VERB
The General Form of the DEFFN’ verb is as Explanation: Each time the 1 special function key
follows: “character string’’ is touched the term REWIND is displayed on the
DEFFN’ integer [(variable [, variable...])] CRT.
where: EXAMPLE 2 — As used with special subroutines.
integer is required and must be 0 < integer < 256. 10 DEFFN' 1 3
The integer represents the number of the special gg ,F;E:ITT- ,,zggdi:E%sff: ETEZF'N'T'ON FUNCTION
function key. There are 256 special functions 40 RETURN
availat_)le on the 2200, of which 32 are directly Explanation: When the 1 special function key is
accessible via the keyboard (0 — 31). touched the subroutine above is called upon.

string of characters within quotes.

500 DEFFN’ 2 (A, E(3), C$)
Variable is optional and can be any legal variable . . L
name. Explanation: The variable names are specified in

the DEFFN’ statement which later can be passed.
The following examples illustrate the uses of the

DEFFN’ statement mentioned in the Introduction. These examples are discussed in more detail as you

progress through the chapter.

EXAMPLE 1 — As used with a character string
500 DEFFN’ 1 “REWIND"”

SECTION 19-2
DEFFN’WITH COMMONLY USED CHARACTER STRINGS
Often certain strings are used repeatedly in a pro- them once, store them in memory identified with
gram. |f this string is special to your own appli- a DEFFN’ integer statement and access them
cations, it would be nice to be able to have it on a each time by simply touching one of the special
key on the keyboard. With the DEFFN’ statement function keys.

and special Function keys, you in a sense can

. ial f ion k he 220
design your own additional keyboard. There are 32 special function keys on the 2200

(0 — 31), 0 — 15 lower case and 16 — 31 upper-

As an example, assume a program is written where case. Therefore you can add 32 special routines
the words “’Credit Card”, "Interest”, and "‘Pay- and access them through the 32 special function
ments’’ are used repeatedly. Instead of keying in keys on your keyboard.

these characters over and over again you can write

91

CHAPTER 19
THE SPECIAL FUNCTION KEYS

Using the example just mentioned assign the
specified character strings to special function keys
0, 1 and 2 respectively, as follows:

KEY IN

READY
:10 DEFFN’ 0 “CREDIT CARD”
:20 DEFFN’ 1 “INTEREST"”

:30 DEFFN’ 2 “PAYMENTS"”

Each line is now in the memory. Clear the
display by touching RESET. Now touch special
function key 0, and the SPACE key twice, then
special function key 2 and SPACE key twice. The
results are shown in Fig. 19—2,

READY

:CREDIT CARD INTEREST PAYMENTS

Fig. 19-2
Each of the character strings is entered into the
text each time the appropriate special function key
is touched. Up to 32 character strings can be
assigned this way:.

If you are entering a program where these character
strings are used, then you would simply have to
touch the appropriate function key to enter the
character string, just as if you were entering the
words PRINT or DATA or THEN by touching a
key on the keyboard.

SECTION 19-3
DEFFN’ USED WITH SPECIAL SUBROUTINES

A Subroutine consists of more than one line of
programming. Therefore, we shall refer to these
special subroutines as ‘“Marked Subroutines”. It is
required when writing a Marked Subroutine that
the first line of the subroutine always be the
DEFFN’ integer statement and the last line always
be a RETURN, as with any subroutine. There is no
limit as to the number of lines within the sub-
routine. Fig. 19—3 is an example of a Marked
Subroutine.

READY

:10 DEFFN’'1 .
:20 PRINT “THIS IS A USER DEFINED FUNCTION"
:30 PRINT "5 SQUARED=";5%2

:40 RETURN

Fig. 19-3

Notice line #10, refers to special function key 1
and that the last line (#40) is a RETURN
statement.

Enter this program into memory.

Clear the display by touching RESET. ‘‘Call”
the special subroutine directly from the keyboard
by touching special function key 1. The CRT is
shown in Fig. 19—3a.

92

(READY

THIS IS A USER DEFINED FUNCTION
5 SQUARED = 25

Fig. 19—3a

The purpose of this feature is to allow you to
define and write special functions once which can
be used over and over again, then accessed by a
single keystroke as if they were hardwired into the
calculator. This allows you enormous flexibility in
customizing your calculator.

As mentioned earlier there are 256 special func-
tions in your calculator. Only the first 32 are
directly accessible via the keyboard special func-

* tion keys. The remaining special functions (also the

first 32) can be called under program control. Fig.
19—3b is another example of a Marked Subrou-
tine illustrating the use of a special function under,
program control.

CHAPTER 19
THE SPECIAL FUNCTION KEYS

Marked Subroutine in Memory:

40 DEFFN’' 100
50 PRINT X, X12, Xt3
60 RETURN

Fig. 19—3b

This function can not be ““called’’ directly from a
keyboard, it must be “‘called”” under program
control. In order to ‘’call’”” a Marked Subroutine
in a program the GOSUB’ xxx command is used,
where xxx is the same integer as in the DEFFN’
integer statement.

Fig. 19—3c shows a program which “‘calls” Marked
Subroutine 100.

10 X=10
20 "GOSUB’ 100
30 END
Fig. 19—3c
Notice that the ““100” refers to the DEFFN’

number not a line number as with a regular
GOSUB statement.

The entire program and its results are shown in
Fig. 19—3d.

%
READY
10 X=10
20 GOSUB’ 100
30 END
40 DEFFN’ 100
50 PRINT X, Xt2, X13
60 RETURN
RUN
10 100

END PROGRAM
FREE SPACE = 3323

1000

Fig. 19-3d
EXAMPLE

An example of a DEFFN’ function called from the
keyboard is shown in Fig. 19—3e.

93

10 DEFFN’ 5: REM GENERAL QUADRATIC EQUATION SOLUTION

20 INPUT “COEFFICIENTS=A,B,C",A,B,C

30 D=Bt2-4+A+C

40 IFD<O0THEN 80

50 IFD=0THENT70

60 PRINT “X1=";(-B + SQR (D) }/(2+A}, “X2="; (-B-SQR (D))/2«A:RETURN
70 PRINT “X1=X2=""; -B/(2+A) : RETURN

80 PRINT “X1and X2 IMAGINARY" : RETURN

Fig. 19—3e
To call this program simply touch 5 special
function key, or to call this in a program you
would use a GOSUB’ 5.

EXAMPLE 2

Assume you are writing a program which uses the
command “HEX(” in many places throughout the
program. Instead of having to key this in every
time, write a user defined function for it, call it
to the display either from the keyboard or under
programming control. This way “"HEX("’ is entered
into current text line each time it is needed. {Fig.
19-3f).

100 DEFFN’ 1 “HEX("”

200 RETURN

KEY 1 Special Function Key

READY
HEX({

Fig. 19—3¢

CHAPTER 19
THE SPECIAL FUNCTION KEYS

N

SECTION 194
- ARGUMENT PASSING CAPABILITY

The 2200 allows the user to “pass’ (i.e. assign)
values to variables in a subroutine prior to the
subroutines execution. Look at the program in
Fig. 18—4 which is a Special subroutine using the

DEFFN’ integer [(variable ,[variable...])] ; for-
mat.

10 DEFFN'12(A,B,C)

20 D=Bt2-4+A=C

30 IF D<OTHEN 70

40 1IF D=0 THEN 60

50 PRINT “X1="; (-B+SQR(D))/(2=A); "X2="; (-B-SQR(D))/(2+A) :RETURN
60 PRINT “X1=X2="; -B/(2+A) :RETURN

70 PRINT “X1 and X2 IMAGINARY"

Fig. 19—4

Notice the format of the DEFFN’ statement
contains the variable names to be used within the
subroutine and that nowhere in this program are
the variables defined. The value each of the
variables is to assume in the subroutine is specified,
before the function is ‘‘called’” in the GOSUB’
statement. The variables specified in the DEFFN’
statement are not dummy variables.

An advantage in using this type of subroutine
over a regular subroutine is to save time and pro-
gramming space. The variables are assigned in the
GOSUB’ statement whereas in a regular subroutine
all variables are assigned prior to calling the sub-
routine and this could require several lines of text.

The number of the variables entered when calling
the function must be the same as the number of
variables specified in the function, and must be
separated by commas. The value given may be a
variable, or any legal algebraic expression. The
order in which the values are assigned is the order
in which they are presented in the DEFFN’
statement. Fig. 19—4a shows a BASIC program in
which the variables are defined in the GOSUB’
statement.

94

(

120 GO SUB’ 02 (-8,4, 19+SQR(X), COS (Y/A))

290 DEFFN’ 02 (A, B, C, D)
300 IF A =D -B THEN 330

350 RETURN
Fig. 19—4a

—Variable values are assigned in the same statement
as the subroutine "“Call”, potentially saving several
lines.

As said earlier, a major advantage of being able
to ““pass’”’ arguments in subroutines is the saving of
program space. Fig. 19—4b is compared to Fig.
19—4c for assigning values to variables in the same
statement as the subroutines ‘’call”’ and for regular
subroutines where the variables must be assigned
values prior to the subroutine ““call”’. (Fig. 19—4c.)
Notice the difference in program steps needed.

“PASSING"” VALUES

120 GOSUB’ 02 (-8, 4, 19 E SQR(X), COS (Y/A))

290 DEFFN’' 02 (A, B, C, D)
3001F A=D - B THEN 330

350 RETURN
Fig. 19—4b

CHAPTER 19
THE SPECIAL FUNCTION KEYS

REGULAR SUBROUTINE routine from the keyboard. For special function
(: key entry to a subroutine, arguments are passed by
READY keying them in separated by commas immediately
120W =-8 before the special function key is depressed. For
11308 =4 example,
1140 Y =19+ SQR(X)
:150 Z = COS (Y/A) READY
:160 GO SUB 300 10 DEFFN' 0
:20 Y=XxSIN(X) + COS(X)xY
:30 PRINTY
) :40 RETURN
Entered from
:300 IF W= Z — X THEN 330 :12.1 [press Key 0] e Keyboard
. Fig. 19—4d
:350 RETURN A maximum of 5 arguments can be passed in this
Fig. 19—-4c way. Fig. 19—5 shows a flow chart, program and
Passing arguments is important for saving space printout as an example of passing values to
and also so that values can be passed to the sub- variables.
‘ SECTION 19-5

EXAMPLE PROGRAM “CALLING”
MARKED SUBROUTINE

Program to calculate the number of ways to take NI

N
NN sep ; Known as # of combinations=C— = ————
N’ objects, A" at a time. A (N-A)! Al

4 -
:10 INPUT “N, A”, N, A
:20 GO SUB’ 00(N):C=F PuT ,
:30 GO SUB' 00 (N—A)C'—'C/F L CALCULATE
:40 GO SUB’ 00(A):C=C/F OF VARIABLE
:50 PRINT “THERE ARE";C;“COMBOS.” FACTORIAL ¢
:60 END
:70 DEFFN’ 00(X) Y
:80 F=1 FAC(;"‘;':;AL RETURN
:90 FORJ=1TO X FOR (N-All
:100 F = F*J: NEXTJ v
:110 RETURN
-RUN NI/(N-A)
N, A? 10,4 2
THERE ARE 210 COMBOS
FUNCTION
END PROGRAM W
FREE SPACE = 3154
DIVIDE
NI/(N-A}/AY
Y
PRINT OUT
RESULTS

|

Fig. 19-5

95

CHAPTER 20 PRINTUSING AND % — IMAGE STATEMENT —
CONTROLLED FORMATTING OF OUTPUT

N

Previous discussions of formatting the output involved using the PRINT statement with commas, semi-
colons and/or the TAB(command. By using a different type of statement, the PRINTUSING statement,
output can be edited to fit into a precise image.
SECTION 20-1
GENERAL FORM OF THE PRINTUSING STATEMENT

10 PRINTUSING 20, 123.45, 123.45, 123.45, 123.45

PRINTUSING operates in conjunction with a Line #of Data to be outputted
referenced IMAGE statement. Print elements in the IMAGE or print elements
PRINT USING statement are edited into the print statement

line asdirected by the IMAGE statement. Therefore 209 HHEH AR AR S S

formatting the output according to apre-determined
image requires two statements. The General Form

of the PRINTUSING statement is shown in Fig. % symbol specifying this
20—-1. as IMAGE statement

Format (Image) of the line

Fig. 20— 1a
The ““#' characters (generated by SHIFT #) are

PRINTUSING ‘line number’ [,{'print element’t}...] [;] L. . . .
used to represent digits. Decimal points in the

where ‘line number’ = line number of the corresponding image statement

) expression IMAGE statement represent where the decimal is
‘print element’ = alphanumeric variable . alp e .
literal string in quotes to go. Spacing within an Image statement is
t = comma or semicolon followed exactly.
Fig. 20—1 Data formats in the Image statement are read
. . sequentially. Extra decimal digits, not given a
The IMAGE statement is a picture of the exact place in the IMAGE statement are truncated. Fig.
format to be used for the output line. A % symbol 20—1b shows the output from the example in Fig.
is used to designate the statement as an Image 20—1a
statement. Fig. 20—1a is an example of the two :
statements.
:RUN
123 123.4 123.45 123.450
Fig. 20— 1b
SECTION 20-2
OVER AND UNDER FORMATTING IN THE IMAGE STATEMENT
When an Image ‘“‘over formats’’ (i.e. more # signs to to the left of the decimal point than necessary)
to the left of the decimal point than necessary) the the #'s are printed in place of the numbers.
unneeded left most “#’s’’ are ignored and leading
blanks inserted (Fig. 20—2). (
(READY
:1TOPRINTUSING 30, 627.6, 958.2, 4567.0 :10 PRINTUSING 30, 627.6, 958.2
. 0,
[30% HEHE A HRERE S B :30% #4iF
:RUN :RUN
627.6 f 958.2 4567.0 #it }
£ q H#H underformatted and # signs
overtormatte printed instead of numbers.
Fig. 20— 2 Fig. 20—2a
When it is not known exactly how large a number
When an image “‘under formats’’ (i.e. fewer # signs may be, it is best to overformat the Image.

96

CHAPTER 20 PRINTUSING AND % — IMAGE STATEMENT —
CONTROLLED FORMATTING OF OUTPUT

SECTION 20-3

USE OF LITERALS IN AN IMAGE STATEMENT

Literals in an IMAGE statement do not require [
any quotation marks. Literals are used to label
output as in Fig. 20—3 or just to display alpha-
numerics as in Fig. 20—3a.

100 PRINTUSING 110
110 % PROFIT AND LOSS STATEMENT

e : RUN
READY PROFIT AND LOSS STATEMENT

:50 PRINTUSING 60, :3684, 2.057)
:60% AVE.=#### ERA = ##.## =
:RUN

AVE. = 0.368 ERA =2.05

Fig. 20—3a

Fig. 20—-3

SECTION 204

SCIENTIFIC NOTATION IN IMAGE STATEMENT

statement to represent the Image of the exponent

4 1 symbols (t1M11) are used in the IMAGE
(READY
field. The exponent value in the output is adjusted

to align the decimal point in the value with the :100 PRINTUSING 150, 5.376E8, 2.13E-5, 2.6E-9
decimal point in the Image. The four 71's are 1160% #.HHIMT AN 11
assigned as follows: :RUN
l I 5.376E+08 .213E-04 26E-10
l 1 " Fig. 20— 4
E SIGN EXPONENT

Fig. 20—4 shows the use of modified Scientific
Notation in the IMAGE statement. Notice the
adjustment of the exponent.

SECTION 20-5

COMMAS IN IMAGE STATEMENT

Commas can be used in images to improve the
readibility of formatted numbers (Fig. 20-—5).

~

READY

:100 PRINTUSING 150, 1362594, 3726.59
:160% # ### ### ## #A#EHH
:RUN

1,362,594.00 3,726.59

Fig. 20—5

: 97

CHAPTER 20

PRINTUSING AND % — IMAGE STATEMENT —

CONTROLLED FORMATTING OF OUTPUT

SECTION 20—-6

REUSING AN IMAGE STATEMENT

When an IMAGE statement contains only one
Image, this Image is reused for each piece of data
in the PRINTUSING statement (Fig. 20—6).

(OUTPUT)

rREADY

1100 PRINTUSING 200, 1, 2, 3

appear on anew line each time the image statement
is re-used.

If semi-colons are used to separate elements in the
PRINTUSING statement, the output continues
on the same line, with a packed format resulting.
(Fig. 20—6a)

(OUTPUT)

:200% #.# (
:RUN READY
;-8 :300 PRINTUSING 400, 4; 5: 6
3'0 :400% #.#
: :RUN
_ 4.0 5.0 6.0
Fig. 20—6 _
The comma used to separate the elements in the Fig. 20—6a
PRINTUSING statement, causes the output to
SECTION 20-7
USING “+" OR =" IN AN IMAGE STATEMENT
If the IMAGE statement starts with a ““+’’ sign, (OUTPUT)
the correct (plus or minus) sign is always printed
preceding the first significant digit in the Image. (
READY

See Fig. 20—7.
(OUTPUT)

READY

:10 PRINTUSING 20, 15.62, -158.936, -4.1
:20% + #HH#H H#H#

:RUN

+15.62

-158.93

+352.00

-4.10

Fig. 20—7

If the IMAGE statement begins with a -’ sign,
the minus sign for the negative expression is
edited into the print line immediately preceding
the first significant digit. No sign is included if the
number is positive (Fig. 20—7a).

98

:30 PRINTUSING 40, 15.62, -158.936, 352, -4.1
:40% —HHHHE
:RUN

15.62
-158.93
352.00
-4.10

Fig. 20—7a

If no sign is included in the Image no problems
result if all the numbers are positive. But if negative
numbers are to be outputted the minus sign is put
into the printout and the entire number is shifted
one space to the right. (Fig. 20—7b).

CHAPTER 20

PRINTUSING AND % — IMAGE STATEMENT —

CONTROLLED FORMATTING OF QUTPUT

(OUTPUT)

-

READY
:10 PRINTUSING 20, 57.25, -57.25, 326.1, -326.1, -859
120% HEHHH

:RUN
52.5

- 57.25
326. 10
-326.10
-859.00

Fig. 20—7b

It is for this reason that a recommendation is

made to include signs in the IMAGE statement
especially when negative numbers are outputted.

SECTION 20-8
USING $ IN AN IMAGE STATEMENT

When a $ (dollar sign) is used to start an image, a
dollar sign is printed in the output of the specified
data either

(1) immediately preceding the first significant
digit if the number is positive, or

(2) if the number is negative, immediately
preceding the minus (=) sign which is
just to the left of the first significant
digit (Fig. 20-8).

(OUTPUT)

[

READY
1140 PRINTUSING 150, 98.42, 764.27, 2,523, -5.75, -300

:1150% SHHHH##
:RUN
$98.42
$764.27
$2.52
$- 575
$-300.00

Fig. 20—-8

SECTION 20-9
PRINTING OUT STRINGS AND STRING VARIABLES WITH PRINTUSING

The # symbol should be the only symbol used to
define the images of literal strings and string
variables. The numeric editing characters ($ -
+ , .} can be used, but they are recognized only
as # symbols.

The 2200 replaces each character in the image with
a text string character (i.e. an alphanumeric
character) (Fig. 20—9).

(OUTPUT)

(READY

:10 A$ = "“ABCDEF”
:20 PRINTUSING 30, AS, AS, “STUVWXYZ"”

:30% H#HHAHHHHE SHHAHH —HH#H#

:RUN

ABCDEF ABCDEF STuvVv
Fig. 20—9

99

Text strings which are over formatted are left
justified, and the format is filled out with blanks
(1st Image in Fig. 20—9).

If the text string is longer than the format
(underformatted) the string is truncated on the
right (Fig. 20—9 third Image).

CHAPTER 20 PRINTUSING AND % — IMAGE STATEMENT —
CONTROLLED FORMATTING OF OUTPUT

SECTION 20-10

ARRAYS WITH PRINTUSING

The PRINTUSING format can be used to generate
the output in an array. Fig. 20—10 is an example
of a program which both defines and prints out a
4 X 4 array with each element in the array being
printed to a pre-set image (statements 60 + 70).

As you can see from this chapter the PRINTUSING
format is a powerful tool for printing output for
almost any desired image. The examples in this
chapter, illustrate individual features of PRINT-
USING, but many features can be combined in a
single PRINTUSING statement.

PROGRAM
10 DIM F2(4,4)
20 N =.005

30 FORI=1T0O4

40 FORJ=1TO4:N=N+1
50 F2(1,J)=N

60 PRINTUSING 70, F2(1,J);
70 % +##HHH

80 NEXTJ

90 PRINT

100 NEXT |

105 PRINT

110 STOP

(:RUN

+1.005 +2.005 +3.005 +4.005
+5.005 +6.005 +7.005 +8.005
+9.005 +10.005 +11.005 +12.005
+13.005 +14.005 +15.005 +16.005

STOP

Fig. 20—10

100

CHAPTER 21

USE OF THE COMMON (COM) STATEMENT

The COM statement allows a programmer to store variables in memory for use in a subsequent program or
to use variables from a previous program. The COM statement is used for two purposes: (1) with programs
which are too long for the 2200’s memory where the program is RUN in sections and data either inputted
or generated is common to all sections of the program. By using the COM statement, the data does not have
to be entered by hand each time a section of the program is run and (2) to designate data as common to be
used with separate and distinct programs so as not to have to key in the data as each program is run. There
are some definite rules which must be followed when using COM statement with programs. They are ex-

plained in this chapter.

SECTION 21-1
GENERAL FORM AND DESCRIPTION OF THE COM STATEMENT

The General Form of a COM statement is shown in
Fig. 21-1.

Some examples of COM statements are:

EXAMPLE 1
GENERAL FORM 10 COMA(10), B(33), C2
numeric scalar variable same . . A .
numeric array variable same numeric numeric nur|ner|c
COM alpha scalar variable [INTEGER](])same|™ arrzflybl arrgybl sca-agl
alpha array variable [INTEGER]}|{same varniable variable variable
T EXAMPLE 2
The Required component 10 COM/C' MI1$ B$(2,2)32
word with option as to the numeric alpha alpha array
com type of variable scalar scalar variable
variable variable
Fig. 21—1 The COM statement allows array definition identi-
cal to the DIM statement for array variables.
Both array and scalar variables can be included in
one COM statement.
SECTION 21-2
STORAGE AND USE OF CLEAR WITH COMMON VARIABLES
STORAGE common), (3) all variables and programming text,

A separate part of memory is set aside for the
storage of common variables when a COM state-
ment is used.

20 COM B(3,3), D(2)
Fig. 21—2

CLEARING VARIABLES

Because common and non-common variables are
stored separately as well as variables being stored
separately from program text, a programmer is
able to clear memory of (1) only non-common
variables, (2) all variables {(common and non-

101

(4) or all non-common variables and programming
text. This is done with the use of the CLEAR
command followed by a letter. The letters N, V,
or P desiginates what is to be cleared.

CLEAR N EXECUTE clears only non-
common variables. A programmer might use this if
he is running several different programs with
common data, to clear out any non-common
variables generated with each program.

CHAPTER 21

USE OF THE COMMON (COM) STATEMENT

CLEAR \Y) EXECUTE clears the memory
of all variables (common and non-common). This
is used by a programmer to clear memory of
variables but leaves program text intact.

CLEAR P EXECUTE clears memory of

SECTION 21-3

program text only, leaving intact all variables. This
is used when more than one program is being used
with the same variables.

CLEAR EXECUTE clears the entire memory
of all variables and af// programming text.

USING COM STATEMENTS IN PROGRAMS

Before COM statements are used in any programs
two general rules must be followed. They are:

1. COM must be the first executable program
line(s) in a program.

2. Common variables must be defined before any
non-common variables are defined.

In the following example two programs are written
which require the same data for execution. This
data is therefore designated as Common. Fig. 21-—-3
shows both these programs. Notice the first state-
ment of each program is a COM statement.

(

Program 1

COM A, B, C$6
PRINT C$

FOR | A to B
PRINT 112, 113
NEXT |

END

140
150
160
170
180
190

Program 2

COM A, B, C$6

PRINT C$

PRINT "“C="; SQR(A12+B12)
END

200
210
220
230

Fig. 21-3

In order to execute these programs the common
variables in statements 140 and 200 must be
assigned values first.

Fig. 21—3a shows a short program which both
defines and assigns values to the common vari-
ables. This must be done before the programs
in Fig. 21—3 are executed.

:10 COM A, B, C$6
:20 A=5:B=10: C$ = ""ANSWER"

Fig. 21—-3a

102

Fig. 21-3b shows the result of executing the
programs in Fig. 21-3.

ﬂRUN 140 (Program 1)

ANSWER

25 125
36 216
49 243
64 512
81 729
100 1000

END PROGRAM
FREE SPACE = 3190

:RUN 200
ANSWER

(Program 2)

C =11.180339887

END PROGRAM
FREE SPACE = 3190

Fig. 21—3b

In the introduction to this chapter it was said that
COM statements are used often with lengthy pro-
grams too large for memory. These programs are
usually stored on some external storage device
(e.g. Tape Cassette) and loaded into memory in
segments. The loading of subsequent segments of
the program after the first segment is loaded and
executed is directed by the program itself. This is
done with the LOAD EXECUTE command, and is
called program chaining. It is an important pro-
gramming technique which is very often used with
the COM statement. (See 2200 Reference Manual
on Tape Cassette Operations.)

CHAPTER 22
DEBUGGING

As discussed in Chapter 3 of Part |, the 2200 error diagnostics are capable of detecting syntax and execution
errors in a program. Programming errors — those in which the program doesn’t do what it should — are the
responsibility of the programmer. A program error is commonly referred to as a bug. Several methods are
available on the 2200 to help the programmer debug his program. This chapter discusses the various tech-
niques a programmer can draw upon as an aid to debugging programs.

SECTION 22-1

HINTS FOR DEBUGGING A PROGRAM

The following suggests several rules which if
followed could save a programmer much time in
getting a program to run.

Rule 1 — Debugging begins before a program is
even written i.e.

Rule 2 —

Rule 3 —

1

. Make sure you know how to solve the

problem.

. “Play Computer” — go through a

hand calculation first.

. Trace through the flow chart before

converting to a program.

Prevent problems before they happen
i.e.

1

. Break program down into logical
blocks.
. Make sure all lines are entered cor-

rectly, and in the proper sequence.

. After all blocks of the program are

working well, then go back and econ-
omize.

. Test out the program by running

through it with ““test’” data. i.e. both
data for which the answer is known,
and a representative sample of real
data, where possible.

If a problem does exist, be logical in
your approach — debugging is as much a
logical art as programming is.

1.

a. Quite often, the values which vari-
ables assume at the end of a pro-
gram can tell you where to look for
the problem.

b. By using simple PRINT statements
in the immediate mode to check
the values of all variables after the
program has run.

c. Compare these values to what the
expected value should be.

. Check all equations — be sure they

have been entered correctly with pro-
per constants, variables, operators, and
parentheses.

. If program uses subscripted variables,

be sure that proper subscripts are
used, and that rows and columns have
not been confused.

. Be sure GOTO, GOSUB, and IF/THEN

statements branch to the correct loca-
tions.

. Recheck IF/THEN statements for

proper tests and proper arguments.
Quite often, the variable or expression
tested against a critical (decision)
value, never attains that value. RE-
SULT: Branch is never executed.

. In programs which use several sub-

routines or user functions, check to see
that the proper subroutine or function
is called, and that the proper argu-
ments are passed.

OTHER APPROACHES

103

1. Print out intermediate results at vari-

ous key locations, to check for cor-
rect variable values.

. Use the HALT/STEP key to step

through the execution of a program.

. Use the TRACE feature to trace the

variable values and branching in the
program.

. Include STOPs in program; when pro-

blem is discovered reexecute problem
section with trace.

CHAPTER 22
DEBUGGING

SECTION 22-2
USING HALT/STEP AS A DEBUGGING AID

The HALT/STEP key enables a 2200 user to
execute a program statement by statement. There
are two ways of stepping through a program. The
first way is to touch the HALT/STEP key during
execution of a program. This causes the 2200 to
finish executing the statement it is presently at,

display the line, its results, and stop executing the

program. Touching HALT/STEP again causes the
next statement in the program flow to be dis-
played and executed. Thus, you can step through
a program statement by statement. The second
way is to step through a program from a pre-
selected line number by executing a GOTO ‘line
number’ command followed by touching the
HALT/STEP key one or more times (Fig. 22—2).

PROGRAM IN MEMORY

:10 J=25

:20 K=15

:30 GOTO 60

:40 PRINTJ+K+L
:50 END

:60 L=80

:70 GOTO 40

STEPPING THROUGH A PROGRAM

Key GOTO 20 EXECUTE
Key HALT/STEP

20K = 15 displayed
Key HALT/STEP

30 GOTO 60 displayed
Key HALT/STEP

60L = 80 displayed
Key HALT/STEP

70 GOTO 40 displayed

Key HALT/STEP

40 PRINTJ+ K+ L

120 (Result of Execution of Line 40)
Key HALT/STEP

50 END

END PROGRAM Execution of Line 50
FREE SPACE = 3291

Fig. 22—2

Notice in the above procedure as the HALT/STEP
is touched, the next line is displayed along with
the results (if any) of executing that line (e.g.
lines 40 and 50). The next line that is displayed is
always the next line to be logically executed in the
program.

CHAPTER 22
DEBUGGING

SECTION 22-3

HALT/STEP USAGE WITH MULTI-STATEMENT LINES

Multi-statement lines are executed one statement
at a time, each time the HALT/STEP key is
touched. Statements not yet executed are displayed

with the executed statement (Fig. 22—3).

PROGRAM IN MEMORY
10 X=5:Y=10:2=15

HALT/STEP THROUGH PROGRAM
Key GOTO 10 EXECUTE

:20 PRINT X+Y - Z : STOP Key HALT/STEP
10X=5:¥Y=10:2Z2=15 displayed
Key HALT/STEP
10:Y=10:Z=15 displayed
Key HALT/STEP
10::Z2=15 displayed
Key HALT/STEP
20 PRINT X #Y -2 : STOP
35
Key HALT/STEP Execution of
20:STOP 1st and 2nd
statements of
STOP line 20
Fig. 22—3
When the HALT/STEP key is used with multi-
statement lines, the first time the key is touched,
the entire line is displayed, showing only the exe-
cution of the 1st statement, the next time the
HALT/STEP key is touched, the 1st statement of
the line is eliminated and the execution of the
2nd statement is shown, this continues until all
statements are shown and executed.
SECTION 224

(1)

(2)

OTHER USES OF HALT/STEP KEY

After the HALT/STEP key is touched, the
2200 can be used as a calculator to do side
calculations, to check the value of any varia-
bles already defined in the program, or to
redefine any variable(s) previously defined in
the program.

After the HALT/STEP key is touched as
many times as required to check program
flow, normal execution can be continued
by keying

CONTINUE CR/LF-EXECUTE

105

(3)

If the operator attempts to HALT/STEP
through a program after (a) a text or table
overflow error has occurred, (b) a variable is
defined which has not previously been defined,
(c} any CLEAR command has been used,
(d) program text has been added to, deleted,
altered, or renumbered, or (e) the RESET
key is touched, an error message is printed
out, and execution does not continue.

HALT/STEP, rather than RESET, should
always be used to interrupt program execu-
tion - Use RESET to stop execution only if
HALT/STEP fails.

CHAPTER 22
DEBUGGING

SECTION 225
USE OF PROGRAM TRACE

While the HALT/STEP command gives the program
flow statement by statement, the TRACE com-
mand allows the programmer to expand the output
of a program. The TRACE command can be initi-
ated either from the keyboard or from a program.
To turn off a TRACE, key TRACE OFF CR/LF
(OFF is keyed with upper case letters). In program
text, TRACE is turned ON and OFF as shown in
Fig. 22—5. (i.e. TRACE and TRACE OFF can be
used as ordinary program statements)

(100 TRACE

200 TRACE OFF

Fig. 22—5

106

Once the TRACE is turned ON it remains ON
throughout Program execution until turned off
by a TRACE OFF command. When the TRACE is
ON (1) any variable which receives a new value
during execution (e.g. with LET, READ, or FOR)
is printed out and (2) TRANSFER TO xxx is
printed out when a program transfer is made to
another sequence of statements as a result of a
GOTO, GOSUB, IF/THEN, NEXT and RETURN
statements. Fig. 22—ba shows several TRACE
examples.

CHAPTER 22
DEBUGGING

TRACE EXAMPLES

Assume each of the following examples are part of a separate program where the variables are already

defined. The PRINTOUT shown is therefore only for the individual statement shown.

STATEMENT PRINTOUT
Example #1
30 X =52+ SQR (81) X =61
Example #2
70 READ A, B, X (22) A=94
B =64.27
X{()=2824

Example #3
100 GO TO 200
Example #4

30 GOSUB 80
40FORI=1T0O25

190 RETURN

TRANSFER TO 200

TRANSFER TO 40

Example #5
501F A>B THEN 90

TRANSFER TO 90

Fig. 22—5a

Using TRACE as part of program is illustrated in Fig. 20—5b.

PROGRAM

10 TRACE

20 Y=2156

30 IF X=86THEN 60
40 X=4+Y

50 GO TO 30

60 TRACE OFF

70 STOP

RESULTING PRINTOUT

—

:RUN

Y =215

X =86
TRANSFER TO 30
TRANSFER TO 60

STOP

Fig. 22—-5b

107

CHAPTER 22
DEBUGGING

You can trace a program one step at a time by
combining the HALT/STEP procedure with TRACE

SECTION 22—6
USING HALT/STEP AND TRACE TOGETHER

MODE. Fig. 22—6 shows an example of a program
which is TRACED step by step.

PROGRAM TO TRACE BY STEPPING
(READY Key TRACE CR/LF
:10 READ X, Y: Z= X»Y Key GOTO 10 CR/LF
:20 IF 2> 100 THEN 40 Key HALT/STEP
:30 GOTO 10 10 READ X,Y: Z= X»Y
:40 PRINT 2 X=5
:50 STOP Y=10
:60 DATA 5,10,15,20,25,30 Key HALT/STEP
10: Z= XY
Z=50
Key HALT/STEP
201F Z> 100 THEN 40
Key HALT/STEP
30GOTO 10
TRANSFER TO 10
Key HALT/STEP
10 READ X,Y: Z= X*Y
X=15
Y=20
Key HALT/STEP
10: Z2=X=Y
Z =300
Key HALT/STEP
201F Z> 100 THEN 40
TRANSFER TO 40
Key HALT/STEP
40 PRINT 2
300
Key HALT/STEP
50 STOP
STOP
Fig. 22—6
SECTION 22-7

RENUMBERING A PROGRAM

Often when debugging a program or even in enter-
ing a program, statements need to be inserted
between other statements. Statements are easily
inserted if they are numbered 10, 20, 30 etc. where
you can insert additional statements between 10
and 20 (e.g. 11, 12 etc.) and 20 and 30. However,
when statements are numbered close together
there may be no room for inserting additional
statements.

108

With the RENUMBER Key, you can have the
2200 automatically renumber program statements
in any fashion you wish. Not only are the state-
ment lines renumbered but all references to state-
ment numbers within the program are renumbered
automatically. Another reason you may wish to
renumber a program is to clean up a listing for
appearance sake.

CHAPTER 22
DEBUGGING

THE RENUMBER statement has several options.
(Fig. 22—7)

GENERAL FORM
RENUMBER

1st ‘line number’
specifies what line

to start renumbering
with. All lines = to
this line number are
renumbered. |f no
line number is
specified all program
lines are renumbered.

[line number]

_ _

[, line number]

This ‘line number’
specifies what the
new starting line
number should be.
If none is specified,
it will equal the
increment between
line numbers.

[, integer]

The integer specifies what the
increment between line num-
bers should be. If no incre-
ment is used, lines are
automatically incremented
by 10.

Fig. 22—7

Take as an example the following program (Fig.
22—7a) and note the several different ways you
can renumber the same program using the options
mentioned above. Key in this program.

PROGRAM

:1FORX=1t0 10
:2PRINT X, X 12, X13
:3NEXT X

:4GOTO 1

:5 END

Fig. 22—7a

EXAMPLE 1

Key RENUMBER CR/LF

LIST CR/LF
RESULT

10 FORX=1TO 10
20 PRINT X, X12,X1*t3

30 NEXT X
40 GOTO 10
50 END
Comment: All program lines are renumbered in

increments of 10. The first line number of the
resulting program is 10.

EXAMPLE 2

Key RENUMBER 20, 12, 10 CR/LF
LIST CR/LF

10 FORX=1TO 10

12 PRINT X, X12,X1*t3

22 NEXT X

32 GOTO1

42 END

109

Comment: All program lines beginning with line
20 are numbered in increments of 10. The new line
number for 20 is 12.

EXAMPLE 3

Key RENUMBER, 5,5 CR/LF
LIST CR/LF
5 FORX=1TO 10
10 PRINT X, X 12, X 13
15 NEXT X
20 GOTOb5
25 END

Comment: All program line numbers are renum-
bered since the 1st parameter is omitted. The new
starting line number is 5 and the increment is b.

EXAMPLE 4
Key RENUMBER, , 15 CR/LF
LIST CR/LF

15 FOR X=1TO 10
30 PRINT X, X1t2, X1*t3

45 NEXT X
60 GOTO 15
75 END
Comment: All program line numbers are renum-

bered because the 1st parameter is omitted. The
increment is 15 and the new starting line number
equals the increment.

CHAPTER 23
THE HEXADECIMAL FUNCTION [HEX()]

The HEX function allows the user to output hexadecimal codes to any peripheral on the 2200. Every
character or command related to a peripheral is expressed in a unique 2-digit HEX code. The HEX
function gives the user thé capability to control any feature of a peripheral such as moving the CRT
cursor around for plotting or outputting characters that do not appear on the keyboard (e.g. @ or?).

SECTION 231
WHAT IS A HEX CODE?

A HEX code is based upon the Hexadecimal count- HEX CODES

ing system. The Hexadecimal System unlike the 00 20 40 60 80 A0 CO EO
Decimal System (base 10) is to the base 16. In the 01 21 41 61 8 A1 C1 E1
Decimal System the digits used are 0—9, while in 02 22 42 62 8 A2 C2 E2
the Hexadecimal system the digits used are 0—9
and A—F. The numbers in the Hexadecimal System
are: 0,1,2,3,45,6,7,8,9,A,B,C,.D,E, and F. Com-
binations of these digits as with combinations of
0—9 in the decimal system, are used to represent
all numbers. Fig. 23—1 shows how counting is done
in the Hexadecimal System as compared to the
Decimal System. 09 29 49 69 89 A9 C9 E9
0OA 2A 4A ©6A B8A AA CA EA

HEXADECIMAL DECIMAL

0 0

1 1

2 2
3 3 OF 2F 4F ©o6F 8F AF CF EF
4 4 10 30 50 70 90 BO DO FoO
5 o) 11 31 51 71 91 B1 D1 F1
6 6

7 7

8 8

9 9

A 10

B 11

C 12

D 13 . . .)
E 14 19 39 59 79 99 B9 D9 F9
F 15 1A 3A HA 7A ©9A BA DA FA
10 16

11 17

12 18

13 19
14 20 1F 3F bF 7F 9F BF DF FF
15 30

16 31 Fig. 23— 1a

Fig. 23—1

The Hexadecimal System is used with many com-
puters in their internal design. On the 2200 all
characters or commands outputted to a peripheral
are represented by a 2-digit HEX code. There are

256 such codes. Fig. 23—1a illustrates these codes.

110

CHAPTER 23

THE HEXADECIMAL FUNCTION [HEX()]

SECTION 23-2

FORMAT OF HEX FUNCTION IN A BASIC STATEMENT LINE

The 2-digit code used in the HEX function
consists either of a two digit number, each digit
from 0-9, a letter and a digit, or two letters,
where the digit is from 0—9 and the letter is from
A—F (Fig. 23—1a).

A BASIC statement line can contain any number
of HEX codes. If more than one HEX code is
used in a line in sequence there are two ways of
writing the line. Fig. 23—2 shows the same line
written the two different ways:

10 PRINT HEX (0909); “ABC"’
or
10 PRINT HEX (09); HEX (09); “ABC"”

Fig. 23—-2

The Code HEX (09) causes the CRT cursor to
move 1 space to the right. In these examples, you
want to produce two spaces in the line before the
letters ““ABC’’ are printed. Both examples do this.
In the first example, the codes are combined in one
set of parentheses. In the second example, the
codes are written separately [HEX (09); HEX (09)]
Either way is correct. A comma or semicolon is
used as punctuation to separate the codes for a
zoned or packed format.

SECTION 23-3
SPECIAL CHARACTERS AND CURSOR CONTROLS GENERATED WITH HEX CODES

As already mentioned, every letter, digit and sym-
bol on the keyboard has a corresponding HEX
code. The movement of the cursor, right or left,
up or down for example can be programmed
using HEX codes. Table 23—3 shows a list of the
special characters and cursor movement codes.

The complete list of HE X codes for the CRT (2216)
is given in Appendix F.

Each peripheral available for the 2200 has a
corresponding set of HEX codes.

Some of these codes produce the same results on
all peripherals, while others either have no effect
or generate a different character. For the listing
of the codes for a specific peripheral, see the
Reference Manual provided with the purchase of
the equipment.

TABLE 23-3
CHARACTER/ HEX CODE CHARACTER/ HEX CODE
CURSOR DIRECTION CURSOR DIRECTION
Cursor home HEX (01) | HEX (5D)
Clears screen and HEX (03) teo . HEX (5E)
Cursor home B HEX (5F)
Bell HEX (07) #0000 . L .. HEX (23)
Cursor left HEX (08) % . .. e e HEX (25)
Cursor right HEX (09) " (Apostrophe) HEX (27)
Cursor down | HEX (0A) . HEX (2A)
(Line Feed) , (Comma) HEX (2C)
Cursor up 1 HEX (0C) [e HEX (2F)
(Reverse Index) T HEX (3A)
CR/LF HEX (0D) e e e e HEX (3B)
Voo HEX (21) <. HEX (3C)
Y. HEX (22) = e HEX (3D)
&. HEX (26) >0 0 e HEX (3E)
2.0 HEX (3F) (... HEX (28)
@. HEX (40) | HEX (29)
HEX (5B)
N HEX (5C)

11

CHAPTER 23
THE HEXADECIMAL FUNCTION [HEX()]

SECTION 23—4
PLOTTING EXAMPLE

The following example prints a running account of
the variable 1. The HEX function in line 30 is
used to return the cursor to the same line after
each printout. HEX (OC) is a CURSOCR UP

command.

e
101 =0
:20 PRINT ““COUNT=";I
:30 PRINT HEX(OC); :REM--CURSOR UP
40 1 = 1
:60 GOTO 20
:RUN
COUNT = 329

\,—-/
N— a running total
fixed on screen

112

Part IV
Appendices

APPENDIX A

CODE 01
Error: Text Overflow
Cause: All available space for BASIC statements and system commands has been used.
Action: Shorten and/or chain program by using COM statements, and continue. The compiler
automatically removes the current and highest-numbered statement.
Example: :10FORI = 1T0 10
:20 LET X = SIN({I)
:30 NEXT I
:8201IF Z = A-B THEN 900
1ERR 01
(the number of characters in the program exceeded the text table limit when line
820 was entered)
User must shorten or segment program.
CODE 02
Error: Table Overflow
Cause: All available space for internal compiler tables has been used (storage of variables,
values, etc.) or an endless program loop was encountered.
Action: Shorten or correct and/or chain the program by using COM statements and continue.
Example: :10 DIM A(19), B(10,10), C(10,10)
:RUN
TERR 02
(the table space required for variables exceeded the table limit for variable storage as
line 10 was processed)
User must compress program and variable storage requirements.
CODE 03
Error: Math Error
Cause: 1. EXPONENT OVERFLOW. The resulting magnitude of the number calculated
was greater than or equal to 10'°°. (+,-,«,/,1,TAN, EXP).
2. DIVISION BY ZERO.
3. NEGATIVE OR ZERO LOG FUNCTION ARGUMENT.
4. NEGATIVE SQR FUNCTION ARGUMENT.
5. INVALID EXPONENTIATION. An exponentiation, (X1Y) was attempted where
X was negative and Y was not an integral, producing an imaginary result, or X
and Y were both zero.
6. ILLEGAL SIN, COS, OR TAN ARGUMENT. The function argument exceeds
27 X 10" radians.
Action: Correct the program or program data.
Example: :PRINT (2E+64) / (2E - 41)

PRINT (2E + 64 / (2E - 41)
+ERR 03 (exponent overflow)

113

APPENDIX A

CODE 04
Error: Missing Left Parenthesis
Cause: A left parenthesis (() was expected.
Action: Correct statement text.
Example: :10 DEF FNA V) = SIN(3xV-1)
1ERR 04 '

:10 DEF FNA(V) + SIN(3xV-1) (Possible Correction)
CODE 05
Error: Missing Right Parenthesis
Cause: A right ()) parenthesis was expected.
Action: Correct statement text.
Example: :10Y = INT(1.215

tERR 05

:10Y = INT(1.215) (Possible Correction)
CODE 06
Error: Missing Equals Sign
Cause: An equals sign (=) was expected.
Action: Correct statement text.
Example: :10 DEF FNC(V)-V+2

tERR 06

:10 DEF FNC(V)=V+2 (Possible Correction)
CODE 07
Error: Missing Quotation Marks
Cause: Quotation marks ("’) were expected.
Action: Correct statement text.
Example: :10 PRINT “ERROR

+ERR 07

:10 PRINT “ERROR” (Possible Correction)
CODE 08
Error: Undefined FN Function
Cause: An undefined FN function was referenced.
Action: Correct program to define or reference the function correctly.
Example: :10 X=FNC(2)

:20 PRINT “X'"; X

:30 END

:RUN

10 X=FNC(2)

tERR 08
:05 DEFFNC(V)=CO0OS(2xV) (Possible Correction)

114

APPENDIX A

CODE 09
Error: lllegal FN Usage
Cause: More than five levels of nesting were encountered when evaluating an FN function.
Action: Reduce the number of nested functions.
Example: :10 DEF FN1(X)=1+X :DEF FN2(X)=1+FN1(X)
:20 DEF FN3(X)=1+FN2(X) :DEF FN4(X)=1+FN3(X)
:30 DEF FN5(X)=1+FN4(X) :DEF FN6(X)=1+FN5(X)
:40 PRINT FN6(2)
:RUN
10 DEF FN1(X)=1+X :DEF FN2(X)=1+FN1(X)
1ERR 09
:40 PRINT 1+FN5(2) (Possible Correction)
CODE 10
Error: Incomplete Statement
Cause: The end of the statement was expected.
Action: Complete the statement text.
Example: :10 PRINT X~
1ERR 10
:10 PRINT X"
OR
:10 PRINT X (Possible Correction)
CODE 11
Error: Missing Line Number or Continue lllegal
Cause: The line number is missing or a referenced line number is undefined; or the user is
attempting to continue program execution after one of the following conditions: A
text or table overflow error, a new variable has been entered, a CLEAR command has
been entered, the user program text has been modified, or the RESET key has been
pressed.
Action: Correct statement text.
Example: :10 GOSUB 200
tERR 11
:10 GOSUB 100 (Possible Correction)
CODE 12
Error: Missing Statement Text
Cause: The required statement text is missing (THEN, STEP, etc.).
Action: Correct statement text.
Example: :10 IF 14+12xX,45

+ERR 12
:10 IF 1I=12+ X THEN 45 (Possible Correction)

115

APPENDIX A

CODE 13
Error: Missing or lllegal Integer
Cause: A positive integer was expected or an integer was found which exceeded the allowed
limit.
Action: Correct statement text.
Example: :10 COM D(P)
1ERR 13
:10 COM D(8) (Possible Correction)
CODE 14
Error: Missing Relation Operator
Cause: A relational operator (<, =,>,<=,>=, <>) was expected.
Action: Correct statement text.
Example: :10 IF A-B THEN 100
1ERR 14
:10 IF A=B THEN 100 (Possible Correction)
CODE 15
Error: Missing Expression
Cause: A variable, or number, or a function was expected.
Action: Correct statement text.
Example: :10FOR I=, TO 2
tERR 15
110 FOR I=1TO 2 (Possible Correction)
CODE 16
Error: Missing Scalar
Cause: A scalar variable was expected.
Action: Correct statement text.
Example: :10 FOR A(3)=1TO 2
1ERR 16
:10 FORB=1TO 2 (Possible Correction)
CODE 17
Error: Missing Array
Cause: An array variable was expected.
Action: Correct statement text.:
Example: :10DIM A2
tERR 17
:10 DIM A(2) (Possible Correction)

116

APPENDIX A

CODE 18
Error: lllegal Value for Array Dimension
Cause: The values assigned for array dimensions exceed the allowable limits; a dimension is
greater than 255; an array variable subscript exceeds the defined dimension.
Action: Correct the program.
Example: :10 DIM A(2,3)
120 A(1,4) =1
:RUN
20 A{(1,4) =1
1ERR 18
:10 DIM A(2,4) (Possible Correction)
CODE 19
Error: Missing Number
Cause: A number was expected.
Action: Correct statement text.
Example: 10 DATAL
1ERR 19
:10 DATA 1 (Possible Correction)
- CODE 20
Error: lllegal Number Format
_ Cause: A number format is illegal.
Action: Correct statement text.
Example: :10 A=12345678.234567 (More than 13 digits of mantissa)
- TERR 20
. :10 A=12345678.23456 (Possible Correction)
. CODE 21 ,
Error: Missing Letter or Digit
a Cause: A letter or digit was expected.
Action: Correct statement text.
- Example: :10 DEF FN.(X)=X15-1

TERR 21
:10 DEF FN1(X)=X15-1

(Possible Correction)

117

APPENDIX A

CODE 22
Error: Undefined Array Variable
Cause: An array variable was not referenced as previously defined in this program or as a
common variable in another program (i.e., an array variable has been referenced both
as a 1-dimensional and as a 2-dimensional array).
Action: Correct statement text.
Example: 110 A(2,2) = 123
:RUN
10 A(2,2) =123
1ERR 22
:1DIM A(4,4) (Possible Correction)
CODE 23
Error: No Program Statements
Cause: A RUN command was entered but there are no program statements.
Action: Enter program statements.
Example: :RUN
1ERR 23
CODE 24
Error: lllegal Immediate Mode Statement
Cause: An illegal verb or transfer in an immediate execution statement was encountered.
Action: Re-enter a corrected immediate execution statement.
Example: IFA=1THEN 100
1ERR 24

118

APPENDIX A

CODE 25
Error: lllegal GOSUB/RETURN Usage
Cause: There is no companion GOSUB statement for a RETURN statement.
Action: Correct the program.
Example: :10 FOR 1+1 TO 20

:20 X=1%SIN(1+4)

:25 GO TO 100

:30 NEXT I: END

:100 PRINT "X=":X

:110 RETURN

:RUN

X=-.7568025

110 RETURN

1+ ERR 25

.25 GOSUB 100 {Possible Correction)
CODE 26
Error: lllegal FOR/NEXT Usage
Cause: There is no companion FOR statement for a NEXT statement.
Action: Correct the program.
Example: :10 PRINT “I=";1

:20 NEXT I

:30 END

:RUN

1=0

20 NEXT I

1ERR 26 :

:5FORI1=1TO 10 (Possible Correction)
CODE 27
Error: Insufficient Data
Cause: There is unsufficient data for READ statement requirements.
Action: Correct program to supply additional data.
Example: :10 DATA 2

:20 READ X,Y

:30 END

:RUN

20 READ X,Y

tERR 27
:11 DATA 3 {Possible Correction)

119

APPENDIX A

CODE 28
Error: Data Reference Beyond Limits
Cause: The data reference in a RESTORE statement is beyond the existing data limits.
Action: Correct the RESTORE statement. :
Example: :10 DATA 1,23
:20 READ X,Y.Z
:30 RESTORE 5
:90 END
:RUN
30 RESTORE 5
1ERR 28
:30 RESTORE 2 (Possible Correction)
CODE 29
Error: INlegal Data Format _
Cause: The data format for an INPUT statement is illegal (format error).
Action: Reenter data in the correct format starting with erroneous number or terminate run
with the RESET key and run again.
Example: :10 INPUT X, Y
:90 END
:RUN
:INPUT
:1A,2E-30
1ERR 29
:12,2E-30 (Possible Correction)
CODE 30
Error: lllegal Common Assignment
Cause: A COM statement variable definition was preceded by a non-common variable
definition.
Action: Correct program, making all COM statements the first numbered lines.
Example: 110 A=1:B=2

:20COM A,B
:99 END
:RUN

20 COM A,B
TERR 30
:10[CR/LF—EXECUTE]

(Possible Correction)
:30 A=1 :B=2 :

120

APPENDIX A

CODE 31
Error: lllegal Line Number
Cause: The ‘statement number’ key was pressed producing a line number greater than 9999;
or in renumbering a program with the RENUMBER command a line number was
generated which was greater than 9999.
Action: Correct the program.
Example: :9995 PRINT X,Y
:[line number key]
tERR 31
CODE 33
Error: Missing HEX Digit
Cause: A digit or a letter from A - F was expected.
Action: Correct the program text.
Example: :10 SELECT PRINT 00P
tERR 33
:10 SELECT PRINT 005 (Possible Correction)
CODE 34
Error: Tape Read Error
Cause: The system was unable to read the next record on the tape; the tape is positioned
after the bad record.
CODE 35
Error: Missing Comma or Semicolon
Cause: A comma or semicolon was expected.
Action: Correct statement text.
Example: :10 DATASAVE #2 X,Y,Z
t ERR 35
:10 DATASAVE #2,X,Y,2 (Possible Correction)
CODE 36
Error: lllegal Image Statement
Cause: No format (e.g. #.##) in image statement.
Action: Correct the statement text.
Example: :10 PRINTUSING 20, 1.23
:20% AMOUNT =
:RUN
:10 PRINTUSING 20,1.23
1ERR 36
:20% AMOUNT = ##t### (Possible Correction)

121

APPENDIX A

4
CODE 37
Error: Statement Not Image Statement
Cause: The statement referenced by the PRINTUSING statement is not an image statement.
Action: Correct the statement text.
Example: :10 PRINTUSING 20,X
:20 PRINT X
:RUN
:10 PRINTUSING 20,X
tERR37
:20% AMOUNT = $# ### ## (Possible Correction)
CODE 38
Error: Illegal Floating Point Format
Cause: Fewer than 4 up arrows were specified in the floating point format in an image
statement.
Action: Correct the statement text.
Example: 110 % #H#.H##IT
1t ERR 38
110 % ## ## 11T
CODE 39
Error: Missing Literal String
Cause: A literal string was expected.
Action: Correct the text.
Example: :10 READ A$
:20 DATA 123
:RUN
20 DATA 123
tERR 39
20 DATA 123" (Possible Correction)
CODE 40
Error: Missing Alphanumeric Variable
Cause: An alphanumeric variable was expected.
Action: Correct the statement text.
Example: :10 A$, X = ““JOHN"’
tERR 40
:10 A$, X$ = “JOHN"
CODE 41
Error: lllegal STR(Arguments
Cause: The STR(function arguments exceed the maximum length of the string variable.
Example: 110 B$ = STR(AS$, 10, 8)

TERR 41

:10 B$ = STR(A$, 10, 6) (Possible Correction)

122

APPENDIX A

[I 4
CODE 42
Error: File Name Too Long
Cause: The program name specified is too long (a maximum of 8 characters is allowed).
Action: Correct the program text.
Example: :SAVE “PROGRAM#1"”
1ERR 42

:SAVE “PROGRAM1” (Possible Correction)
CODE 43
Error: Wrong Variable Type
Cause: During a DATALOAD operation a numeric (or alphanumeric) value was expected but

an alphanumeric (or numeric) value was read.
Action: Correct the program or make sure proper tape is mounted.
Example: :DATALOAD X, Y

TERR 43

:DATALOAD X$, Y$ (Possible Correction)
CODE 44
Error: Program Protected
Cause: A program loaded was protected and, hence, cannot be SAVED or LISTED.
Action: Execute a CLEAR command to remove protect mode, (but, program will be scratched).
CODE 45
Error: Statement Line Too Long
Cause: A statement line may not exceed 192 keystrokes.
Action: Shorten the statement line being entered.
CODE 46
Error: New Starting Statement Number Too Low
Cause: The new starting statement number in a RENUMBER command is not greater than

the next lowest statement number.
Action: Reenter the RENUMBER command correctly.
Example: 50 REM — PROGRAM 1

62 PRINT X, Y

73 GOSUB 500

:RENUMBER 62, 20, 5

tERR 46

:RENUMBER 62, 60, 5 (Possible Correction)
CODE 47
Error: llegal Or Undefined Device Specification
Cause: The #n device specifications in a program statement is undefined.
Action: Define the specified device numbers.
Example: :SAVE #2

tERR 47
:SELECT #2 10A
:SAVE #2 (Possible Correction)

123

APPENDIX A

CODE 48

Error: Undefined Keyboard Function

Cause: There isno mark (DEFFN’) in a user’s program corresponding to the keyboard function
key depressed.

Action: Correct the program.

Example: :[keyboard function key #2]
1ERR 48

CODE 49

Error: End of Tape

Cause: The end of tape was encountered during a tape operation.

Action: Correct the program or make sure the tape is correctly positioned.

Example: 100 DATALOAD X, Y, 2

1ERR 49

CODE 50

Error: Protected Tape

Cause: A tape operation is attempting to write on a tape cassette that has been protected
{by tab being punched out).

Action: Mount another cassette or ““unprotect’’ the tape cassette by covering the punched
tab with masking tape.

Example: SAVE /103

+ERR 50

CODE 51

Error: lllegal Statement

Cause: The 2200 does not have the micro-program in it to process this BASIC statement.

Action: Do not use this statement.

CODE 52

Error: Expected Data (Nonheader) Record

Cause: A DATALOAD operation was attempted but the cassette was not positioned at a
data record.

Action: Make sure the correct tape cassette is mounted and positioned correctly.

CODE 53

Error: lllegal Use of HEX Function

Cause: The HEX(function is being used in an illegal situation. The HEX function may not
be used in a PRINTUSING statement.

Action: Do not use HEX function in this situation.

Example: :10 PRINTUSING 200, HEX(F4F5)

t ERR 53
:10 A$ = HEX(F4F5)

:20 PRINTUSING 200,A% (Possible Correction)

124

APPENDIX A

CODE 01
CODE 02
CODE 03
CODE 04
CODE 05
CODE 06
CODE 07
CODE 08
CODE 09
CODE 10
CODE 11
CODE 12
CODE 13
CODE 14
CODE 15
CODE 16
CODE 17
CODE 18
CODE 19
CODE 20
CODE 21
CODE 22
CODE 23
CODE 24
CODE 25
CODE 26
CODE 27
CODE 28
CODE 29
CODE 30
CODE 31
CODE 33
CODE 34
CODE 35
CODE 36
CODE 37
CODE 38
CODE 39
CODE 40
CODE 41
CODE 42
CODE 43
CODE 44
CODE 45
CODE 46
CODE 47
CODE 48
CODE 49
CODE 50
CODE 51
CODE 52
CODE 53

LISTING OF ERROR MESSAGES

TEXT OVERFLOW

TABLE OVERFLOW

MATH ERROR

MISSING LEFT PARENTHESIS

MISSING RIGHT PARENTHESIS

MISSING EQUALS SIGN

MISSING QUOTATION MARKS
UNDEFINED FN FUNCTION
ILLEGAL FN USAGE

INCOMPLETE STATEMENT

MISSING LINE NUMBER OR CONTINUE ILLEGAL
MISSING STATEMENT TEXT

MISSING OR ILLEGAL INTEGER

MISSING RELATION OPERATOR

MISSING EXPRESSION

MISSING SCALAR

MISSING ARRAY

ILLEGAL VALUE FOR ARRAY DIMENSION
MISSING NUMBER

ILLEGAL NUMBER FORMAT

MISSING LETTER OR DIGIT
UNDEFINED ARRAY VARIABLE

NO PROGRAM STATEMENTS

{LLEGAL IMMEDIATE MODE STATEMENT
ILLEGAL GOSUB/RETURN USAGE
ILLEGAL FOR/NEXT USAGE
INSUFFICIENT DATA

DATA REFERENCE BEYOND LIMITS
ILLEGAL DATA FORMAT
ILLEGAL COMMON ASSIGNMENT
ILLEGAL LINE NUMBER

MISSING HEX DIGIT

TAPE READ ERROR

MISSING COMMA OR SEMICOLON
ILLEGAL IMAGE STATEMENT
STATEMENT NOT IMAGE STATEMENT
ILLEGAL FLOATING POINT FORMAT
MISSING LITERAL STRING

MISSING ALPHANUMERIC VARIABLE
ILLEGAL STR{ ARGUMENTS

FILE NAME TOO LONG

WRONG VARIABLE TYPE

PROGRAM PROTECTED
STATEMENT LINE TOO LONG

NEW STARTING STATEMENT NUMBER TOO LOW
ILLEGAL OR UNDEFINED DEVICE SPECIFICATION
UNDEFINED KEYBOARD FUNCTION
END OF TAPE

PROTECTED TAPE

ILLEGAL STATEMENT

EXPECTED DATA (NONHEADER) RECORD
ILLEGAL USE OF HEX FUNCTION

125

APPENDIX B

STEP 1:

STEP 2:

EXTIMATING PROGRAM MEMORY REQUIREMENTS

Extimate Program Text Size

Each BASIC program line requires the following amount of storage space (in STEPS or BYTES).

c. Each referenced line number

d. Remaining text material

a. Line number =5
b. Each BASIC word =1

3

1 per keystroke
(including CR/LF-EXECUTE)

Rather than counting the requirements for each individual text line, you can estimate the average
length of groups of lines, or use the following guidelines:

1.
2.

Simple, single statement lines : approximately 18 bytes per line
Multi-statement lines : approximately 27 bytes per line

Estimate Array Variable Storage Requirements

Look for COM and DIM statements in the program. Estimate storage for numeric arrays and
string arrays separately.

a.

Numeric arrays: Calculate the total number of elements in each numeric array. For one-
dimensional arrays, this is the dimensioned subscript; for two dimensional-arrays, it is the
product of the two subscripts.

EXAMPLE: Given the statement DIM A(5), B(6,3) (or COM A(5), B(6,3)), the array A()
has five elements and the array B() has 18.

Each element requires eight bytes of storage. Therefore, the arrays A{) and B() require 40
bytes and 144 bytes respectively.

. String arrays: Each string array element requires sixteen bytes of storage unless otherwise

specified in COM or DIM statements. If a maximum length is specified (in DIM or COM) for a

string array, each element in that array requires the specified number of bytes (or steps) of mem-

ory.

EXAMPLE: Given the statement DIM N$(30), P$(6,4), R$(7,10)4, T$(6)24, the arrays require
the following amounts of storage:

N$() = 30elements X 16 bytes/element = 480 bytes
P$() = 6 X 4elements X 16 bytes/element = 384 bytes
R$() = 7 X 10elements X 4 bytes/element = 280 bytes
T$() = 6celements X 24 bytes/element = 144 bytes

126

APPENbIX B

STEP 3: Estimate Scalar Variable Storage

a. Numeric scalar variables: Each numeric scalar variable requires four bytes for the variable name
plus eight bytes for the value of the variable.

b. String scalar variables: Each string scalar variable requires five bytes for the name plus sixteen
bytes for the value, if a maximum size is not specified in a DIM or COM statement. If a maximum

size is specified, the variable requires five bytes for the name plus the specified number of bytes
(or steps).

EXAMPLE: Given the statements

10 DIM B$3 (or 10 COM B$3)
20 LET C$="NAME, ADDRESS"

The variable B$ requires 5 bytes for the name plus 3 bytes for the value. The variable C$
requires 5 bytes for the name plus 16 bytes for the value.

STEP 4: Total Memory Used By The Program
Add the results of STEPS 1 - 3.
STEP 5: Total Memory Required For Execution

Add the result in STEP 4 to the number of bytes used in the BASIC system scratch area
(approximately 700 bytes).

127

APPENDIX B

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

PROGRAM MEMORY REQUIREMENTS

(WORKSHEET)
PROGRAM TITLE
Program Text Storage

a. Number of program lines
b. Average number of bytes per line
c. APPROXIMATE NUMBER OF TEXT BYTES (axb)

Array Variable Storage

d. Total number of numeric array elements
e. Total number of bytes required (8 X ‘d’)
f. Total bytes required for all string arrays
g. TOTAL MEMORY FOR ARRAYS (etf)

Scalar Variable Storage

h. Total number of numeric variables

i. Total storage required (12 bytes X ‘h’)

i. Total storage for string variables

k. TOTAL MEMORY FOR SCALAR VARIABLES (itj)

Program Storage
|. ICI + Igl + Ikl
Total Program Execution Requirements

m. BASIC system scratch area

700

TOTAL MEMORY REQUIRED (‘I’+‘m’) = bytes

128

APPENDIX C

CRT (CATHODE RAY TUBE MODEL 2216)

Unit Size: Height 14 inches (35.6cm)
Depth 16 inches (40.6¢cm)
Width 21% inches (54.6¢cm)

Display

Size: Height 8 inches (20.3cm)

Width 10% inches (26.7cm)

Capacity:
16 lines

64 characters/line

Character Size:

Height .20 inches (.51cm)
Width .12 inches (.30cm)
Weight: 36 Ibs. (14.4kg)
Power

Requirements:
115 0or 230 VAC + 10%
50 or 60 Hz
Cable 12’
TAPE DRIVE (MODEL 2217)

Stop/Start Time:
.09/.05 second

Capacity: 522 bytes/ft. (1712 bytes/m)
Recording

Speed: 7.51PS (19.04 cm/sec.)
Search

Speed: 7.5IPS (19.04 cm/sec.)
Transfer

Rate: 326 char/sec. (approx.)

Inter-record

Gap: .6 inches (1.52cm)
(Capacity and Transfer Rate include Gaps and
Redundant Recording)
Cable 12’
KEYBOARD
Size: Height 3inches (7.62cm)
Depth 10inches (25.4cm)
Width 17% inches (44.5cm)
Weight 7 \bs. (2.8kg)
Cable 12’

CPU (CENTRAL PROCESSING UNIT MODEL 2200}

129

Built-in Functions

Mathematical & Trigonometric Functions
e* e to the power of x
Log Natural Log

SQR Square Root

m Pi

Sin Sine

Cos Cosine

Tan Tangent

Arc Sin Inverse Sine

Arc Cos Inverse Cosine

Arc Tan Inverse Tangent

RND Random Number Generator
ABS Absolute Value of a Number.
INT Integer Value of a Number.
SGN 1, 0, or +1 if a number is negative, O,

or positive.
(Trigonometric Functions in Degrees, Radians and
Grads)

Alphanumeric Functions

STR Selection of one or more characters in an
alphanumeric string.

HEX Hexidecimal Values.

LEN Length of Alphanumeric Variable.

Variable Formats

Scalar Numeric Variable.

Numeric 1 and 2 dimension Array Variables.

Scalar Alphanumeric String Variable.

Alphanumeric 1- and 2- dimensional String Arrays.

Average Execution Times (Milliseconds)
Add/Subtract .8
3.8/7.4

Multiply/Divide

Square Root/EX 46.4/25.3
Logex/Xy 23.2/45.4
Integer/Absolute Value .24/.02
Sign/Sine .25/38.3
Cosine/Tangent 38.9/78.5
Arctangent 72.5
Read/Write Cycle 1.6 i sec.

(Average Execution times were determined using
random number arguments with 13 digits of pre-
cision. Average Execution times will be faster in
most calculations with arguments having fewer sig-
nificant digits.

Capacity

Memory Size

Peripheral Capacity
Dynamic Range
Subroutine Stacking
Weight

Power Requirements

4,096 program steps

(expandable to 32K)

6 (expandable in increments of 5) limit 36
107°% 10 10" °°

No Limit

60 Ibs. (24 kg)

115 or 230 VAC + 10%;
50 or 60 Hz

APPENDIX D

2201
2202
2203
2212
2214
2215
2216

2217

AVAILABLE PERIPHERALS
Output Writer
Plotting Output Writer |
Punched Paper Tape Reader,
Flat Bed Plotter
Marked Sense Card Reader
Basic Keyboard Module
CRT Display Module

Single Magnetic Tape Cassette Reader/ Recorder

2216/2217 Combined CRT Display/Single Magnetic Tape

2219
2221

2222

2230-1
2230-2
2230-3

2231

2207
2227

Cassette Module
I/O Extension Chassis
High-Speed Printer 132 Column
Alphanumeric Keyboard Module
Disk Memory (1,228,800 by'ces)1
Disk Memory (2,457,600 bytes)l
Disk Memory (4,915,200 bytes) ,

High-Speed Printer 80 Column

Teletype Controller,
Standard Telecommunications option

1 Peripherals used with the 2200B only.
A 2200A can be upgraded to a 2200B upon request at a nominal charge.

130

APPENDIX E

DEVICE ADDRESSES FOR 2200 PERIPHERALS
(For further detail, see the individual peripheral manuals)

I/O DEVICE CATEGORIES

DEVICE ADDRESS (S) !

KEYBOARDS 2 (2215, 2222) 001, 002, 003, 004
CRT UNITS 2 (2216) 005, 006, 007, 008
CASSETTE DRIVES (2217) 10A, 10B, 10C, 10D, 10E, 10F
HIGH-SPEED PRINTERS (2221, 2231) 215, 216
OUTPUT WRITERS (2201) 211, 212
PLOTTERS (2202, 2212) 413, 414
DISK DRIVES (2230-1, -2, -3) 310, 320, 330
CARD READERS (2214) 517
HIGH-SPEED PAPER TAPE READER 618
(2203)
TELETYPES AND TELE- (2207) 01A, 01C, O1E __ INPUT
COMMUNICATION LINES (2227) 01B, 01D, O1F OUTPUT

1 In some cases more than one device address is listed for each device category.
Unless otherwise noted, each peripheral device is assigned a unique address;
device addresses are assigned sequentially.

2 Al peripherals in this category are assigned to lowest device address shown.
They may, however, be assigned unique addresses by customer request.

- 131

APPENDIX F

D ————————_————————— .
HEXADECIMAL CODES FOR 2216 (CRT)

CODE CHARACTER CODE CHARACTER
HEX (01) Cursor home HEX (46) F
HEX (03) Clears screen and cursor home HEX (47) G
HEX (08) Backspace HEX (48) H
HEX (0A) Cursor down { (line feed) HEX (49) |
HEX (0C) Cursor up 1 (reverse index) HEX (4A) J
HEX (OD) CR/LF HEX (4B) K
HEX (20) Space HEX (4C) L
HEX (21) ! HEX (4D) M
HEX (22) “ HEX (4E) N
HEX (23) # HEX (4F) 0]
HEX (24) $ HEX {50) P
HEX (25) % HEX (51) Q
HEX (26) & HEX (52) R
HEX (27) ‘* (apostrophe) HEX (53) S
HEX (28) (HEX (54) T
HEX (29)) HEX (55) U
HEX (2A) * HEX (56) \Y)
HEX (2B) + HEX (57) w
HEX (2C) , (comma) HEX (58) X
HEX (2D) - (minus) HEX (59) Y
HEX (2E)] HEX (BA) Z
HEX (2F) / HEX (5B) [
HEX (30) 0 HEX (5C) \
HEX (31) 1 HEX (5D)]
HEX (32) 2 HEX (5E) t
HEX (33) 3 HEX (5F) «
HEX (34) 4

HEX (35) 5

HEX (36) 6

HEX (37) 7

HEX (38) 8

HEX (39) 9

HEX (3A) :

HEX (3B) ;

HEX (3C) <

HEX (3D) =

HEX (3E) >

HEX (3F) ?

HEX (40) @

HEX (41) A

HEX (42) B

HEX (43) C

HEX (44) D

HEX (45) E

132

Absolute Value Function
Addition .

Alphanumeric Ordering
Alphanumeric String Variables

Alphnumeric String Variable
Names .

Arc .

Arc-Cosine

Arc-Sine .

Arctan .

Arrays .

Array Names

Array Variables

Assignment Statement .
BACKSPACE Key

BASIC Keyboard (2215) .
BASIC System Commands .
Cathode Ray Tube (CRT)
Central Processing Unit (CPU) .
CLEAR Key

CLEAR N

CLEARP

CLEAR YV

Colon (Use of) .

Comma (Use of) .
Common (COiV) Statement .

Conditional Branch (FOR/NEXT
Statement)

Conditional Branch (IF/THEN
Statement)

CONTINUE Key .
Cosine Function (COS)
CR/LF-EXECUTE Key
CRT Control Keys
CRT Display

INDEX

Page
15,16

13
77,78
76-84,99

76

14,15
14,15
14,15
14,15
71-74,100
71,72
71,72,101
24

9

5-12

5,6

5

3
24,26,101,102
26

26

26

2,3,5,23,24, 31,
98

25,30-32,40,97
101,102

54,56

61-63
49
15,16
8,9,44
9,10
5-12

CRT Plotting

Cursor .

DATA Statement

Debugging

Decisions .

DEFFN" .

DEFFN Statement .

Degree Angle Measure .
Deleting a Line from Memory .
DIM Statement '

Dimensioning an Alphanumeric
String .

Dimensioning an Array
Division

e* Function (EXP) .
Editing a BASIC Program
END Key .

Enter a New Line at the End of a
Program

Error Messages .

EXECUTE (CR/LF) Key .
Execution Error .

Execution of Algebraic
Expressions .

Exponentiation

Fixed Point Numbers .
Floating Point Numbers .
Flow Charting .
FOR/NEXT Statement
Free Space

GOSUB Statement .
GOSUB' Statement .
GOTO Statement
Gradian Angle Measure
HALT/STEP Key

Hexadecimal Function

Page

41

5
58,69,60,65
103-109
51,61-68
91-94
89,90

16

46,47
72,80,81

80,81
71,72
13
15
46,47
49

47

21
8,9,44
21,22

13

13,15

17

17,18
51-55,61
38-42,54,65,73
49,50

85,86

94

56,567,62

16
104,105,108
110-112

IF/THEN Statement
(Conditional Branch)

IMAGE Statement (%)
Immediate Mode .
INPUT Statement
Inserting a Line Into a Program
Installation .

Integer Function .
LEN(Function

LET Statement

LINE ERASE Key
LIST Key

Literals

Literal String

LOAD Key .

LOG(Key

Looping

Marked Subroutine .

Master Initialization

Mathematic Keyboard Functions.

Mixed Format PRINT
Statement

Multi-Statement Line .
Multiplication .

Natural Logarithm Function
Nested Loops .

Nested Parentheses .
Nested Subroutines .
Numeric Keys .

Numeric Scalar Variables .
Packed Format

Passing Arguments
Parentheses .

Peripheral Equipment .
Pl (m) Function

“POWER ON’”" Procedures

Page

61-65
96-100

8,43
69,70,76,78
46

3

15

83,84

24

10

46,47

97

31,32

102

15,16
38-42,65,73
93

45

7,14

32,33
23,43,105
13

15,16
73-75

14

87

7

24,25
32,33,40
94

13,14

3

14,15

q

PRINT Key .
PRINT Statement

PRINTUSING Statement .

Program Documentation .
Programming Error .
Radian Angle Measure .

Random Number Generator (RND
Function)

READ Statement

Reading Data Values
READY

Redefining a Program Line .
Reiterative Procedures .
Remark (REM) Statement
RENUMBER Key
Renumbering a Program .
RESET Key .

RESTORE Statement .
RETURN Statement

RUN Key

Scalar Variable

Scientific Notation .
SELECT Key

Semicolon (Use of) .
SHIFT Key .

SHIFT LOCK Key

Sign Function (SGN)

Sine Function (SIN)

Single Statement Line .

Size of Alphanumeric Strings .
SPACE Key .

Special Function Keys .
Square Root Function {(SQR) .
Statement Line Numbers .

Statement Number (STMT
NUMBER) Key

Page

7
7,40,41,42
96-100
43-50,65
21,22

16

15
58-60,65
58,59
46,8

46

38-42 ;
55

108,109

108,109

6

59,60,65

85,86

45,46,49

24,25,101

17,18,97

15,40,47

32,40,41,98

5,6

7

15

15,16

23

76

9

10,91-95

15,16

23,44,46

44,45

STEP Key

STOP Key

Storage Requirements .
STR(Function
Subtraction .
Subroutines .

Syntax Error

Tab Format .

Tangent Function (TAN)
Text String .

The LEN(Function .
TRACE Key

TRACE Mode .
Trigonometric Functions .

Unconditional Branch (GOTO
Statement)

User Defined Functions
Variable Storage Requirements
Variables .

Zoned Format .

Page

39

438
126-128
81,82,83
13
85-88,92,93
21
34,35,41
15

70

83,84
106,107
108
15,16

56,57,62
82,90,92
49,50,101
24-29
30-33,40

135

To help us to provide you with the best manuals possible, please make your comments and suggestions
concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All comments
and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
name and address. Your cooperation is appreciated.

TITLE OF MANUAL.:

COMMENTS:

Fold

Fold

WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Tewksbury, Mass.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention:

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.

836 NORTH STREET

TEWKSBURY, MASSACHUSETTS 01876

Marketing Department

Cut along dotted line.

Fold

Printed in U.S.A.

-~

E - \«J J > ~ ~ NS .

-

A3 4589880859533 344

M
¢
b
E
H

Aemrn

WANG LABORATORIES
(CANADA) LTD.

180 Duncan Mill Road

Don Mills, Ontario-M3B 126

TELEPHONE (#16) 449-7890

TELEX 06-21-7549

WANG EUROPE, S.A.
Buurtweg 13

9412 Ottergem

Belgium

TELEPHONE: 053/74514
TELEX: 26077

WANG ELECTRONICS LTD.

40-44 High Street
Northwood, Middlesex, England
TELEPHONE Northwood 27677

WANG FRANCE SARL

WANG SKANDINAVISKA AB
Fredsgaten 17

"~ 8-172-23

Sundbyberg 1, Sweden
TELEPHONE 08-98-12-45

WANG NEDERLAND B.V.

Damstraat 2
Utrecht, Netherlands
TELEPHONE 030-930947

WANG PACIFIC LTD.

61, King Yip Street, 1st Floor
Kwun Tong, Kowloon, Hong Kong
TELEPHONE 3-434231/2

WANG INDUSTRIAL CO., LTD.

110-118 Kuang-Fu N. Rd.

WANG COMPUTER PTY. LTD.

25 Bridge Street
Pymble, NSW 2073 ~
Australia

TELEPHONE 449-6388

WANG INTERNATIONAL
TRADE, INC.

836 North Street

Tewksbury, Massachusetts 01876
TELEPHONE (617) 8561-4111
TWX 710-343-6769

TELEX 94-7421

(A

C(C (SC-CASCANC O f"“‘(‘* (“-r" " CCCCCC

e
N

%
H

(5N f . ("

“

N g

Taivei. Tai PHI COMPUTER SERVICES
47, Rue de la Chapelle R:g)jll:;licac;:vg:?\ina 836 North Street
Paris 18, France TELEPHONE 784181-3 Tewksbury, Massachusetts 01876
TELEPHONE 203.27.94 or 203.25.94 TELEPHONE (617) 851-4111
WANG LABORATORIES GMBH WANG GESELLSCHAFT MBH TWX 710-343-6769
Moselstrasse No. 4 Grinzinger Allee 16 TELEX 94-7421
6000 Frankfurt am Main 1190 Vienna 19 24 Mill Street
West Germany Austria Arlington, Massachusetts 02174
TELEPHONE (611) 23-00-40 TELEPHONE (0222) 32.42.43 TELEPHONE (617) 648-8550
WANG LABORATORIES, INC.)
836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876 , TEL(617) 851-4111, TWX 710 343-6769, TELEX 94-7421 Printed in U.S.A.
. 700-3059A
7-73-1.5M

Price $10.00

e P

	Cover
	Preface
	Table of Contents
	Part I: The Basics of the 2200
	Chapter 1: Equipment Installation and Power On Procedure
	Chapter 2: An Introduction to the 2200 CRT Display and BASIC Keyword Keyboard
	Chapter 3: Using the 2200 As A Calculator
	Chapter 4: 2200 BASIC Errors and Error Messages

	Part II: One Line Programming
	Chapter 5: 2200 BASIC Variables
	Chapter 6: Instructing the 2200 to Print Out More Than One Value Per Line
	Chapter 7: Using the 2200 with Reiterative Procedures (Looping)

	Part III: Programming the 2200
	Chapter 8: Programming and Using the 2200
	Chapter 9: Understanding Programming
	Chapter 10: The Unconditional Branch
	Chapter 11: The DATA and READ Statements
	Chapter 12: Making Decisions
	Chapter 13: Interactive Programming -- Using the INPUT Statement
	Chapter 14: Arrays, and Array Variables
	Chapter 15: Nested Loops
	Chapter 16: Alphanumeric String Variables
	Chapter 17: Subroutines
	Chapter 18: Single Line User Defined Functions
	Chapter 19: The Special Function Keys
	Chapter 20: PRINTUSING and % -- Image Statement -- Controlled Formatting of Output
	Chapter 21: Use of the Common (COM) Statement
	Chapter 22: Debugging
	Chapter 23: The Hexadecimal Function [HEX()]

	Part IV: Appendices
	Appendix A: Error Codes
	Appendix B: Estimating Program Memory Requirements
	Appendix C: Machine Measurements
	Appendix D: Available Peripherals
	Appendix E: Device Addresses For 2200 Peripherals
	Appendix F: Hexadecimal Codes for 2216 (CRT)

	Index

