Micro VP Computer System

Models:

Micro VP-1
Micro VP-2
CUSTOMER ENGINEERING

PUBLICATION UPDATE BULLETIN

TITLE: Micro VP Computer System
DATE: 5/13/88
This PUB affects: 741-1668
742-1668
Color: Yellow
Previous Notice(s): 741-1668-1

REASON FOR CHANGE:

This PUB provides updated information to the appropriate sections of the

INSTRUCTIONS:

Remove and insert attached pages and/or microfiche as follows:

<table>
<thead>
<tr>
<th>REMOVE PAGES</th>
<th>INSERT PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>v/vi</td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMOVE FICHE</th>
<th>INSERT FICHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fiche 1</td>
</tr>
<tr>
<td>2.</td>
<td>Fiche 2</td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>v/vi</td>
<td>Appendix B</td>
</tr>
</tbody>
</table>

This page constitutes a permanent record of revisions; place it directly
following title page.
COMPANY PROPRIETARY STATEMENT

This document is the property of Wang Laboratories, Inc. All information contained herein is considered Company Proprietary, and its use is restricted solely to assisting you in servicing Wang products. Neither this document nor its contents may be disclosed, copied, revealed, or used in whole or in part for any other purpose without the prior written permission of Wang Laboratories, Inc. This document must be returned upon request of Wang Laboratories, Inc.

© Copyright 1988, Wang Laboratories, Inc.
Micro VP Computer System

Models:

Micro VP-1
Micro VP-2

COMPANY PROPRIETARY STATEMENT

This document is the property of Wang Laboratories, Inc. All information contained herein is considered Company Proprietary, and its use is restricted solely to assisting you in servicing Wang products. Neither this document nor its contents may be disclosed, copied, revealed, or used in whole or in part for any other purpose without the prior written permission of Wang Laboratories, Inc. This document must be returned upon request of Wang Laboratories, Inc.

Customer Engineering
Product Maintenance Manual 741-1668

COMPANY CONFIDENTIAL
This document is the Product Maintenance Manual (PMM) for the Wang Micro VP Computer Systems. The manual is organized in accordance with Customer Engineering Technical Documentation's approved PMM outline. The scope of this manual reflects the type of maintenance philosophy selected for this product.

The purpose of this manual is to provide the Wang-trained Customer Engineer (CE) with sufficient instructions to operate, troubleshoot, and repair the Wang Micro VP Computer System. The manual will be updated on a regular schedule or as necessary. Such updates will be published either as Publication Update Bulletins (PUBs) or as full revisions.

First Edition (June, 1985)

Use of the material in this document is authorized only for the purpose stated in the Preface, above.

© Copyright 1985, Wang Laboratories, Inc.
CUSTOMER ENGINEERING

PUBLICATION UPDATE BULLETIN

TITLE: 2275 MULTIPLEXER/MULTIPLEXER EXTENDER OPTION
DATE: 02/23/87

This PUB affects: 741-1668
742-1668

CLASS CODE: 4103

Previous Notice(s): None

REASON FOR CHANGE:

To provide installation, checkout, troubleshooting, and parts-replacement data for the 2275 Multiplexer and 2275 Multiplexer Extender option for the Micro VP Computer System.

INSTRUCTIONS:

Remove and insert attached pages and/or microfiche as follows:

<table>
<thead>
<tr>
<th>REMOVE PAGES</th>
<th>INSERT PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. v, vi</td>
<td>v, vi</td>
</tr>
<tr>
<td>2.</td>
<td>A-1 through A-15</td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMOVE FICHE</th>
<th>INSERT FICHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1, 2</td>
<td>1, 2</td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
</tbody>
</table>

This page constitutes a permanent record of revisions; place it directly following title page.
COMPANY PROPRIETARY STATEMENT

This document is the property of Wang Laboratories, Inc. All information contained herein is considered Company Proprietary, and its use is restricted solely to assisting you in servicing Wang products. Neither this document nor its contents may be disclosed, copied, revealed, or used in whole or in part for any other purpose without the prior written permission of Wang Laboratories, Inc. This document must be returned upon request of Wang Laboratories, Inc.

© Copyright 1987, Wang Laboratories, Inc.
WARNING

Do not open the switching power supply under any circumstance. Extremely dangerous voltage and current levels (in excess of 300 volts DC and unlimited current) are present within the power supply.

Do not attempt to repair the switching power supply; it is field replaceable only.

After powering the unit down and disconnecting the AC power connector from the power source receptacle, allow one minute before removing the power supply to provide adequate time for any residual voltage to drain through the bleeder resistors.
TABLE OF CONTENTS

Chapter 1 Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Scope and Purpose</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2</td>
<td>Applicable Documentation</td>
<td>1-1</td>
</tr>
<tr>
<td>1.3</td>
<td>System Description</td>
<td>1-1</td>
</tr>
<tr>
<td>1.4</td>
<td>Specifications</td>
<td>1-2</td>
</tr>
<tr>
<td>1.5</td>
<td>System Options</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Chapter 2 Theory of Operation

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2</td>
<td>CPU Functional Theory</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Control Memory</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Bootstrap Proms</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Data Memory</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.3.1</td>
<td>128K Data Memory</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.3.2</td>
<td>512K Data Memory</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Memory Partitioning</td>
<td>2-3</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Generating Partitions</td>
<td>2-3</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Global Partitions</td>
<td>2-4</td>
</tr>
<tr>
<td>2.2.7</td>
<td>CPU, Memory, and I/O Interface</td>
<td>2-4</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Switching Power Supply</td>
<td>2-4</td>
</tr>
</tbody>
</table>

Chapter 3 Operation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Scope</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2</td>
<td>Controls and Indicators</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Power On/Off</td>
<td>3-1</td>
</tr>
<tr>
<td>3.3</td>
<td>Initial Power-on Procedure</td>
<td>3-2</td>
</tr>
<tr>
<td>3.4</td>
<td>Daily Power-on Procedure</td>
<td>3-2</td>
</tr>
<tr>
<td>3.5</td>
<td>Normal Power-down Procedure</td>
<td>3-2</td>
</tr>
<tr>
<td>3.6</td>
<td>Emergency Power-down Procedure</td>
<td>3-2</td>
</tr>
</tbody>
</table>

Chapter 4 Installation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Scope</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2</td>
<td>Installation Site Check</td>
<td>4-1</td>
</tr>
<tr>
<td>4.3</td>
<td>Unpacking and Inspection</td>
<td>4-1</td>
</tr>
<tr>
<td>4.4</td>
<td>Installation</td>
<td>4-3</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Switch Settings</td>
<td>4-3</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Cabling</td>
<td>4-8</td>
</tr>
<tr>
<td>4.5</td>
<td>Initial Power-up</td>
<td>4-11</td>
</tr>
<tr>
<td>4.6</td>
<td>System Verification</td>
<td>4-12</td>
</tr>
<tr>
<td>4.6.1</td>
<td>System Diagnostics</td>
<td>4-12</td>
</tr>
<tr>
<td>4.7</td>
<td>Partition Generation</td>
<td>4-14</td>
</tr>
<tr>
<td>4.8</td>
<td>Generating Evenly-Divided Partitions</td>
<td>4-22</td>
</tr>
<tr>
<td>4.9</td>
<td>Customizing Partition Generation</td>
<td>4-22</td>
</tr>
<tr>
<td>4.10</td>
<td>System Turnover to Customer</td>
<td>4-22</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONT.)

Chapter 5 Preventive Maintenance

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Scope</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2</td>
<td>Special Tools and Equipment</td>
<td>5-1</td>
</tr>
<tr>
<td>5.3</td>
<td>Maintenance Procedures</td>
<td>5-1</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Central Processing Unit</td>
<td>5-1</td>
</tr>
<tr>
<td>5.4</td>
<td>Alignments and Adjustments</td>
<td>5-2</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Voltage Adjustments</td>
<td>5-2</td>
</tr>
<tr>
<td>5.5</td>
<td>Removal and Replacement Procedures</td>
<td>5-3</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Top Cover Removal</td>
<td>5-3</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Top Cover Replacement</td>
<td>5-3</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Switching Power Supply Removal</td>
<td>5-4</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Switching Power Supply Replacement</td>
<td>5-6</td>
</tr>
<tr>
<td>5.5.5</td>
<td>CPU/Memory Board Removal</td>
<td>5-6</td>
</tr>
<tr>
<td>5.5.6</td>
<td>CPU/Memory Board Replacement</td>
<td>5-6</td>
</tr>
<tr>
<td>5.5.7</td>
<td>I/O Controller Board Removal</td>
<td>5-7</td>
</tr>
<tr>
<td>5.5.8</td>
<td>I/O Controller Board Replacement</td>
<td>5-7</td>
</tr>
<tr>
<td>5.5.9</td>
<td>Motherboard Removal</td>
<td>5-7</td>
</tr>
<tr>
<td>5.5.10</td>
<td>Motherboard Replacement</td>
<td>5-8</td>
</tr>
<tr>
<td>5.5.11</td>
<td>Cooling Fan Removal</td>
<td>5-8</td>
</tr>
<tr>
<td>5.5.12</td>
<td>Cooling Fan Replacement</td>
<td>5-9</td>
</tr>
</tbody>
</table>

Chapter 6 Illustrated Parts Breakdown

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Scope</td>
<td>6-1</td>
</tr>
</tbody>
</table>

Chapter 7 Troubleshooting

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Scope</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2</td>
<td>Bootstrap Diagnostics</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Initialization Errors</td>
<td>7-2</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Reset Errors</td>
<td>7-3</td>
</tr>
<tr>
<td>7.2.3</td>
<td>System Errors</td>
<td>7-3</td>
</tr>
<tr>
<td>7.2.3.1</td>
<td>Memory Errors</td>
<td>7-4</td>
</tr>
<tr>
<td>7.2.3.2</td>
<td>Disk Errors</td>
<td>7-5</td>
</tr>
<tr>
<td>7.3</td>
<td>Microcode Diagnostics</td>
<td>7-6</td>
</tr>
<tr>
<td>7.3.1</td>
<td>CPU Instructions Diagnostic</td>
<td>7-7</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Control Memory Diagnostic</td>
<td>7-8</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Data Memory Diagnostic</td>
<td>7-9</td>
</tr>
<tr>
<td>7.3.4</td>
<td>CPU Registers Diagnostic</td>
<td>7-10</td>
</tr>
<tr>
<td>7.4</td>
<td>Peripheral Device Diagnostics</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>Diagnostic Error Messages</td>
<td>7-10</td>
</tr>
</tbody>
</table>

Chapter 8 Schematics (Microfiche Only) 8-1
TABLE OF CONTENTS (CONT.)

Appendix A 2275 Multiplexer/Multiplexer Extender Option A-1
Appendix B CPU/Memory PCB Upgrade Options .. B-1

LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>CPU/Memory Board</td>
<td>2-2</td>
</tr>
<tr>
<td>2-2</td>
<td>Memory Partition</td>
<td>2-3</td>
</tr>
<tr>
<td>2-3</td>
<td>CPU/Memory Board Block Diagram</td>
<td>2-6</td>
</tr>
<tr>
<td>3-1</td>
<td>AC Power On/Off Switch</td>
<td>3-1</td>
</tr>
<tr>
<td>4-1</td>
<td>120/240 AC Voltage Switch</td>
<td>4-2</td>
</tr>
<tr>
<td>4-2</td>
<td>Device Address Switches</td>
<td>4-4</td>
</tr>
<tr>
<td>4-3</td>
<td>MXD Multiplexer Device and Baud Rate Switches</td>
<td>4-5</td>
</tr>
<tr>
<td>4-4</td>
<td>MXE Multiplexer Device and Baud Rate Switches</td>
<td>4-6</td>
</tr>
<tr>
<td>4-5</td>
<td>22C32 Triple Controller Switches</td>
<td>4-7</td>
</tr>
<tr>
<td>4-6</td>
<td>Printer Interface Cabling</td>
<td>4-8</td>
</tr>
<tr>
<td>4-7</td>
<td>Disk Interface Cabling</td>
<td>4-9</td>
</tr>
<tr>
<td>4-8</td>
<td>TC, Tapes, Plotters, and Terminal Cabling</td>
<td>4-10</td>
</tr>
<tr>
<td>4-9</td>
<td>Multiplexer Cabling</td>
<td>4-11</td>
</tr>
<tr>
<td>4-10</td>
<td>120/240 AC Line Voltage Select Switch</td>
<td>4-12</td>
</tr>
<tr>
<td>5-1</td>
<td>Operating Voltage Testpoints</td>
<td>5-2</td>
</tr>
<tr>
<td>5-2</td>
<td>Top Cover Screws</td>
<td>5-4</td>
</tr>
<tr>
<td>5-3</td>
<td>Bottom Retaining Screw</td>
<td>5-4</td>
</tr>
<tr>
<td>5-4</td>
<td>Power Supply Retaining Screws</td>
<td>5-5</td>
</tr>
<tr>
<td>5-5</td>
<td>Motherboard Connectors</td>
<td>5-5</td>
</tr>
<tr>
<td>5-6</td>
<td>AC Power On/Off Switch Wiring</td>
<td>5-6</td>
</tr>
<tr>
<td>5-7</td>
<td>CPU/Memory Board</td>
<td>5-7</td>
</tr>
<tr>
<td>5-8</td>
<td>I/O Board Slots</td>
<td>5-8</td>
</tr>
<tr>
<td>5-9</td>
<td>Fan Power Connection</td>
<td>5-9</td>
</tr>
<tr>
<td>6-1</td>
<td>CPU/Memory Board</td>
<td>6-2</td>
</tr>
<tr>
<td>6-2</td>
<td>Micro VP Motherboard</td>
<td>6-3</td>
</tr>
<tr>
<td>6-3</td>
<td>Switching Power Supply</td>
<td>6-4</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Typical Device Addressing</td>
<td>4-3</td>
</tr>
<tr>
<td>4-2</td>
<td>Device Address Switch Setting</td>
<td>4-4</td>
</tr>
<tr>
<td>5-1</td>
<td>Operating Voltage Limits</td>
<td>5-3</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 SCOPE AND PURPOSE

This Product Maintenance Manual (PMM) concerns the the Wang Micro VP Computer System, and provides field personnel with the information necessary to:

- Unpack and Install the System
- Perform Preventive Maintenance Procedures
- Perform Diagnostic Tests
- Analyze Failure Indications
- Replaced Failed Assemblies

1.2 APPLICABLE DOCUMENTATION

A complete listing of Wang technical documentation is presented in the Technical Documentation Catalog/Index (742-0000). Other product documentation is identified in the Corporate Resource Catalog (700-7647).

1.3 SYSTEM DESCRIPTION

The Wang Micro VP is an interactive, multi-user, multi-task, disk-based computer system, utilizing VLSI (Very Large Scale Integration) technology. The Micro VP supports up to thirteen terminals and sixteen jobs (partitions) concurrently as well as a wide range of peripheral devices, such as printers, plotters, disk drives, tape drives, and TC devices.

By utilizing VLSI, the Micro VP processor design is incorporated into a single chip. This allows the Micro VP CPU, control memory, and user memory to reside on a single PC board. There are two models of Micro VP Computer systems. The Micro VP-1 contains 128K of data memory while the Micro VP-2 contains 512K. In addition, both systems contain 32K of control memory.
1.4 SYSTEM SPECIFICATIONS

Physical Dimensions:

Width: 15-1/8 in. (38.4 cm)
Depth: 21-3/4 in. (55.25 cm)
Height: 8-3/4 in. (22.24 cm)

Power and Environmental Requirements:

Input Circuit: Dedicated 20A circuit
Voltage: 115/230 VAC ± 10%
Frequency: 50/60 HZ.
Running Current: 2.0 amps @ 115 vac
1.0 amps @ 230 vac

Operating Environment:

Ambient Temp.: 60 to 80 degrees Fahrenheit
15 to 28 degrees Celsius

Government and Industry Standards and Approvals:

Domestic: UL Standard 114
FCC Class A
Int'l: CSA Standard C22.2 NO 154
IEC 435
VDE Standard for Germany

Service Space Required:

Allow 30" between wall and each unit in system.

Special Specifications:

None

1.5 SYSTEM OPTIONS

Both the Micro VP-1 and Micro VP -2 Computer Systems require a minimum configuration of one workstation, one disk drive, and one printer. A number of peripherals are supported, a list of which follows:

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2201L</td>
<td>Character Printer</td>
</tr>
<tr>
<td>2209AV</td>
<td>Nine-Track Mag. Tape Drive</td>
</tr>
<tr>
<td>2211M</td>
<td>Printer Multiplexer</td>
</tr>
<tr>
<td>2221W</td>
<td>Matrix Line Printer</td>
</tr>
</tbody>
</table>
1.5 SYSTEM OPTIONS CONT.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2227B</td>
<td>Buffered Asynchronous Communications Controller</td>
</tr>
<tr>
<td>2228B,C,D,E,F</td>
<td>Binary Synchronous Communications Controller</td>
</tr>
<tr>
<td>2229</td>
<td>Tape Controller</td>
</tr>
<tr>
<td>2230MXA</td>
<td>Master Daisy Chain Disk Mux Controller</td>
</tr>
<tr>
<td>2230MXB</td>
<td>Slave Daisy Chain Disk Mux Controller</td>
</tr>
<tr>
<td>2231</td>
<td>Line Printer</td>
</tr>
<tr>
<td>2231W-1,2,6</td>
<td>Matrix Line Printers</td>
</tr>
<tr>
<td>2231W-3</td>
<td>Aux. Printer for the X2282 Graphics Terminal</td>
</tr>
<tr>
<td>2232A/B</td>
<td>Digital Flatbed Plotter</td>
</tr>
<tr>
<td>2233</td>
<td>Matrix Line Printers</td>
</tr>
<tr>
<td>2234,34A</td>
<td>Hopper-Feed Punched Card Reader</td>
</tr>
<tr>
<td>2235</td>
<td>Matrix Line Printer</td>
</tr>
<tr>
<td>2236MXD</td>
<td>Multiplexer</td>
</tr>
<tr>
<td>2236MXE</td>
<td>Multiplexer</td>
</tr>
<tr>
<td>2236D,DE,DW</td>
<td>Interactive Terminal</td>
</tr>
<tr>
<td>2336DE,DW</td>
<td>Ergo Interactive Terminal</td>
</tr>
<tr>
<td>2240-1,-2</td>
<td>Dual Removable Flexible Disk Drive</td>
</tr>
<tr>
<td>2241</td>
<td>Thermal Printer</td>
</tr>
<tr>
<td>2244A,44B</td>
<td>Hopper-Feed, Mark-Sense Punched Card Reader</td>
</tr>
<tr>
<td>2245</td>
<td>Matrix Line Printer</td>
</tr>
<tr>
<td>2251</td>
<td>Matrix Line Printer</td>
</tr>
<tr>
<td>2260,60BC,60C</td>
<td>Fixed/Removable Disk Drives</td>
</tr>
<tr>
<td>2261,61W</td>
<td>Matrix Line Printer (240 lpm)</td>
</tr>
<tr>
<td>2262-1,-2,-3</td>
<td>Digitizer</td>
</tr>
<tr>
<td>2270</td>
<td>Removable Diskette Disk Drive</td>
</tr>
<tr>
<td>2270A-1,-2,-3</td>
<td>IBM 3740-Compatible Diskette Drive</td>
</tr>
<tr>
<td>2271,2271-P</td>
<td>Bidirectional Output Writer</td>
</tr>
<tr>
<td>2272-1,-2</td>
<td>Triple Pen Drum Plotter</td>
</tr>
<tr>
<td>2273</td>
<td>Band Printer</td>
</tr>
<tr>
<td>2275</td>
<td>Disk</td>
</tr>
<tr>
<td>2280-1,-2,-3</td>
<td>Fixed Removable Disk Drive (Pheonix)</td>
</tr>
<tr>
<td>2281</td>
<td>Daisy Output Writer</td>
</tr>
<tr>
<td>2281P</td>
<td>Daisy Plotting Output Writer</td>
</tr>
<tr>
<td>2281W</td>
<td>Wang Daisy Output Writer</td>
</tr>
<tr>
<td>2282</td>
<td>Graphics CRT Plotter</td>
</tr>
</tbody>
</table>
CHAPTER 2
THEORY OF OPERATION

2.1 INTRODUCTION

Overall operation of the Micro VP CPU (Micro VP-1 and Micro VP-2) is controlled by the CPU/Memory board (210-8034). This chapter provides a brief description of this CPU.

2.2 CPU FUNCTIONAL THEORY

The Micro VP CPU/Memory board contains the Micro 2200 chip, a 121 pin gate-array which comprises the entire CPU. The chip requires +5 volts at VDD1-2 (pins B7 and M7) and ground at VSS1-2 (pins G2 and GL2). A 5 MHz square wave at pin F1 provides the system clock.

2.2.1 Control Memory

The CPU/Memory Board contains 32K of Control Memory. This is accomplished by loading 12 memory chips in board locations L13 through L18 and L20 through L25 (ref. Fig. 2-1).

Locations L1 through L12 of the CPU/Memory board are not loaded with memory chips. These locations are for possible future expansion.

The Control Memory is made up of 8k x 8 Static RAM configured in groups of three so that each group forms 8K of 24 bit words (one bank). Four of these groups (banks) produce 32K of control memory.

2.2.2 Bootstrap Proms

Three 2K x 8 proms, configured to form 24 bit words, comprise the bootstrap prom. If the address decoded on the system bus is between 8000 and 83FF the bootstrap proms are enabled and chip select for the control memory store is inhibited.

2.2.3 Data Memory

2.2.3.1 128K Data Memory (Micro VP-1)

With a 128K Data Memory configuration there are 2 banks, with 9 chips in each bank, for a total of 18 chips. Each chip contains 64K x 1 bit which produces 64K x 9 bits (8 bits data plus 1 bit parity) in each bank. Together the two banks produce 128K 8 bit bytes plus parity.

2.2.3.2 512K Data Memory (Micro VP-2)

With a 512K memory configuration, there are 2 banks, with 9 chips in each bank, for a total of 18 chips. Each chip contains 256K x 1 bit which produces 256K x 9 bits (8 bits data plus 1 bit parity) in each bank. Together the two banks produce 512K 8 bit bytes plus parity.
Fig. 2-1 CPU/Memory Board
2.2.4 Memory Partitioning

Memory Partitioning is a technique used in the allocation of available data (user) memory space. Each "partition" represents a block of memory space with specified address boundaries. The Micro VP is configured such that each user is allocated one or more blocks (partitions) of data memory which belong exclusively to him.

2.2.5 Generating Partitions

The number of partitions to be created and the amount of data memory to be allocated to each partition are specified by the user in a process called "partition generation". This process involves specifying certain attributes for each partition and supplying the addresses of peripheral devices connected to the system (ref. Chapter 4).

Once the Operating System has been loaded into Control Memory, a special utility program called @GENPART is loaded and executed at workstation #1. This program, through a series of display prompts, guides the system operator through the necessary steps for "partition generation" (ref Chapter 4).

With partition generation implemented, the system handles each partition as it would the entire data memory space of a single-user system, with space allocated for housekeeping, user program, work areas, and data tables. (See Fig. 2-2.)

![Memory Partition Diagram]

Figure 2-2 Memory Partition
2.2.5 Partition Generation (Cont.)

The Micro VP Operating System will support a maximum of 16 partitions and 13 system users. All 16 partitions may be allocated to a single user, or multiple-partition configurations may be created. Partition sizes are specified in 256-byte increments. The minimum size that may be specified for a partition is 1.25K (1280 bytes), with some portion of each partition accessible to all users (ref. 2.2.6). The guideline for maximum size, is that each partition must be defined wholly within the confines of one memory bank; no user partition is allowed to extend from one bank to another. The Micro VP-1 system contains 2 banks of user data memory, with each bank comprised of 64K of memory space, while the Micro VP-2 system has 8 banks of user data memory, also comprised of 64K each. (Ref. Fig. 2-1.)

2.2.6 "Global Partitions"

Although partitions function independently, there are situations in which it is highly expedient for two or more partitions to cooperate with one another, to share common information, common programs. This sharing eliminates needless duplication of applications software and data, thus allowing more efficient use of available data memory space.

Partitions can therefore be "global"; that is, each partition designated as such, contains programs and/or data which become conditionally sharable. A foreground or background program that is running in a partition in one bank can access any global partition residing in that same bank. Additionally, a user terminal that is attached to a partition in that same bank can access those global routines and/or data.

Another form of "Global Partition" is an area in memory which contains programs and/or data which must be accessible to all system users. This area is restricted to the first 5K block of data memory and is called a "Universal Global Partition".

2.2.7 CPU, Memory, and I/O Interface

As previously mentioned, the CPU functions are handled by a single VLSI chip (L55) on the CPU/Memory Board. Control Ram is accessed through Control Memory Access Lines CA0 through CA15 and bi-directional data is passed through Control Memory Data Lines CD0 through CD23. Two rows of data ram are accessed through Dynamic Ram Control and Data Address Lines DA0—DA18. Data is then transferred through memory data lines DD0—17, with DD9—17 being used as input for 16 bit read operations (18 if parity bits are included) only. Data lines DD0—8 are bi-directional and are used for both read and write operations.

I/O devices are accessed through an 8 bit address bus AB1—AB8 and data is passed through an 8 bit output data bus OB1—OB8. A 9-bit input bus, IB1—IB9, from the I/O devices to the CPU completes the interface. Overall control of the address bus, output bus, and input Bus is accomplished by the CPU pulses OBS, IB8, ABS, and CBS. (Ref. Fig. 2-3).

2.2.8 Switching Power Supply

The SPS255 Switching Power Supply is capable of outputting four supply voltages +5, -5, +12, and -12 volts dc. The power supply input circuit converts the ac line voltage (either 115 or 230 vac) into rectified and
filtered high voltage dc. The high voltage dc is chopped at a frequency of 25 KHz by a pulse width modulator presenting high voltage pulsating dc to a multiple output transformer. This transformer steps down the high voltage pulsating dc.

All output voltages are full-wave rectified through their associated diode rectifier circuits. The power-on reset signal (WOLFTRAP) is an output of a comparator circuit that forward-biases a NPN transistor once the output voltages are stabilized.

Two voltages are adjustable; +5 and +12 volts. The voltage adjustment pots are accessible from the outside of the power supply enclosure. Refer to Chapter 5 of this document for adjustment procedures and voltage measurement locations.

WARNING

Do not open the switching power supply under any circumstance. Extremely dangerous voltage and current levels (in excess of 300 volts DC and unlimited current) are present within the power supply.

Do not attempt to repair the switching power supply; it is field replaceable only.

After powering the unit down and disconnecting the AC power connector from the power source receptacle, allow one minute before removing the power supply to provide adequate time for any residual voltage to drain through the bleeder resistors.
Figure 2-3 CPU/Memory Bd. Block Diagram
CHAPTER 3
OPERATION

3.1 SCOPE

This Chapter outlines the operation of the Micro VP-1 and Micro VP-2 Computer Systems. Included in this chapter are the daily-turn on and normal and emergency shut-down procedures.

3.2 CONTROLS AND INDICATORS

3.2.1 Power On/Off

The ac power On/Off switch is mounted on the side of the Micro VP cabinet. (Ref. Fig. 3-1.)

![AC Power On/Off Switch](image)

Figure 3-1 AC Power On/Off Switch
3.3 INITIAL POWER-ON PROCEDURE

1. Remove the covers from the Micro VP. (Ref. Chapter 5).
2. Ensure that the 120/240 ac voltage switch is set correctly.
3. Ensure that all boards are seated properly in the motherboard.
4. Plug the unit in and depress the ac power switch to the "1" position.
5. Check voltages and adjust if necessary as outlined in Chapter 5 of this document.
6. Remove power from the system, and replace covers.

3.4 DAILY POWER-ON PROCEDURE

1. Whenever powering on the CPU and associated peripherals, always apply power first to terminal 1, then to the Micro VP, and finally the system disk.

3.5 NORMAL POWER-DOWN PROCEDURE

1. Ensure that all users have logged off the system.
2. Remove power from the system disk and any other drives configured into the system.
3. Depress the ac power On/Off switch to the "0" position.

3.6 EMERGENCY POWER-DOWN PROCEDURE

1. Depress the ac power On/Off switch to the "0" position.
2. Remove ac plug from the power receptacle.
CHAPTER 4

INSTALLATION

4.1 SCOPE

This chapter describes the procedures for unpacking, inspecting, and installing the Micro VP Computer System. Included in this chapter are instructions for system interconnection and power-up. Actual installation should not begin until all site requirements detailed in the Customer Site Planning Guide (700-5978), and System Installation Guide (729-0907), have been met.

4.2 INSTALLATION SITE CHECK

The following conditions must be met prior to installation:

1. All site plans must have been approved by both the customer and a Wang service representative.
2. All building alterations must have been completed and inspected.
3. All electrical wiring, air conditioning, and telecommunications modifications must have been installed and tested.
4. The CE will perform a preinstallation inspection two weeks prior to delivery. At this time, the CE will check the site for compliance with Micro VP site specifications. The CE will bring any unsatisfactory condition noted to the attention of the customer for correction.

4.3 UNPACKING AND INSPECTION

Each peripheral device has its own unpacking and inspection procedures. Refer to section 1.2 of this document for applicable documentation.

1. Before unpacking any equipment, check all packing slips to make sure that the proper equipment has been delivered. After checking packing slips, inspect all shipping containers for damage (crushed corners, punctures, etc.).

2. If damage is discovered during inspection, file an appropriate claim promptly with the carrier involved, and Wang Laboratories, Inc.
3. Remove the Micro VP from its shipping container. Remove the outer covers as outlined in Chapter 5. Inspect the unit for damaged or loosened assemblies. Also check for loose hardware. Be certain that each PC board is in its proper location and fully seated. Insure that the 120/230 volt switch is in its proper position. (Ref. Fig. 4-1)

![120/240 AC Voltage Switch](image)

Figure 4-1 120/240 AC Voltage Switch
4.4 INSTALLATION

1. Assemble all peripherals as required for the system configuration. Refer to the applicable maintenance manual for each peripheral.

4.4.1 Switch Settings

1. Each peripheral device must be assigned a unique address as specified in Table 4-1. A configuration with one device in a class will use the first device address for that class. Additional devices belonging to that class will have addresses sequentially assigned. Refer to Table 4-1 and assign a device address for each peripheral to be configured into the system.

<table>
<thead>
<tr>
<th>Device</th>
<th>Address(es)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyboards</td>
<td>001, 002, 003, 004</td>
</tr>
<tr>
<td>CRT Units</td>
<td>005, 006, 007, 008</td>
</tr>
<tr>
<td>A.C. Tape Drive</td>
<td>018</td>
</tr>
<tr>
<td>Tape Cassette Units</td>
<td>10A, 10B, 10C, 10D, 10E, 10F</td>
</tr>
<tr>
<td>Printers</td>
<td>215, 216</td>
</tr>
<tr>
<td>Disk Units</td>
<td>310, 320, 330</td>
</tr>
<tr>
<td>Card Reader</td>
<td>517</td>
</tr>
<tr>
<td>Hopper-Feed Card</td>
<td></td>
</tr>
<tr>
<td>Readers</td>
<td>628, 629</td>
</tr>
<tr>
<td>Paper Tape Readers</td>
<td>618</td>
</tr>
<tr>
<td>Teletype</td>
<td>019, 01A, 01B</td>
</tr>
<tr>
<td>Input: 01D, 01E, 01F Output</td>
<td></td>
</tr>
<tr>
<td>Teletype Tape Units</td>
<td>41D, 41E, 41F</td>
</tr>
<tr>
<td>Telecommunications</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>219, 21A, 21B</td>
</tr>
<tr>
<td>Input: 21D, 21E, 21F</td>
<td></td>
</tr>
<tr>
<td>Parallel I/O Interface</td>
<td>23A, 23C, 23E,</td>
</tr>
<tr>
<td>Input: 23B, 23D, 23F</td>
<td></td>
</tr>
<tr>
<td>Nine-Track Tape Unit</td>
<td>07B, 07D, 07F</td>
</tr>
<tr>
<td>Triple Controller</td>
<td>001, 005, 009, 013 (Workstation)</td>
</tr>
<tr>
<td></td>
<td>310, 320, 330 (Disk)</td>
</tr>
<tr>
<td></td>
<td>215, 216, 217 (Printer)</td>
</tr>
</tbody>
</table>

Table 4-1 Typical Device Addressing

2. Once an address has been assigned to each peripheral, the addresses must be inserted into the address switches located on each device controller board.

3. The most significant digit of the device address is used by the Operating System to identify the device type. It is not used in the device-address switch settings.

4. The last two digits of the device address correspond to the actual unit's address which must be set on each device controller board in the Micro VP. These digits must be broken down into binary bits and these bits are selected using the appropriate switch. (Ref Fig. 4-2 and Table 4-2.)
ADDRESS SETTING ON
PERIPHERAL DEVICE
I/O CONTROLLER BOARDS

Figure 4-2 Device Address Switches

<table>
<thead>
<tr>
<th>Digit (Hex)</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4-2 Device Address Switch Setting

For example, when inserting an printer address of 215, switches 5, 3, and 1 would be set to ON.
5. Other switch settings (baud rate, etc.) may be required depending on the I/O Controllers installed in the Micro VP. Some examples of these are as follows:

MXD Multiplexer Device Address and Baud Rate Switches

For 19.2K set switches to 4800 and jumper to 19.2K

Fig. 4-3 MXD Multiplexer Device Address and Baud Rate Switches
Fig. 4-4 MXE Multiplexer Device Address and Baud Rate Switches

MXE HARDWARE SWITCH SETTINGS

<table>
<thead>
<tr>
<th>Baud Rate</th>
<th>Port 1</th>
<th>Switch 3</th>
<th>Port 2</th>
<th>Switch 2</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2</td>
<td>3 4</td>
<td>5 6</td>
<td>7 8</td>
<td>1 2</td>
</tr>
<tr>
<td>110</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>134.5</td>
<td>ON</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>150</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>200</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>300</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>600</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>1200</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>2400</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>4800</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>9600</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>19600</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

MXE MOTHER PCB 210-7874
*SWITCH SETTINGS ARE IDENTICAL TO NORMAL HARDWARE SWITCH SETTINGS (REF. FIG. 4-2).
4.4.2 Cabling

1. Exact system cabling will differ with each system configuration. Below are some examples of the cabling required for typical configurations.

Printer Interface

- CONTROLLER BUFFERS
 - 22C01:210-6561
 - 22C02:210-7079 J1
 - 22C11:210-7342 J1

- SAME AS 2221W
 - 220-0105.1
 - 220-0156
 - 220-0171
 - 220-0105.3
 - 220-0156

- SAME AS 2221W
 - 220-0155
 - 220-0161
 - 220-0105.3

220-0181
2201L CHARACTER PRINTER
2201L CHARACTER PRINTER
2221W MATRIX PRINTER 120 CPS
2223W MATRIX PRINTER 120 CPS
2231W MATRIX PRINTER 120 CPS
2251 MATRIX PRINTER 150 CPS
2261W MATRIX PRINTER 240 LPM
2263 CHAIN PRINTER 600/600 LPM
2271/2271P BI-DIRECTIONAL WRITER/PLOTTER 15 CPS
2281/2281P DAISY WRITER/PLOTTER 300 CPS
2282 GRAPHIC CRT PLOTTER
220-0105.1
220-0156
220-0161
220-0105.3
220-0105.3

Fig. 4-6 Printer Interface Cabling
Fig. 4-7 Disk Interface Cabling

B-02381-FY85-11
BUFFERS
177-2227B
(177-2228B)
(177-2228C)

9 TRACK
TAPE CONTROLLER
212-2209A
J1
J2
NO EXT. CABLE

BUFFER
22C01, 210-6561
CONTROLLER
22C02, 210-7079
(22C11, 210-7042-2)
(22C11, 210-7342)
J1
J2

MULTIPLEXER
177-3236-1

MULTIPLEXER
177-3236-1

BELL MODEM/NULL MODEM
177-2227N
177-2228N

2209A
9 TRACK
TAPE DRIVE
1600 BPI

2232B
PLOTTER
CONTROLLER

2236D
INTERACTIVE
TERMINAL

2236D
INTERACTIVE
TERMINAL

2200-0113 (12')
2200-0219 (25')
2200-0220 (50')
120-2227-25 (25' EXT.)
120-2228-50 (50' EXT.)

2200-0168

2200-0178

2200-0146
120-2225-25 (25' EXT.)
120-2225-50 (50' EXT.)

2200-013 (12')
2200-0219 (25')
2200-0220 (50')
120-2227-25 (25' EXT.)
120-2227-50 (50' EXT.)

2272-2
DRUM
PLOTTER

2200-0113 (12')
2200-0219 (25')
2200-0220 (50')
120-2227-25 (25' EXT.)
120-2227-50 (50' EXT.)

Fig. 4-8 Telecommunications, Tapes, Plotters, and Terminal Interface Cabling
4.5 INITIAL POWER-UP

1. With the covers removed from the system (ref. chapter 5), ensure that the 120/240 ac line voltage switch is set correctly. (Ref. Fig. 4-9).

2. Ensure that the CPU/Memory Bd. is seated properly in slot 1 and all I/O controllers are fully seated in the motherboard.

3. Apply power to terminal 1, the Micro VP, and finally the system disk.

4. Check operating voltages and adjust if necessary as outlined in Chapter 5.

5. With the operating voltages set, replace all system covers. (Ref. chapter 5).
4.5 INITIAL POWER-UP CONT.

Fig. 4-10 120/230 AC Line Voltage Select Switch

NOTE

Operating voltages must be checked and adjusted if necessary on all peripherals attached to the system. Please refer to the appropriate maintenance manual (section 1.2) for detailed instructions on checking and adjusting these voltages.

4.6 SYSTEM VERIFICATION

4.6.1 System Diagnostics

1. Once power has been applied, the terminal connected as workstation 0 should be displaying the following screen:

```
MOUNT SYSTEM PLATTER
PRESS RESET
```

2. Place the System Platter Disk into the system drive and press the RESET key on the keyboard. (Press RESET if the terminal is model #2336DE, and SHIFT RESET if the terminal is model #2336DW.)
3. The following screen should now be displayed:

 KEY SP'?

4. Depress the special function key which corresponds to the drive you wish to IPL from. Disk addresses start with SF'00 and increment thereafter. For example; SF'00 accesses a disk address of 310, SF'01 an address of B10, SF'02 an address of 320, SF'03 an address of B20, etc.

5. The screen should display:

 ****SYSTEM 2200****

 Select item with SPACE & BACKSPACE
 Key RUN to execute, CLEAR or PREV SCRAN for previous screen

 MEMORY XXXXK
 Terminal X

 ■ MVP BASIC-2
 _ Diagnostics

6. Space down to Diagnostic and key RUN. The screen will appear as follows:

 ****CUSTOMER DIAGNOSTIC MENU****

 Select item with SPACE & BACKSPACE
 Key RUN to execute, CLEAR or PREV SCRAN for previous screen

 MEMORY XXXXK
 Terminal X

 ■ CPU Instructions
 _ Control Memory
 _ Data Memory
 _ CPU Registers
 _ All of the above
7. Space down to All of the above and key RUN. The diagnostics will begin immediately. As each set of tests are completed the Chain Mode Pass will increment. These tests will run continuously until RESET is keyed to terminate the diagnostics.

NOTE

Please refer to Chapter 7 of this document for interpretations of all CPU diagnostics mentioned here.

8. When a sufficient number of successful test passes have occurred (5 to 10 passes), key RESET.

9. The system software must now be configured to support the attached peripherals.

4.7 PARTITION GENERATION

1. After all required system diagnostics have successfully completed the partitions must be generated. Apply power to the system or key RESET. The screen will appear as follows;

```
MOUNT SYSTEM PLATTER
PRESS RESET
```

3. Mount the system disk and press RESET. The screen appears;

```
KEY SF'?
```
4. Depress the special function key which corresponds to the drive containing the operating system. Disk addresses start with SF'00 and increment thereafter. For example; SF'00 accesses a disk address of 310, SF'01 an address of B10, SF'02 an address of 320, SF'03 an address of B20, etc.

NOTE
If the wrong SF key was depressed (there was no system disk at the device specified), the following screen will appear:

SYSTEM ERROR (DISK 00XX)
PRESS RESET

If this error occurs, press RESET, then the correct SF key.

5. The screen will now appear:

****SYSTEM 2200****
Select item with SPACE & BACKSPACE
Key RUN to execute, CLEAR or PREV SCRn for previous screen
MEMORY xxxxK
Terminal X

■ MVP BASIC-2
- Diagnostics

6. Select MVP BASIC-2 and key RUN. The following screens will now appear:

LOADING: MVP BASIC-2 RELEASE X.X
7. Configuration parameters must now be entered into the Operating System. If partition-generation modules have been previously defined, a list of those module names will appear in the @GENPART menu screen. The user can select and load one of these modules by typing in the name of the module and pressing RETURN, and SF'15. If the user wishes to define a new partition module, he can do so by depressing the appropriate Special Function keys. This will initiate partition generation.

Descriptions of @GENPART SF Key Options:

SF'00 - Clear Partitions: Clears partition configuration parameters currently in memory, allowing the user to specify the total number of terminals and partitions in each bank, then automatically advances to SF'04 (Edit Partitions). Any number of partitions between 1 and 16 is allowable.

SF'01 - Clear Device Table: Clears Master Device Table parameters currently stored in memory, resets the default peripheral addresses to 215 (printer), 310 (system disk), and 320 (secondary disk), allocates these devices to all users, then advances to SF'05 (Edit Device Table). Default device addresses can then be edited.

SF'02 - Divide Memory Evenly: Divides remaining User Memory equally among the number of partitions specified with SF'04.

SF'04 - Edit Partitions: Displays and allows editing of partition parameters such as size, terminal assignment, programmability, and name of bootstrap program. SF'04 does not allow addition or deletion of defined partitions in an existing configuration.
SF'05 – Edit Device Table: Displays and allows editing of device addresses for all peripherals. All peripherals connected directly to I/O controllers must be specified in the Master Device Table.

SF'06 – Edit $MSG: Displays and allows editing of a user-defined broadcast message that will be displayed on each terminal's CRT whenever the READY message is displayed. This message appears on line 0 of the CRT, immediately above the READY message.

SF'08 – Load Configuration: Loads a named configuration from the Configuration File, which is located on the system disk. To modify and/or execute any previously defined configuration other than "current", this option must be used.

SF'09 – Save Configuration: Used to save a system configuration in the Configuration File under a user-specified name (up to eight characters in length). If the user specifies a configuration name already used, @GENPART will verify that the user desires to replace the old configuration on disk file with the configuration currently in memory.

SF'10 – Delete Configuration: Deletes a configuration from the Configuration File on the System Disk.

SF'15 – Execute Configuration: Allows the operator to first review, and then to execute, a configuration. This configuration will automatically be saved in the Configuration File under the name "current" when the configuration is executed. Once a configuration has been executed, the system may be reconfigured again only after the Master Initialization procedure has been repeated.

FN – Help: Displays @GENPART operating instructions.

In general, the order of executing these @GENPART options is as follows:

1. SF'08 – to load a configuration
2. SF'00 – to modify this configuration by adding or deleting partitions
3. SF'04 – to create the new partition parameters
4. SF'05 – to create the Master Device Table
5. SF'06 – to create the broadcast message
6. SF'09 – to save the configuration with a name other than "current"
7. SF'15 – to execute the configuration

These steps will create a permanent system configuration.
The following section outlines the screen loads given when in @GENPART

Load a Configuration (SF'08)

```
LIST OF STORED CONFIGURATION (#PARTITIONS)
     current
            (1)
```

CONFIGURATION 'current' LOADED. NAME OF CONFIGURATION TO LOAD?

The last configuration executed (called 'current') is automatically loaded. To load any other configuration, enter its name, then press RETURN.

Clear Partitions (SF'00)

```
AVAILABLE USER MEMORY = xxK
REMAINING USER MEMORY = xxK
NO. OF TERMINALS?
NO. OF PARTITIONS?
```

The program responds with a display that requests the total number of terminals that are to be configured into the system and the number of partitions that will be created. Available User Memory is automatically calculated and displayed. Remaining memory is updated and displayed as memory is allocated to the partitions. When all information has been entered, and RETURN is pressed, the program automatically invokes SF'04 (Edit Partition) to allow the editing of partition parameters.

Edit Partitions (SF'04)

<table>
<thead>
<tr>
<th>PARTITION SIZE (K)</th>
<th>TERMINAL</th>
<th>PROGRAMMABLE PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Y</td>
</tr>
</tbody>
</table>

EDIT WHICH PARTITION (DEFAULT = 1)?

This option displays parameters for all partitions and initiates a cycle of prompts for the altering of these parameters. The cycle recurs until another option is selected. The user is thus allowed to modify parameters for each partition. The display is updated each time an item is entered.
For example to enter parameters for partition #2, enter 2 then key RETURN. An asterisk appears beside the number of the partition whose parameters are being edited, and the following series of prompts will be displayed in succession at the bottom of the screen:

PARTITION SIZE (default = 0)

Any value greater than 1.25K and less than the amount of remaining User Memory is a valid response. Note that the default value is not a valid response unless all remaining user memory is to be divided evenly. After the amount of user memory allocated to this partition has been entered, the screen will appear;

TERMINAL (default = 2)?

Enter the terminal number which will be assigned to this partition. The following screen will appear;

ENABLE PROGRAMMING (Y or N)?

By default, programming is allowed for all partitions; however, to prevent inadvertant modification of certain programs, it may be desirable to disable the programming mode in some partitions. After responding to this prompt, the name of a program to be automatically loaded into this partition will now be requested. The screen appears as follows;

NAME OF PROGRAM TO LOAD?

Enter the name of the program and key RETURN. When the configuration is executed, the program will be automatically loaded from the system disk into its' partition, and will then be run.

Other partitions which require modification may be serviced at this time following the same procedure. Once all partitions have been edited (if necessary), SF'05 is used to leave the "Edit Partition" cycle and invoke the "Edit Master Device Table" option. With this option selected, the screen will appear as follows;
EDIT WHICH ENTRY (default = 1)?

Enter the device number of the item you wish to edit. An asterisk (*) will appear next to the device number selected. The screen appears as follows:

DEVICE ADDRESS (default = /000,/000 to delete entry)?

Enter the device address, then RETURN. The screen now appears:

ALLOCATE DEVICE TO WHICH PARTITION (default = all)?

Enter the partition number to allocate the peripheral and its controller. These screens will continue, in order to allow the user to edit all entries in the Master Device Table. When the parameters for all peripheral/partition allocations have been specified, the user can select another Special Function option to exit the "Edit Device Table" mode.

Broadcast Message (SF'06) When SF'06 is depressed, the following display appears at the bottom of the screen:

BROADCAST MESSAGE:

You may now enter a broadcast message. While in the broadcast message mode, all S.F. keys revert to their system defined EDIT functions. The S.F. keys cannot be used for any @GENPART function until the entry of the broadcast message is complete.
Save Configuration (SF'09) When SF'09 is depressed, the following display appears at the bottom of the screen:

CHECK CONFIGURATION TO SAVE. CONFIGURATION NAME? --------------------------

To save a configuration, ensure that the system diskette or hard disk is write-enabled, enter a unique name for the configuration, and key RETURN. The configuration currently in memory will automatically be saved under the name 'current'. However, each time a new configuration is executed, the new parameters replace the old parameters in the 'current' file.

Execute Configuration (SF'15) Once all parameters of a configuration have been defined, the system configuration can be executed. When SF'15 is depressed the configuration table will appear at the bottom of the screen, along with a prompt requesting the operator to verify the configuration parameters to be executed.

CHECK CONFIGURATION OK TO EXECUTE (Y or N)?

If Y (RETURN) is chosen, the configuration will be executed. If N (RETURN) is entered, the system returns to the beginning of the "Edit Partition" cycle. Once executed, a configuration can only be changed by first Master Initializing the system, and then, by specifying the new parameters.

Delete a Configuration (SF'10) When this is depressed, the following prompt will request which configuration to delete;

DELETE WHICH CONFIGURATION?

Enter the name of the configuration to be deleted, then RETURN. The configuration will be deleted from the system disk.
4.8 GENERATING EVENLY-DIVIDED PARTITIONS

To generate evenly-divided partitions, first load the BASIC-2 operating system by keying in the appropriate SF' key on terminal 1. Next, key SF'00 to initialize all terminals and clear the partitions. The prompt "NO. OF TERMINALS?" refers to the number in each bank of user memory. Answer this prompt with the number of terminals attached, then answer the "NO. OF PARTITIONS?" with the same number, then key EXECUTE. Now key SF'02 to divide memory evenly in each bank. Available memory will now be apportioned equally among the number of terminals entered earlier. Finally, key SF'15 to execute the configuration. A prompt will appear "CHECK CONFIGURATION. OK TO EXECUTE (Y or N)?". Enter Y and key EXECUTE if the configuration is correct. All terminals should now display "READY (BASIC-2)". Each terminal can now be used as an independent processor.

4.9 CUSTOMIZING PARTITION GENERATION

The user may write his own partition generation utility if he desires. Directions for this are given in the BASIC-2 Language Reference Manual.

4.10 SYSTEM TURNOVER TO CUSTOMER

When all diagnostics required for system installation have been successfully completed, and the software has been correctly completed, the system can be turned over to the customer. To turn over the system to the customer:

1. Demonstrate to the customer or to the responsible computer operator the disk initialization procedure.
2. Perform the Daily Power-Down procedure (ref. section 3.4), and explain each step to the applicable customer personnel.
3. Perform the Daily Power-Up procedure (ref. section 3.5), and explain each step to the applicable customer personnel.
4. Allow the customer to test the system using his programs. If the customer is satisfied with the operation of the system, officially turn the system over to the customer. This should be a verbal notification given by the CE performing the installation.
CHAPTER 5
PREVENTIVE MAINTENANCE

5.1 SCOPE

This chapter contains preventive maintenance, adjustment/alignment, and removal/replacement procedures for the Micro VP-1 and Micro VP-2 Computer Systems. This document only provides information for the maintenance of the CPU systems themselves. Maintenance for attached peripherals is documented in the appropriate product manual(s).

5.2 SPECIAL TOOLS AND EQUIPMENT

No special tools or equipment are required for maintaining the Micro VP Computer Systems.

5.3 MAINTENANCE PROCEDURES

To ensure proper operation, the Micro VP must have periodic preventive maintenance consisting of inspection, cleaning, and adjustments. The following preventive maintenance procedures should be performed in conjunction with the preventive maintenance done to the system disk drive. This assumes a clean operating environment and normal operating time of 40 hours per week. A dusty environment or a substantial increase in the operating time will require that these preventive maintenance procedures be carried out more frequently. In addition, these procedures should be performed during each unscheduled service call.

5.3.1 Central Processing Unit

The following procedure should be followed for the Preventive Maintenance of the Micro VP CPU;

1. Check the cooling fan for proper operation.
2. Clean the unit as outlined below.
 a. Remove the top cover from the system.
 b. Remove the I/O controllers and the CPU/Memory board.
 c. Remove all dust from the interior of the unit.
 d. Clean the finger connectors of each PCB.
 e. Reinstall all PC boards into the system.
 f. Using a mild detergent and a soft cloth or sponge, clean the CPU cabinetry. Do not use abrasive or corrosive chemicals.
3. Check the operating voltages and ripple as defined in Section 5.4 of this document.
4. Replace the top cover on the system and run diagnostics as required to ensure proper operation of the equipment.
5.4 ALIGNMENTS AND ADJUSTMENTS

5.4.1 Voltage Adjustments

1. Remove the top cover from the system.
2. Ensure that the 120/240 AC line voltage select switch is set properly.
3. Depress the ac-power switch to the "1" position.
4. Using a Fluke Digital Voltmeter or equivalent, check -5vdc, +5vdc, +12vdc, and -12vdc at TP2 through TP5, on the motherboard. TP0 may be used as a ground reference. (Ref. Fig. 5-1). Refer to table 5-1 for the correct operating voltage levels.
5. +5vdc and +12vdc are the only adjustable voltages. Refer to Fig. 5-1 and adjust these voltages as required to achieve the correct operating voltage levels.

WARNING

Do not open the switching power supply under any circumstance. Extremely dangerous voltage and current (in excess of 300 volts DC and unlimited current) are present within the power supply.

Do not attempt to repair the switching power supply; it is field replaceable only.

After powering the unit down and disconnecting the AC power connector from the power source receptacle, allow one minute before removing the power supply to provide adequate time for any residual voltage to drain through the bleeder resistors.

Fig. 5-1 Operating Voltage Testpoints
<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>LIMITS</th>
<th>RIPPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5vdc</td>
<td>+4.95vdc to +5.05vdc</td>
<td>15mv p-p</td>
</tr>
<tr>
<td>-5vdc</td>
<td>-4.95vdc to -5.05vdc</td>
<td>15mv p-p</td>
</tr>
<tr>
<td>+12vdc</td>
<td>+11.95vdc to +12.05vdc</td>
<td>15mv p-p</td>
</tr>
<tr>
<td>-12vdc</td>
<td>-11.95vdc to -12.05vdc</td>
<td>15mv p-p</td>
</tr>
</tbody>
</table>

Table 5-1 Operating Voltage Limits

If any voltage is missing or the +5 and/or +12 volts can not be adjusted, remove all PCB boards (ref. section 5.5 of this document) and perform the adjustment procedure again. If the voltage can be adjusted, one or more PCB is possibly causing the problem, however the power supply itself should not be ruled out. If a PCB is found to be at fault, replacement of the defective board is required.

If the voltage problem exists with no PCB boards installed, replacement of the Switching Power Supply is required. Refer to the Removal and Replacement procedure described in section 5.5.

5.5 REMOVAL AND REPLACEMENT PROCEDURES

5.5.1 Top Cover Removal

To remove the top cover of the Micro VP system:

1. Remove 4 phillips-head screws on top cover (ref. Fig. 5-2).
2. Carefully lift cover off the unit.

5.5.2 Top Cover Replacement

To replace the top cover of the Micro VP system:

1. Place cover on unit.
2. Insert 4 phillips-head screws and tighten.
5.5.3 Switching Power Supply Removal

To remove the Switching Power Supply from the Micro VP system:

1. Depress the ac power on/off switch to the "0" position.
2. Remove the ac plug from the power receptacle.
3. Wait 1 minute for residual voltage to drain through the bleeder resistors. If top cover is installed on the system, remove it as described in Section 5.5.1.
4. Remove the CPU/Memory Bd. from the system (Ref. section 5.5.5), and set it aside. Unplug connectors P22, P23, and P24 from the motherboard (Ref. Fig. 5-6).
5. Remove the phillips head screw from the bottom of the system (Ref. Fig. 5-3).
6. Remove the 2 hex head screws from the system as shown in Fig. 5-4.
7. Unplug the following connectors:
 The 4 lug connectors on the ac power on/off switch. (Ref. Fig. 5-6).
 The power connector to the system cooling fan.
8. Carefully lift the power supply out of the unit.

Fig. 5-4 Power Supply Retaining Screws

Fig. 5-5 Motherboard Connectors
5.5.4 Switching Power Supply Replacement

To replace the Switching Power Supply in the Micro VP system;

1. Insert the power supply into the unit.
2. Insert P22, P23, and P24 into their proper receptacles in the motherboard.
3. Reconnect the power connector to the system cooling fan.
4. Reconnect the 4 lug connectors on the ac power on/off switch. The correct wiring for these is shown in Fig. 5-6.
5. Insert the 2 hex head screws into the system and tighten. (Ref. Fig. 5-4.)
6. Insert the phillips head screw into the system and tighten. (Ref. Fig. 5-3.)
7. Re-install the CPU/Memory Bd (Ref. section 5.5.6).
8. Replace the top cover onto the unit.

5.5.5 CPU/Memory Board Removal

To remove the CPU/Memory board from the Micro VP system;

1. Ensure that ac power to the unit has been disconnected.
2. Remove the top cover from the system.
3. Carefully lift the CPU/Memory board from its motherboard slot and out of the unit.

5.5.6 CPU/Memory Board Replacement

To replace the CPU/Memory board in the Micro VP system;

1. Insert the CPU/Memory board into its slot in the Micro VP motherboard. (Ref. Fig. 5-7).
2. Install the top cover onto the system.
5.5.7 I/O Controller Board Removal

To remove an I/O Controller board from the Micro VP system:

1. Ensure that AC power to both the unit and the connected peripheral has been disconnected.
2. Remove any external cabling to the I/O controller board.
3. Unscrew the two screws securing the I/O Controller Board to the unit.
4. Carefully lift the unit from its motherboard slots and out of the system.

5.5.8 I/O Controller Board Replacement

To replace an I/O Controller board in the Micro VP system:

1. Remove AC power from both the CPU and the peripheral to be connected.
2. Insert the I/O Controller board into a slot in the Micro VP motherboard.
3. Secure the board to the system with two screws.
4. Connect any external cabling to the I/O Controller.

5.5.9 Motherboard Removal

To remove the Motherboard from the Micro VP system:

1. Ensure that AC power has been removed from the system.
2. Remove top cover from the system.
3. Remove external cabling from the I/O boards.
4. Remove all I/O boards.
5. Remove CPU/Memory board.
6. Unplug connectors P22, P23, and P24 from the motherboard. Ref. Fig. 5-5.
7. Remove 42 phillips-head retaining screws and lift motherboard from the system.
5.5.10 Motherboard Replacement

To replace the motherboard in the Micro VP system:

1. Insert motherboard into the unit.
2. Insert 42 phillips-head retaining screws and tighten.
3. Plug connectors P22, P23, and P24 into the motherboard. Ref. Fig. 5-5.
4. Install CPU/Memory board.
5. Install all I/O boards and reconnect any associated cabling.
6. Install top cover on the system.
7. Apply ac power to the system and run diagnostics as necessary to ensure proper operation of the unit.

5.5.11 System Cooling Fan Removal

1. Remove ac power from unit and disconnect plug from power recepticle.
2. Remove I/O boards from slots shown in Fig. 5-8.
3. Unplug fan power cord from fan as shown in Fig. 5-9.
4. Loosen and remove 4 retaining screws, and lift fan from the unit.

Fig. 5-8 I/O Board Slots
NOTE

Never remove the power supply cooling fan individually from the system. It is not a field replaceable item. It should be considered a sub-assembly of the power supply and as such, should only be replaced in conjunction with the entire power supply.

5.5.12 System Cooling Fan Replacement

1. Insert cooling fan in system.
2. Insert 4 Phillips-head screws and tighten.
3. Connect fan power cord.
4. Install I/O boards in motherboard slots.
5. Apply ac power to the unit and check fan for proper operation.
CHAPTER 6

ILLUSTRATED PARTS BREAKDOWN

6.1 SCOPE

This chapter contains the Illustrated Parts Breakdown for the Micro VP-1 and Micro VP-2 Computer Systems. Use this breakdown for part number identification when ordering field-replaceable components.
Figure 6-1 CPU/Memory Board 210-8034
210-8034-1 (128K)
210-8034-2 (512K)
<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CPU/Memory Bd.</td>
<td>210-8034-1 (128K)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>210-8034-2 (512K)</td>
</tr>
<tr>
<td>2.</td>
<td>Motherboard</td>
<td>210-8176</td>
</tr>
<tr>
<td>3.</td>
<td>Power Supply</td>
<td>270-0986</td>
</tr>
<tr>
<td>4.</td>
<td>Cooling Fan</td>
<td>400-1029</td>
</tr>
<tr>
<td>5.</td>
<td>Power Switch</td>
<td>325-0059</td>
</tr>
</tbody>
</table>
CHAPTER 7

TROUBLESHOOTING

7.1 SCOPE

This chapter describes the various diagnostic test programs available for the Micro VP, and gives guidelines for their use. It also provides a guide for isolating fault locations of field replaceable units.

There are three classes of diagnostic tests available for the Micro VP. The first, "Bootstrap" diagnostic, is a diagnostic program resident in the Micro VP CPU hardware. The next, the Microcode Diagnostics, test the hardware components of the system and attempt to pinpoint any malfunction. These are available from the Operating System Diskette. In the last class are the diagnostics available for Micro VP peripheral devices. A brief discussion of each follows in this section.

7.2 BOOTSTRAP DIAGNOSTICS

The Bootstrap Diagnostics are resident diagnostics loaded in three 1024 x 8 bit Intel 2708 PROMs. The purpose of the Bootstrap is to handle Master Initialization (Power-On), handle Reset (Initiated by depressing the RESET key on the keyboard), detect parity errors in Control and Data memory, and load the desired system software (i.e. diagnostics, or BASIC-2) from disk and initiating their execution. The Bootstrap diagnostics run automatically whenever the system is powered up, and verify basic system functions such as the CPU, Control Memory, Data Memory, and Registers. When these diagnostics have successfully completed the following message will appear on the screen;

MOUNT SYSTEM PLATTER
PRESS RESET

Three types of errors and five possible error messages can be reported by BOOTSTRAP. The three types of errors - initialization, reset, and system, are discussed below.
7.2.1 Initialization Errors

The first type of error is the initialization error. If, during BOOTSTRAP master initialization, the above message fails to display, a CPU related error or an I/O related error is indicated. The displaying of each letter in the above message corresponds to the successful completion of certain diagnostic tests. The following pages provide a breakdown of each letters' meaning and also gives guidelines for troubleshooting failures.

NOTE

It should be noted here that due to the small number of field-replaceable items in the Micro VP-1 and Micro VP-2 systems, and the complexity of the CPU/Memory Board, virtually all error codes encountered will require that the CPU/Memory Board be repaired/replaced.

<table>
<thead>
<tr>
<th>CRT DISPLAY</th>
<th>SEQUENCE OF OPERATIONS</th>
<th>POSSIBLE FAILURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>Power on Trap to 8003</td>
<td>Hardware Trap Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Branch Instruction Failure.</td>
</tr>
<tr>
<td>Blank</td>
<td>Enable CRT, Clear Screen and Display "M".</td>
<td>CRT Address is wrong.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I/O Register Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I/O Lines are Bad.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIO Instruction Failure.</td>
</tr>
<tr>
<td>"M"</td>
<td>Tests 24-Bit Parity Trap. Execute IC 800F which has Bad Parity.</td>
<td>Parity Checking Logic Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardware Trap Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TSP Instruction Failure (IC + l stored in stack)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC's may not hold IC retrieved from Stack.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare Instruction Failure.</td>
</tr>
<tr>
<td>"MO"</td>
<td>Test Subroutine Branch and Subroutine Return Instructions.</td>
<td>Subroutine Branch Instruction Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subroutine Return Instruction Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stack Failure.</td>
</tr>
<tr>
<td>"MOU"</td>
<td>Clear CH, CL Parity Bits</td>
<td>Write/Read Data Memory Failure</td>
</tr>
<tr>
<td>"MOUN"</td>
<td>Check File Registers</td>
<td>Register Instruction Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Register Chip Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare Instruction Failure.</td>
</tr>
<tr>
<td>"MOUNT"</td>
<td>Check PC Incrementing on the A-BUS.</td>
<td>PC Chip Failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPI Instruction Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Register Instruction Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-Bus Increment Hardware Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare Instruction Failure.</td>
</tr>
<tr>
<td>CRT DISPLAY</td>
<td>SEQUENCE OF OPERATIONS</td>
<td>POSSIBLE FAILURES</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>"MOUNT S"</td>
<td>Test Auxiliary Registers</td>
<td>Auxiliary/Stack Chip Failure. PC Chip Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auxiliary Register Instruction Failure.</td>
</tr>
<tr>
<td>"MOUNT SY"</td>
<td>Test Binary ALU</td>
<td>Binary ALU Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC, ACX, AI, SC, or SCX Instruction Failure.</td>
</tr>
<tr>
<td>"MOUNT SYS"</td>
<td>Test Stack</td>
<td>Auxiliary/Stack Chip Failure. PC Chip Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stack Instruction Failure. PC Chip Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare Instruction Failure.</td>
</tr>
<tr>
<td>"MOUNT SYST"</td>
<td>Test Decimal ALU</td>
<td>Decimal ALU Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DACC, DACX, DACX, DSC, DSCQ, or DSCQ Instruction Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare Instruction Failure.</td>
</tr>
<tr>
<td>"MOUNT SYSTE"</td>
<td>Test Binary Multiply</td>
<td>Multiply Hardware Logic Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M or MI Instruction Failure. PC Chip Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare Instruction Failure.</td>
</tr>
<tr>
<td>"MOUNT SYSTEM"</td>
<td>Test Shift</td>
<td>Shift Logic Error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare Instruction Failure.</td>
</tr>
<tr>
<td>"MOUNT SYSTEM "</td>
<td>Verify PROM</td>
<td>PROM Chip Failure.</td>
</tr>
<tr>
<td>"MOUNT SYSTEM P"</td>
<td>Zero 8-Bit Data Memory</td>
<td>SR Failure</td>
</tr>
<tr>
<td>"MOUNT SYSTEM PLATTER"</td>
<td></td>
<td>Bad IC's.</td>
</tr>
<tr>
<td>"PRESS RESET"</td>
<td>System Loops, diagnosing data and control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>memory. All Diagnostics have passed. Press</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RESET to start system operation.</td>
<td></td>
</tr>
</tbody>
</table>

7.2.2 Reset Errors

Reset Errors are errors which occur while attempting to respond to the prompt "Key SF". Possible causes of this type of error are:

- The Special Function Key was not depressed sufficiently.
- The 2236DE/DW, 2336DE/DW, 2236MXD, or 2236MXE may be defective.
- The Special Function Key which was depressed was undefined.
7.2.3 System Errors

System Errors are error conditions which are reported to the operator via a SYSTEM ERROR message on the CRT. Memory errors and Disk errors are common examples of system errors. A breakdown of each of these follows:

7.2.3.1 Memory Errors

Should a memory error be detected, the following screen will appear:

```plaintext
*** SYSTEM ERROR MMMM XXXX ***
PRESS RESET
```

In these cases:

- MMMM = Parity Error Control Memory
- PEDM = Parity Error Data Memory
- VECM = Verify Error Control Memory
- VEDM = Verify Error Data Memory
- XXXX = Various error information pertinent to the type of error.

In both Data Memory and Control Memory, one bit has been set aside for parity error detection. In Control Memory, when a parity error has been detected during an instruction fetch, a branch is made to Control Memory address 8000 (Hex), located in the bootstrap proms. The Bootstrap then performs its designated error routine and displays an PECM error on the screen as follows:

```plaintext
*** SYSTEM ERROR (PECM aaaa dddddd) ***
```

Bad parity may be the result of:

- the dropping of bits by Control/Bootstrap Memory
- the picking up of bits by Control/Bootstrap Memory
- writing bad parity to Control Memory
- defective parity checking logic

It may be possible, after encountering this error, to resume execution of the currently loaded system program. However, if the error occurs again a Control Memory diagnostic should be run. If a failure occurs, the CPU/Memory board should be replaced.

In Data Memory, when a parity error has been detected, a branch is made to Control Memory address 8002 (Hex), located in the bootstrap proms. The Bootstrap then performs another error routine and displays a PEDM error as follows:

```plaintext
*** SYSTEM ERROR (PEDM ss.aaaa) ***
```
This error implies that bad parity was detected during a read of Data Memory. The same causes listed above for Control Memory may applied to Data Memory as well. Again, it may be possible to resume execution of the currently loaded system program, unless the error is reported again. In this case, a Data Memory diagnostic should be run. Again, if a failure occurs, the CPU/Memory board should be replaced.

VECM and VEDM are verify errors which imply that attempts to load either Data or Control memory were unsuccessful. If these errors occur, the operator should attempt to reload BASIC-2. However, should successive failures be reported, appropriate memory diagnostics should be run to determine if there are any defective memory chips.

7.2.3.2 Disk Errors

There are several possible disk errors that may occur while Bootstrap is trying to load a particular system program. In most cases, the recovery procedure that should be taken is to attempt to reload the system program. Below is a listing of possible disk errors, their cause, and recovery procedures.

<table>
<thead>
<tr>
<th>ERROR</th>
<th>POSSIBLE CAUSE</th>
<th>POSSIBLE RECOVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0082</td>
<td>The file to be loaded does not reside on the platter specified.</td>
<td>Ensure that the proper platter is properly mounted, that the proper disk drive was specified, and that the proper special function key was pressed. Press RESET as prompted, and select the appropriate special function.</td>
</tr>
<tr>
<td>0088</td>
<td>Wrong Record Type Error which occurs during a load when the format of the record read does not conform to the bootstrap format.</td>
<td>Ensure that the proper platter is properly mounted, the proper disk drive was specified, and that the proper special function key was pressed. Press RESET as prompted, and select the appropriate special function.</td>
</tr>
<tr>
<td>0090</td>
<td>A disk hardware error occurred.</td>
<td>Ensure that the disk is turned on and properly set up for operation. Set the disk intoLOAD mode and then back into RUN mode, with the RUN/LOAD selection switch.</td>
</tr>
<tr>
<td>0091</td>
<td>The disk did not recognize or respond to the system at the beginning of a read or write operation, or the disk is not in a file-ready position.</td>
<td>Verify correct drive head alignment. If correct, reformating the disk is required. Be aware that this action will result in the loss of all data on the disk.</td>
</tr>
<tr>
<td>0092</td>
<td>A disk format error was detected during a disk read or write. Specifically the system was unable to read a sector address.</td>
<td></td>
</tr>
<tr>
<td>0093</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERROR</td>
<td>POSSIBLE CAUSE</td>
<td>POSSIBLE RECOVERY</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0094</td>
<td>The disk format key is engaged (the key should be engaged only when formatting a disk,)</td>
<td>Turn off the format key.</td>
</tr>
<tr>
<td>0095</td>
<td>A disk-seek error occurred; the specified sector could not be found on the disk.</td>
<td>Run the program again. If the error persists, reinitialize the disk. Could also be hardware related.</td>
</tr>
<tr>
<td>0096</td>
<td>System was unable to read the data field of a sector.</td>
<td>If the disk has been formatted, rewrite the bad sector or reformat the disk. Reformatting the disk will result in the loss of data from the disk, however.</td>
</tr>
<tr>
<td>0097</td>
<td>A longitudinal redundancy check occurred when reading a sector.</td>
<td>Ensure that the system platter is properly mounted in the operator specified disk unit. Key RESET, as prompted, and try to reload. If the error persists, try a backup platter.</td>
</tr>
<tr>
<td>0098</td>
<td>The disk sector being addressed is not on the disk.</td>
<td>Ensure that the disk is ready and the system platter is properly mounted in the operator specified disk unit. Key RESET, as prompted, and try to reload. If the problem persists, then bootstrap may be bad or the disk may be defective.</td>
</tr>
</tbody>
</table>

7.3 MICROCODE DIAGNOSTICS

The Microcode Diagnostics are diagnostics which perform in depth testing of the hardware components of the system. These diagnostics reside on the system disk and are accessed in the following manner:

1. Apply power to the system and verify that the screen on terminal 1 appears as below:

```
MOUNT SYSTEM PLATTER
PRESS RESET
```

2. Place the system platter disk/diskette into the system drive and press the RESET key on the keyboard. (Press RESET if the terminal is model #2336DE and SHIFT RESET if the terminal is model #2336DW.) Observe the screen shown.
KEY SF'?

3. Depress the special function key which corresponds to the drive which contains the system disk. The screen will now display:

****SYSTEM 2200****

Select item with SPACE & BACKSPACE
Key RUN to execute, CLEAR or PREV SCRn for previous screen

MEMORY xxxxK
Terminal X

■ MVP BASIC-2
 _ Diagnostics

4. Space down to Diagnostics, and key RUN. The screen now appears:

****CUSTOMER DIAGNOSTIC MENU****

Select item with SPACE & BACKSPACE
Key RUN to execute, CLEAR or PREV SCRn for previous screen

MEMORY xxxxK
Terminal X

 ■ CPU Instructions
 _ Control Memory
 _ Data Memory
 _ CPU Registers

 _ All of the above

5. Below are descriptions of each of these diagnostics.

7.3.1 CPU Instructions Diagnostic

This diagnostic is designed to test the instruction set of the Central Processor. The test sequence is as follows:
a) Test Immediate Register instructions
b) Test Register instructions
c) Test Extended Register instructions
d) Test Branch instructions
e) Test Immediate Register instructions with Read/Write
f) Test Register instructions with Read/Write
g) Test Mini Instructions with Read/Write
h) Return to step a

If RESET is keyed during this program, the KEY SF?' message shall be displayed.

A normal display is as follows:

CPU INSTRUCTIONS DIAGNOSTIC REV XXXX

(PASS XXXX)
IMMED REG LL
REG INSTR LL
X-REG INSTR LL
MASK BR LL
REG BR LL
IMMED R/W LL
REG R/W LL
AUX/STACK R/W LL

where: XXXX = Number of completed loops
LL = Microinstruction currently being tested (in Hex).

Should the system be unable to execute a particular instruction, the CRT cursor will stop at XX of the failing instruction. Should the title fail to appear, any of the following could be at fault: ORI, AC, SB, SR, B, BT, BF, BNE, BLER, or BNR.

7.3.2 Control Memory Diagnostic

The control memory diagnostic tests control memory from end-of-program to end-of-memory for addressing, and a modified Row Pattern test.

A normal display is as follows:

CONTROL MEMORY DIAGNOSTIC REV XXXX

Memory Size = xxxxK
No Err's

The following tests are cycled through, each time incrementing the pass count:
7.3.2 Cont.

DATA BUS STUCK TEST (PASS XXXX)
data bus shorts test (PASS XXXX)
BANK/PAGE ADDRESSING (PASS XXXX)
ADDRESS LINE SHORT TEST (PASS XXXX)
ADDRESS LINE/PIN TEST (PASS XXXX)
ADDRESS MULTIPLEXER (PASS XXXX)
SIMPLE MARCHING 1's/0's (PASS XXXX)
24 BIT, MOVING INVERSIONS (PASS XXXX)

When RESET is keyed during this program, the KEY SF'? message will be displayed.

7.3.3 Data Memory Diagnostic

The data memory diagnostic tests data memory from end-of-program to end-of-memory for addressing, and a modified Row Pattern test.

A normal display is as follows:

DATA MEMORY DIAGNOSTIC REV XXXX

Memory Size = xxxxK No Err's

The following tests are cycled through, each time incrementing the pass count:

DATA BUS STUCK TEST (PASS XXXX)
DATA BUS SHORTS TEST (PASS XXXX)
BANK/PAGE ADDRESSING (PASS XXXX)
PARITY GENERATION TEST (PASS XXXX)
ADDRESS LINE SHORT TEST (PASS XXXX)
ADDRESS LINE/PIN TEST (PASS XXXX)
ADDRESS MULTIPLEXER (PASS XXXX)

SIMPLE MARCHING 1's/0's (PASS XXXX)

9 BIT MOVING INVERSIONS (PASS XXXX)

When RESET is keyed during this program, the KEY SF'? message will be displayed.

7.3.4 CPU Registers Diagnostic

This diagnostic tests registers F0-F7, CH, CL, PH, PL, SL, K, AUX 0-32, and STACK 0-96 (the SH register is not tested due to the ability of the hardware to change bit status).

A normal display is as follows:

CPU REGISTER DIAGNOSTIC

No Err's Press 'P' to Print Errors at /215 ('T' For /204)

The following tests are cycled through, each time incrementing the pass count:

8 Bit Registers Test (PASS XXXX)

Aux Memory Test (PASS XXXX)

Stack Memory Test (PASS XXXX)

If ALL OF THE ABOVE is chosen from the User Diagnostic Menu, each of the diagnostics mentioned previously will be run. All screens will remain the same with the exception of the Chain Mode Pass Count. This count is the number of passes all of the tests have successfully completed.

7.4 PERIPHERAL DEVICE DIAGNOSTICS

Because of the wide range of peripherals available to the Micro VP systems, it would be impractical to present here a full list of the diagnostics supported for each. All available peripherals are fully documented in their own maintenance publications.
7.5 DIAGNOSTIC ERROR MESSAGES

The following section further outlines various error messages which may be encountered during the aforementioned diagnostics. Due to the small number of field-replaceable items in the Micro VP-1 and Micro VP-2 systems, and the complexity of the CPU/Memory Board, virtually all error codes encountered will require that the CPU/Memory Board be repaired/replaced.

1. **AECM** Errors (Addressing Error in Control Memory)

 This error is displayed as:

   ```
   AECM aaaa bbbb xxxxxx
   ```

 Where:
 - `aaaa` = the address of the instruction in error
 - `bbbb` = the conflicting address
 - `xxxxxx` = An XOR of the expected and actually read instruction

 This error indicates that writing to Control Memory location `bbbb` seems to modify location `aaaa`. The "1" bits in the `xxxxxx` field of the display indicate which bit(s) have been modified. The error could also occur if a chip at location `aaaa` had a marginal failure.

2. **BECM** Errors (Bit Error in Control Memory)

 This error is displayed as:

   ```
   BECM aaaa xxxxxx
   ```

 Where:
 - `aaaa` = the address of the instruction in error
 - `xxxxxx` = An XOR of the instruction actually read from memory with the instruction that was expected to be there.

 This error implies that a bit error was detected while reading Control Memory. The "1" bits in the `xxxxxx` field of the display indicate which bit(s) are incorrect.

3. **PECM** Errors (Parity Error in Control Memory)

 This error is displayed as:
PECM aaaa ddddd

Where: aaaa = the address of the instruction with bad parity
ddddddd = the instruction located at aaaa. The instruction is reread when displayed and thus may not be the same as when the error occurred.

This error implies that bad parity was detected during execution of the diagnostic.

4. VECM Errors (Verify Error in Control Memory)

This error is displayed as:

VECM aaaa

Where: aaaa = an address in the section of Control Memory that does not verify correctly.

5. AEDM Errors (Addressing Error in Data Memory)

This error is displayed as:

AEDM ss.aaaa ss.bbbb xx

Where: ss = Memory bank containing the error
aaaa = Address of the data in error
bbbb = Conflicting Address
xx = XOR of the expected and actually read data.

This error indicates that writing to location bbbb seems to modify location aaaa. The "1" bits in the xx field of the display indicate which bits have been modified. The error could also occur if a chip at location aaaa had a marginal failure.

6. BEDM Errors (Bit Error in Data Memory)

This error is displayed as:
BEDM ss.aaaa xxyy

Where: ss = Memory bank containing the error
 aaaa = Address of the data in error
 xxyy = XOR of the data actually read from data memory
 with the data that was expected to be there.

This error implies that a memory error was detected while reading data memory. The "1" bits in the xxyy field of the display indicate which bit(s) are not correct. If all the bits are zero, one of the two parity bits associated with the pair of bytes is incorrect.

7. PEDM Errors (Parity Error in Data Memory)

This error is displayed as:

PEDM ss.aaaa

Where: ss = Memory bank containing the error
 aaaa = Data Memory address at the time of the error. This is probably, but not necessarily, the address of the memory location with bad parity.

This error implies that bad parity was detected during a read of a 8-bit User/Data Memory.

8. REDM Errors (Read Error in Data Memory)

This error is displayed as:

REDM ss.aaaa xx

Where: ss = Memory bank containing the error
 aaaa = Address of the data in error
 xx = XOR of the data in memory with the data that was expected to be there.

This error implies that a memory error was detected while reading User/Data memory. The "1" bits on the xx field of the display indicate which bits are not correct. If all the bits are zero, a bit in the other byte of the pair of bytes is incorrect.
9. VEDM Errors (Verify Error in Data Memory)

This error is displayed as:

VEDM ss.aaaa

Where: ss = Memory bank containing the error
aaaa = Address of the data in error

This error is reported to a system program being given control after
loading, or when memory is verified in response to RESET or CLEAR being
executed. The area of User/Data Memory used for storing constants (BASIC verb
tables, math constants, messages) does not verify correctly.

10. General Registers Error Displays

This error is displayed as either of the below:

Error 1)

REGISTER TEST
FFFF
REGISTER TT AND CC ERROR (XX)
#LL

Where: FFFF = Number of completed loops at time
of error
TT = Name of register under test
CC = Name of conflict register
XX = Contents of register CC

This error is caused when testing register TT, register CC was found
not to contain the expected.

Error 2)

REGISTER TEST
FFFF
REGISTER TT ERROR (XX)
LLLL

This error is caused when the register under test fails to hold the test
pattern.
11. Auxiliary/Stack Error Displays

This error is displayed as either of the below:

Error 1)

```
AUXILIARY TEST
# FFFF
AUX TT FAILURE (XXXX)
# LLLL
```

Where: FFFF = Number of completed loops at time of error.
 TT = Auxiliary register under test.
 XXXX = XOR of expected and actual.

This error occurs when the Auxiliary register under test is found not to contain the expected test pattern.

Error 2)

```
AUXILIARY TEST
# FFFF
AUX TT AND AUX CC FAILURE (XXXX)
# LLLL
```

Where: CC = Conflict register

This error is caused when Auxiliary register CC was found not to contain the expected test pattern.

Error 3)

```
AUXILIARY TEST
# FFFF
STACK AND AUX TT FAILURE (XXXX)
# LLLL
```

This error is caused when a Stack level was found not to contain the expected test pattern.
12. Stack/Auxiliary Error Displays

This error is displayed as either of the below:

STACK TEST
FFFF
STACK FAILURE (XXXX)
LLLL

Where: FFFF = Number of completed loops at time of error
XXXX = XOR of expected and actual

This error is caused when a Stack level fails to maintain the expected pattern.

Error 2)

STACK TEST
FFFF
AUX YY FAILURE (XXXX)
LLLL

Where: YY = Auxiliary register

This error is caused when a particular Auxiliary register fails to maintain the expected pattern.

Other Error Codes which may be encountered are listed below by category:

Syntax Errors:

S10 Missing left parenthesis
S11 Missing right parenthesis
S12 Missing equal sign
S13 Missing comma
S14 Missing asterisk
S15 Missing angle brackets
S16 Missing letter
S17 Missing hex digit
S18 Missing relation operator
S19 Missing required word
S20 Expected end of statement
S21 Missing line number
S22 Illegal PLOT argument
S23 Missing literal string
S24 Illegal expression or missing variable
S25 Missing numeric scalar variable
S26 Missing array variable
S27 Missing numeric array
S28 Missing alpha array
S29 Missing alpha variable
NONRECOVERABLE ERRORS

Misc. Errors:

A01 Memory exceeded (overlap: text & symbol table)
A02 Memory exceeded (overlap: text & value stack)
A03 Not enough memory (LISTDC, MOVE, COPY)
A04 Stack overflow (operator stack)
A05 Line too long
A06 Program protected
A07 Illegal immediate mode statement
A08 Statement not legal here
A09 Program not resolved

Program Errors:

P32 Starting address greater than ending address
P33 Line number conflict
P34 Illegal value
P35 No program
P36 Undefined line number or CONTINUE illegal
P37 Undefined special function subroutine
P38 Undefined FN function
P39 FN nested too deep
P40 NEXT without FOR
P41 RETURN without GOSUB
P42 Illegal image
P43 Illegal matrix operand
P44 Matrix not square
P45 Operand dimensions not compatible
P46 Illegal microcommand
P47 Missing buffer variable
P48 Illegal device specification
P49 Interrupt table full
P50 Illegal dimensions or variable length
P51 Variable or value too short
P52 Variable or value too long
P53 Noncommon variables already defined
P54 Common variable required
P55 Undefined array
P56 Illegal subscripts
P57 Illegal STR () arguments
P58 Illegal field/delimiter specification
P59 Illegal redimension

RECOVERABLE ERRORS

Computation Errors:

C60 Underflow
C61 Overflow
C62 Division by zero
RECOVERABLE ERRORS CONT.

C63 Zero divided by zero, or zero raised to zero power
C64 Zero raised to negative power
C65 Negative number raisee to noninteger power
C66 SQRT of negative power
C67 LOG of zero
C68 LOG of negative power
C69 Argument too large

Execution Errors:

X70 Insufficient data
X71 Value exceeds format
X72 Singular matrix
X73 Illegal INPUT data
X74 Wrong variable type
X75 Illegal number
X77 Invalid partition reference

Disk Errors:

D80 File not open
D81 File full
D82 File not in catalog
D83 File already catalogued
D84 File not scratched
D85 Index full
D86 Catalog end error
D87 No end file
D88 Wrong record type
D89 Sector address beyond EOF

I/O Errors:

I90 Disk hardware error (X'CO' not received)
I91 Disk hardware error
I92 Disk hardware error (timeout)
I93 Disk format error
I94 Format key engaged
I95 Seek error
I96 CRC error
I97 LRC error
I98 Illegal sector address
I99 Read-after-write error
CHAPTER 8

SCHEMATICS

Please refer to the Microfiche version of this document for the Micro VP Computer System schematics.
APPENDIX A

2275 MULTIPLEXER/MULTIPLEXER EXTENDER OPTION

The 2275 Multiplexer and 2275 Multiplexer Extender (2275MUX/2275MUXE) boards will enable a single 2275 Disk Drive or 2280 Phoenix Drive (or future DPU-type disk systems) to serve multiple CPUs. The multiplexer enables up to four CPUs to share a disk drive; a multiplexer extender, used in conjunction with the multiplexer, enables up to four additional CPUs to share the same disk. A single multiplexer can support a maximum of three multiplexer extenders and can thus serve a maximum of 16 CPUs.

The multiplexer and any associated multiplexer extenders plug into adjacent slots on the system bus. The multiplexer provides a disk interface for the Micro VP in which it resides, eliminating need for the resident 22C80 board. The extender boards connect to the multiplexer via a ribbon cable and draw power from the system bus.
The multiplexer, in conjunction with the multiplexer extender(s), divides functionally into five general areas:

- Ring counter and port-select logic
- Port Buffers
- 2200 Interface
- Extender input/output
- Disk Buffer

Data on the multiplexer I/O bus is four-bit parallel, converted from eight-bit parallel from either the disk drive (input) or from the respective CPUs (output). The disk buffer converts between the eight-bit disk bus and the four-bit multiplexed bus for each I/O operation: the 22C80, of the requesting CPU, converts between the eight-bit CPU bus and the four-bit multiplexed bus. The 2200 Interface (Port 1) portion of the multiplexer board performs the same conversion for each transmission between the host CPU and the multiplexer.
The port-select logic comprises a binary counter and a four-bit bistable latch. A 2-MHz clock drives the counter to generate 16 sequential scan addresses, one for each port. The port-select logic scans each port in sequence until a request is detected.

Any CPU, to access the disk drive, raises a request signal by addressing its 22C80 interface. The port-select logic, upon detecting the request, disables the counter clock and returns an acknowledge signal to the 22C80 interface. With the ring counter disabled, and the requesting port selected, the requesting CPU can access the disk drive.

The input and output data busses connecting the CPU to the drive are four-bit parallel busses. The port buffers interface the multiplexed busses and control signals to the multiplexer when enabled. The decoding of the associated scan address for the given port enables the appropriate port buffer.
When a port buffer decodes its associated scan address interfacing is enabled between the respective 22C80 board and the multiplexer. Once the link has been made, the multiplexer is transparent to both the disk drive and the requesting CPU. When the disk access is complete, the 22C80 request clears, the clock counter resumes counting, and port request scanning resumes.
The 2200 Interface of the multiplexer board combines the functions of port buffer and 22C80 Interface. The 2200 Interface both decodes the scan address (in the same manner as the other port buffers) and performs the 22C80 functions for the CPU in which it resides.
The extender boards interface the same control and data busses as the port buffers resident on the multiplexer board. Each extender board contains four port buffers. The port-select logic has an addressing capability of 16 addresses (maximum); therefore, the system can accommodate but 12 extension port buffers (plus the four port buffers resident on the multiplexer board).
The disk buffer consists of I/O buffer multiplexers/demultiplexers which interface between the disk I/O busses and the multiplexed I/O busses internal to the multiplexer hardware. The input buffer receives eight-bit-parallel disk data, and loads the data on the internal bus as four-bit transmissions. Conversely, the output buffer assembles four-bit-parallel output data into eight-bit bytes for transmission to the disk controller.
A.1 INSTALLATION

Installation of the multiplexer board and extender board(s) comprise the ensuring of address switch settings, and the completion of (multiplexer) system hookup. Both the multiplexer and extension boards plug into the Micro VP system bus in the same manner as any other option boards.

A.1.1 Switch Settings

The setting of Switch 1 on the multiplexer board determines the disk address of the system in which the multiplexer resides. Additional systems establish disk address on their associated 22C30 Disk Interface switch settings (the disk address does not have to be the same for different systems using the same disk drive). Set desired disk address for host system as shown here.
A.1.1 Switch Settings (cont)

Switch 1 on each extender board identifies the extender so that its ports may be addressed by the multiplexer (the address selected via Switch 1 should not be confused with the disk address; there is no connection between the two addresses). A single extender board in a system may be set to an address of either 1, 2, or 3. The setting of additional boards requires only that no two addresses be the same.
A.1.2 System Hookup

For cabling connections to associated CPUs and disk drive, refer to appropriate installation instructions. The following sketches show examples of hookups, including:

a typical hookup multiplexing eight CPUs with one disk drive

and the multiplexing of eight CPUs with two disk drives.
A.1.2 System Hookup (cont)

1. Insert multiplexer board into available CPU option slot.
 \[\text{Multiplexer board part \# 210-0224}\]

2. Connect cable from disk drive to connector marked DISK DRIVE.

3. Connect cable(s) from associated CPU(s) to available connectors.
 \[\text{Part \# of cables.}\]
 \[\text{Available length}\]
A.1.2 System Hookup (cont)

4. Insert extension board(s) into adjacent slots.
 EXPANDER BOARD PART # 210-8825

5. Connect multiplexer to extension board(s) via supplied ribbon cable.
 RIBBON CABLE PART # 220-3588

6. Connect cable(s) from associated CPU(s) to available connector(s).
 CABLE PART #S & LENGTHS.
A.2 CHECKOUT

System checkout may be simplified by verification of one unit at a time prior to a whole-system check.

1. Select diskette containing the 2200 Multiple Disk Exerciser from 2200 Diagnostic Package (195-2956-0). Load diagnostic.

2. Run diagnostic simultaneously on two or more CPUs, each CPU addressing a different disk surface/platter. Repeat check to include all CPUs.

 Should CPU display I/O Error-19X, go to Troubleshooting.

A.3 TROUBLESHOOTING

Should a fault indication occur during initial installation check, analysis may be aided by a retracing of steps - disconnecting units to point at which fault occurs.
A.3 TROUBLESHOOTING (cont)

A

CHANGE CPU, SHOWING ERROR, TO DIFFERENT (OR KNOWN GOOD) MUX I/O PORT

ERROR MOVES WITH CPU

Y

CPU/C80 INTERFACE FAULT

N

MUX/MUXE FAULT

B

I/O ERROR 19X AT ALL CPU'S

Y

REINSTALL MUX (AND EXTENDERS) IN ALTERNATE CPU. RECHECK SYSTEM.

Y

SAME RESULTS

MUX/DISK FAULT

N

ERROR AT MUXE ONLY

Y

MUXE FAULT

N

MUX FAULT

N

CPU FAULT (FIRST CPU HOUSING MUX)
A.4 PARTS REPLACEMENT

Part numbers of MUX/MUXE components and associated equipment are as follows:

2275 Multiplexer Extender - 210-8825
2275 Multiplexer - 210-8824

Interconnect Cable 220-3588
22C30 Interface 210-7715

Need part #'s for cables between MUX BRDS & CPU's with available lengths.
NEW PRODUCT STATUS

2275MUX & 2275MUXE

Current Status: 2275MUX PEP # H0146A
2275MUXE PEP # H0146B

First Customer Ship: Q4 FY87

Logistics:
There will be three FRU's associated with this product:
- 210-8824 Multiplexer (MUX) MTBF:104,436 hrs
- 210-8825 Multiplexer Extender (MUXE) MTBF:163,577 hrs
- 220-3588 Interconnection Cable MTBF:TBD

Technical Documentation:
Documentation class code is TBD.
This product will be used in the MicroVP, LVP and MVP systems.
Final revisions are being made to the PUB.

TEE/FSC:
Repair Plan will be required for the MUX and MUXE. Hardware Specifications
and Schematics have been provided.

Diagnostic Support:
Existing 2200 Disk Diagnostics will support this product. The 2275MUX/MUXE
has been tested using the 2200 Multiple Disk Exerciser (Rev. 64A5). The
diagnostic was obtained from Wang Direct by ordering diagnostic package
number 195-2956-0.

Technical Training Center:
This product should to be included in the 2200 System Class. The Product
Maintenance Manual and TSB will provide necessary information for Customer
Engineers previously trained on the 2200 system.
APPENDIX B

CPU/MEMORY PCB UPGRADE OPTIONS

1.1 INTRODUCTION

1.1.1 Scope and Purpose

The scope and purpose of this manual is to provide the Wang Customer Engineer with the information necessary to install, troubleshoot, and repair the Wang Micro VP in the field. Familiarity with the Wang Micro VP product line is recommended for effective use of this manual.

The Micro VP Computer System is an interactive, multi-user, multi-task, disk-based computer system, utilizing VLSI [Very Large Scale Integration] technology. The Micro VP supports up to 16 terminals and 16 jobs [partitions] concurrently as well as a wide range of peripheral devices, such as printers, plotters, disk drives, tape drives, and TC devices. Disk drive sharing for up to 15 additional CPUs is also available as an option.

By utilizing VLSI, the Micro VP processor design is incorporated into a single chip. This allows the Micro VP CPU, control memory, and user memory to reside on a single PC board. The two models of the Micro VP Computer System offered are the Micro VP-1 that contains 128KB of Data Memory and the Micro VP-2 which contains 512KB of Data Memory. Both systems, however, contain 32K of Control Memory. In addition, these two existing 128KB or 512KB CPU PCBs may be upgraded to Enhanced CPU/Memory configurations via upgrade kits.

2.1 DIAGNOSTIC ERROR MESSAGES

2.1.1 AEDM Errors (Addressing Error in Data Memory)

NOTE

When memory exceeds 512KB, the address information that is displayed for memory error at boot time is invalid.

This error is displayed as:

AEDM ss.aaaa ss.bbbb xx

Where:
ss=Memory bank containing the error.
aaaa=Address of the data in error.
bbbb=Conflicting Address
xx=XOR of the "expected" and "actually read" data.

This error indicates that writing to location "bbbbb" seems to modify location "aaaa". The "1" bits in the "xx" field of the display indicate which bits have been modified. The error could also occur if a chip at location "aaaa" had a marginal failure.
2.1.2 **BEDM Errors (Bit Error in Data Memory)**

NOTE

When memory exceeds 512KB, the address information that is displayed for memory error at boot time is invalid.

This error is displayed as:

BEDM ss.aaaa xyy

Where:
- **ss**=Memory bank containing the error.
- **aaaa**=Address of the data in error.
- **xyyy**=XOR of the data "actually read" from data memory with the data that was "expected" to be there.

This error implies that a memory error was detected while reading data memory. The "1" bits in the "xyyy" field of the display indicate which bit[s] are not correct. If all the bits are zero, one of the two parity bits associated with the pair of bytes is incorrect.

2.1.3 **PEDM Errors (Parity Error in Data Memory)**

NOTE

When memory exceeds 512KB, the address information that is displayed for memory error at boot time is invalid.

This error is displayed as:

PEDM ss.aaaa

Where:
- **ss**=Memory bank containing the error.
- **aaaa**=Data Memory Address at the time of the error. This is probably, but not necessarily, the address of the memory location with bad parity.

This error implies that bad parity was detected during a read of an 8-bit User/Data Memory.
2.1.4 REDM Errors (Read Error in Data Memory)

NOTE

When memory exceeds 512KB, the address information that is displayed for memory error at boot time is invalid.

This error is displayed as:

REDM ss.aaaa xx

Where:

ss=Memory bank containing the error.
aaaa=Address of the data in error.
xx=XOR of the data in memory with the data that was expected to be there.

This error implies that a memory error was detected while reading User/Data memory. The "1" bits on the "xx" field of the display indicate which bits are not correct. If all the bits are zero, a bit in the other byte of the pair of bytes is incorrect.

2.1.5 VEDM Errors (Verify Error in Data Memory)

NOTE

When memory exceeds 512KB, the address information that is displayed for memory error at boot time is invalid.

This error is displayed as:

VEDM ss.aaaa

Where:

ss=Memory bank containing the error.
aaaa=Address of the data in error.

This error is reported to a system program being given control after loading, or when memory is verified in response to RESET or CLEAR being executed. The area of User/Data Memory used for storing constants [BASIC verbs, tables, math constants, messages] does not verify correctly.
3.1 INSTALLING OPTIONS

3.1.1 Existing Micro VP CPU/Memory PCB Upgrades

Existing 128KB or 512KB CPU PCB users have the option of direct swap-out replacement of current 128KB or 512KB CPU PCBs for the Enhanced CPU PCBs, by ordering Upgrade kits as follows:

<table>
<thead>
<tr>
<th>Kit Name</th>
<th>Kit P/N</th>
<th>Kit Description</th>
<th>Enhanced CPU PCB P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>UJ 5057</td>
<td>289-0969</td>
<td>128KB PCB to 512KB PCB</td>
<td>210-8937-B</td>
</tr>
<tr>
<td>UJ 5065</td>
<td>289-0968</td>
<td>128KB PCB to 1MB PCB</td>
<td>210-8937-C</td>
</tr>
<tr>
<td>UJ 5066</td>
<td>289-0967</td>
<td>128KB PCB to 2MB PCB</td>
<td>210-8937-D</td>
</tr>
<tr>
<td>UJ 5067</td>
<td>289-0966</td>
<td>128KB PCB to 4MB PCB</td>
<td>210-8937-E</td>
</tr>
<tr>
<td>UJ 5068</td>
<td>289-0965</td>
<td>128KB PCB to 8MB PCB</td>
<td>210-8937-F</td>
</tr>
<tr>
<td>UJ 5069</td>
<td>289-0964</td>
<td>512KB PCB to 1MB PCB</td>
<td>210-8937-C</td>
</tr>
<tr>
<td>UJ 5070</td>
<td>289-0963</td>
<td>512KB PCB to 2MB PCB</td>
<td>210-8937-D</td>
</tr>
<tr>
<td>UJ 5071</td>
<td>289-0962</td>
<td>512KB PCB to 4MB PCB</td>
<td>210-8937-E</td>
</tr>
<tr>
<td>UJ 5072</td>
<td>289-0961</td>
<td>512KB PCB to 8MB PCB</td>
<td>210-8937-F</td>
</tr>
</tbody>
</table>

CPU/Memory PCB Replacement Instructions:

1) Power-down system (Ref. sections 3.2.1 and 3.5).

2) Remove the existing 128KB or 512KB CPU PCB (Ref. section 5.5.5).

3) Install the Enhanced CPU PCB replacement (Ref. section 5.5.6).

4) Power-up system (Ref. sections 3.2.1 and 3.4).

5) Run Diagnostic Package P/N 195-2956-0, Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).

3.1.2 Enhanced Micro VP CPU/Memory PCB Upgrades

NOTE

When the accessed memory exceeds 512KB, Operating System Version 3.1 minimum is required.

NOTE

The Micro Diagnostic for Enhanced Memory Test is incorporated in the Operating System Release 3.1.
3.1.2 Enhanced Micro VP CPU/Memory PCB Upgrades (Cont'd)

Micro VP CPU/Memory PCB Upgrade Kits:

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>UJ-5057</td>
<td>128KB to 512KB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5059</td>
<td>1MB to 2MB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5060</td>
<td>1MB to 4MB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5061</td>
<td>1MB to 8MB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5062</td>
<td>2MB to 4MB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5063</td>
<td>2MB to 8MB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5064</td>
<td>4MB to 8MB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5065</td>
<td>128KB to 1MB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5066</td>
<td>128KB to 2MB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5067</td>
<td>128KB to 4MB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5068</td>
<td>128KB to 8MB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5069</td>
<td>512KB to 1MB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5070</td>
<td>512KB to 2MB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5071</td>
<td>512KB to 4MB Memory Upgrade</td>
</tr>
<tr>
<td>UJ-5072</td>
<td>512KB to 8MB Memory Upgrade</td>
</tr>
</tbody>
</table>

Micro VP CPU/Memory PCB Upgrade Kit Contents:

Each Upgrade Kit includes the following items:

- PAL chip specifically tailored to desired Upgrade Memory size
- Necessary quantity of additional SIMMs Memory Modules to accomplish the upgrade
- Operating System installed on diskette only

Enhanced CPU/Memory PCB Upgrade Installation Instructions:

Presently installed CPU/Memory PCBs may be upgraded to Enhanced CPU/Memory by ordering upgrade kits as follows:

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>128KB</td>
<td>512KB</td>
<td>UJ5057</td>
<td>289-0969</td>
<td>Kit includes new Enhanced CPU PCB.</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Install new Enhanced CPU/Memory PCB P/N 210-8937-B (Ref. section 5.5.6).
4) Power-up system (Ref. sections 3.2.1 and 3.4).
5) Run Diagnostic Package P/N 195-2956-0, Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).
Enhanced CPU/Memory PCB Upgrade Installation Instructions: (Cont'd)

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>128KB</td>
<td>1MB</td>
<td>UJ5065</td>
<td>289-0968</td>
<td>Kit includes new Enhanced CPU PCB.</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Install new Enhanced CPU/Memory PCB P/N 210-8937-C (Ref. section 5.5.6).
4) Power-up system (Ref. sections 3.2.1 and 3.4).
5) Run Diagnostic Package P/N 195-2956-0, Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>128KB</td>
<td>2MB</td>
<td>UJ5066</td>
<td>289-0967</td>
<td>Kit includes new Enhanced CPU PCB.</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Install new Enhanced CPU/Memory PCB P/N 210-8937-D (Ref. section 5.5.6).
4) Power-up system (Ref. sections 3.2.1 and 3.4).
5) Run Diagnostic Package P/N 195-2956-0, Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>128KB</td>
<td>4MB</td>
<td>UJ5067</td>
<td>289-0966</td>
<td>Kit includes new Enhanced CPU PCB.</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Install new Enhanced CPU/Memory PCB P/N 210-8937-E (Ref. section 5.5.6).
4) Power-up system (Ref. sections 3.2.1 and 3.4).
5) Run Diagnostic Package P/N 195-2956-0, Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).
Enhanced CPU/Memory PCB Upgrade Installation Instructions: (Cont'd)

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>128KB</td>
<td>8MB</td>
<td>UJ5068</td>
<td>289-0965</td>
<td>Kit includes new Enhanced CPU PCB.</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Install new Enhanced CPU/Memory PCB P/N 210-8937-F (Ref. section 5.5.6).
4) Power-up system (Ref. sections 3.2.1 and 3.4).
5) Run Diagnostic Package P/N 195-2956-0. Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>512KB</td>
<td>1MB</td>
<td>UJ5069</td>
<td>289-0964</td>
<td>Kit includes new Enhanced CPU PCB.</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Install new Enhanced CPU/Memory PCB P/N 210-8937-C (Ref. section 5.5.6).
4) Power-up system (Ref. sections 3.2.1 and 3.4).
5) Run Diagnostic Package P/N 195-2956-0. Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>512KB</td>
<td>2MB</td>
<td>UJ5070</td>
<td>289-0963</td>
<td>Kit includes new Enhanced CPU PCB.</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Install new Enhanced CPU/Memory PCB P/N 210-8937-D (Ref. section 5.5.6).
4) Power-up system (Ref. sections 3.2.1 and 3.4).
5) Run Diagnostic Package P/N 195-2956-0. Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).
Enhanced CPU/Memory PCB Upgrade Installation Instructions: (Cont'd)

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>512KB</td>
<td>4MB</td>
<td>UJ5071</td>
<td>289-0962</td>
<td>Kit includes new Enhanced CPU PCB.</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Install new Enhanced CPU/Memory PCB P/N 210-8937-E (Ref. section 5.5.6).
4) Power-up system (Ref. sections 3.2.1 and 3.4).
5) Run Diagnostic Package P/N 195-2956-0, Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>512KB</td>
<td>8MB</td>
<td>UJ5072</td>
<td>289-0961</td>
<td>Kit includes new Enhanced CPU PCB.</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Install new Enhanced CPU/Memory PCB P/N 210-8937-F (Ref. section 5.5.6).
4) Power-up system (Ref. sections 3.2.1 and 3.4).
5) Run Diagnostic Package P/N 195-2956-0, Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).
Enhanced CPU/Memory PCB Upgrade Installation Instructions: (Cont'd)

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MB</td>
<td>2MB</td>
<td>UJ5059</td>
<td>289-0960</td>
<td>Kit includes one (1) new PAL chip for memory addressing (P/N 377-3486) and two (2) 1MB x 9 SIMMs Modules (P/N 377-4513).</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Replace the PAL chip at PCB location L2 with the PAL chip supplied in kit (Ref. Figure B-1).
4) Remove the four (4) 256KB SIMMs Modules (Ref. Figures B-1 and B-2).
5) Insert two (2) 1MB SIMMs Modules from the kit into the first two (2) empty SIMMs sockets starting at the bottom of the SIMMs connectors (Ref. Figures B-1 and B-3).
6) Position jumper J2 correctly to reflect the 1MB SIMMs Module installation (Ref. Figure B-4).
7) Install the CPU/Memory PCB (Ref. section 5.5.6).
8) Power-up system (Ref. sections 3.2.1 and 3.4).
9) Run Diagnostic Package P/N 195-2956-0, Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MB</td>
<td>4MB</td>
<td>UJ5060</td>
<td>289-0959</td>
<td>Kit includes one (1) new PAL chip for memory addressing (P/N 377-3487) and four (4) 1MB x 9 SIMMs Modules (P/N 377-4513).</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Replace the PAL chip at PCB location L2 with the PAL chip supplied in kit (Ref. Figure B-1).
4) Remove the four (4) 256KB SIMMs Modules (Ref. Figures B-1 and B-2).
5) Insert four (4) 1MB SIMMs Modules from the kit into the first four (4) empty SIMMs sockets starting at the bottom of the SIMMs connectors (Ref. Figures B-1 and B-3).
6) Position jumper J2 correctly to reflect the 1MB SIMMs Module installation (Ref. Figure B-4).
7) Install the CPU/Memory PCB (Ref. section 5.5.6).
8) Power-up system (Ref. sections 3.2.1 and 3.4).
9) Run Diagnostic Package P/N 195-2956-0, Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).
Enhanced CPU/Memory PCB Upgrade Installation Instructions: (Cont'd)

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MB</td>
<td>8MB</td>
<td>UJ5061</td>
<td>289-0958</td>
<td>Kit includes one (1) new PAL chip for memory addressing (P/N 377-3488) and eight (8) 1MB x 9 SIMMs Modules (P/N 377-4513).</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Replace the PAL chip at PCB location L2 with the PAL chip supplied in kit (Ref. Figure B-1).
4) Remove the four (4) 256KB SIMMs Modules (Ref. Figure B-1 and B-2).
5) Insert eight (8) 1MB SIMMs Modules from the kit into the eight (8) empty SIMMs sockets at the bottom of the SIMMs PCB connectors (Ref. Figures B-1 and B-3).
6) Position jumper J2 correctly to reflect the 1MB SIMMs Module installation (Ref. Figure B-4).
7) Install the CPU/Memory PCB (Ref. section 5.5.6).
8) Power-up system (Ref. sections 3.2.1 and 3.4).
9) Run Diagnostic Package P/N 195-2956-0, Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2MB</td>
<td>4MB</td>
<td>UJ5062</td>
<td>289-0957</td>
<td>Kit includes one (1) new PAL chip for memory addressing (P/N 377-3487) and two (2) 1MB x 9 SIMMs Modules (P/N 377-4513).</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Replace the PAL chip at PCB location L2 with the PAL chip supplied in kit (Ref. Figure B-1).
4) Insert the two (2) additional 1MB x 9 SIMMs Modules from the kit into the first two (2) empty SIMMs sockets at the bottom of the SIMMs connectors (Ref. Figures B-1 and B-3).
5) Install the CPU/Memory PCB (Ref. section 5.5.6).
6) Power-up system (Ref. sections 3.2.1 and 3.4).
7) Run Diagnostic Package P/N 195-2956-0, Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).
Enhanced CPU/Memory PCB Upgrade Installation Instructions: (Cont'd)

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>UPGRADE KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2MB</td>
<td>8MB</td>
<td>UJ5063</td>
<td>289-0956</td>
<td>Kit includes one (1) new PAL chip for memory addressing (P/N 377-3488) and six (6) 1MB x 9 SIMMs Modules (P/N 377-4513).</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Replace the PAL chip at PCB location L2 with the PAL chip supplied in kit (Ref. Figure B-1).
4) Insert the six (6) additional 1MB x 9 SIMMs Modules from the kit into the first six (6) empty SIMMs sockets at the bottom of the SIMMs connectors (Ref. Figures B-1 and B-3).
5) Install the CPU/Memory PCB (Ref. section 5.5.6).
6) Power-up system (Ref. sections 3.2.1 and 3.4).
7) Run Diagnostic Package P/N 195-2956-0, Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).

<table>
<thead>
<tr>
<th>UPGRADE FROM</th>
<th>UPGRADE TO</th>
<th>UPGRADE KIT NUMBER</th>
<th>PART NUMBER</th>
<th>UPGRADE COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4MB</td>
<td>8MB</td>
<td>UJ5064</td>
<td>289-0955</td>
<td>Kit includes one (1) new PAL chip for memory addressing (P/N 377-3488) and four (4) 1MB x 9 SIMMs Modules (P/N 377-4513).</td>
</tr>
</tbody>
</table>

To accomplish upgrade, perform following:
1) Power-down system (Ref. sections 3.2.1 and 3.5).
2) Remove presently installed CPU/Memory PCB from system (Ref. section 5.5.5).
3) Replace the PAL chip at PCB location L2 with the PAL chip supplied in kit (Ref. Figure B-1).
4) Insert the four (4) additional 1MB x 9 SIMMs Modules from the kit into the first four (4) empty SIMMs sockets at the bottom of the SIMMs connectors (Ref. Figures B-1 and B-3).
5) Install the CPU/Memory PCB (Ref. section 5.5.6).
6) Power-up system (Ref. sections 3.2.1 and 3.4).
7) Run Diagnostic Package P/N 195-2956-0, Memory Diagnostic Revision 179E to verify system operation (supports memory up to 8MB).
3.1.2 Enhanced Micro VP CPU/Memory PCB Upgrades (Cont'd)

Figure B-1. Enhanced Micro VP CPU/Memory PCB Components Layout

MEMORY PAL
L2

SIMMs DATA MEMORY
8 MODULES TOTAL 8MB.
3.1.2 Enhanced Micro VP CPU/Memory PCB Upgrades (Cont'd)

1 Locate SIMMs Memory section of CPU board

2 Remove SIMMs Module by spreading both locking connector posts.

3 Grasp both SIMMs Module corners and pull SIMMs Module forward.

4 Lift SIMMs Module straight up and out of SIMM connector.

Figure B-2. Enhanced Micro VP CPU/Memory PCB SIMMs Module Removal
3.1.2 Enhanced Micro VP CPU/Memory PCB Upgrades (Cont'd)

1. Locate SIMMs Memory section of CPU Board.

2. Insert SIMMs Module into SIMMs connector at 30° angle.

3. Place thumbs on both SIMMs Module corners.

4. Push SIMMs Module down toward board until locking posts snap into place.

Figure B-3. Enhanced Micro VP CPU/Memory PCB SIMMs Module Insertion
3.1.2 Enhanced Micro VP CPU/Memory PCB Upgrades (Cont'd)

SIMMs Memory Selection Jumper [J2]:
- If 256KB SiMM size (memory size of 1MB or less) is used:
 1. Mount jumper on right side (shorting pins 2 and 3 together).

- If 1MB SiMM size is used:
 1. Mount jumper on left side (shorting pins 1 and 2 together).

CPU Clock Jumper [J1]:
Mount J2 Memory selection jumper as follows:
2. J1 jumper must be connected for proper operation of CPU and CPU Clock functions.

Figure B-4. Enhanced Micro VP SIMMs CPU/Memory PCB Jumpers
4.1 FUNCTIONAL DESCRIPTION

4.1.1 Introduction

The overall operation of the Micro VP-1 and VP-2 is controlled by the CPU/Memory Board (P/N 210-8034-1, 210-8034-2 or 210-8937-A thru F). This new Enhanced CPU/Memory PCB increases the maximum system memory to 8MB. This increased memory allows the user to allocate up to 1MB for user partitions. Memory not allocated to user partitions will be reserved for RAMDISK. This section provides a brief description of this CPU.
4.2 CPU FUNCTIONAL THEORY

4.2.1 128KB Data Memory (Micro VP - Original CPU PCB)

With a 128K Data Memory configuration there are two banks, with 9 chips in each bank, for a total of 18 chips. Each chip contains 64K x 1 bit which produces 64K x 9 bits [8 data bits plus 1 parity bit] in each bank. Together the two banks produce 128K 8 bit bytes plus parity. Operation of the data memory is controlled by the Data Memory Controller chip.

Figure B-5. Micro VP Original CPU/Data Memory PCB (128KB)
4.2.2 128KB Data Memory (Micro VP - Enhanced CPU PCB)

With a 128K Data Memory configuration there are two 256KB SIMMs Modules, with 9 SIMMs chips on each module. Each SIMMs chip contains 256K x 1 bit which produces 256K x 9 bits [8 data bits plus 1 parity bit] on each module. Together the two SIMMs modules produce 256KB 8 bit bytes plus parity. Data Memory addressing is accomplished by the PAL chip at CPU board location L2.

Figure B-6. Micro VP Enhanced CPU/Data Memory PCB (128KB)
4.2.3 512KB Data Memory (Micro VP – Original CPU PCB)

With a 512K Data Memory configuration there are two banks, with 9 chips in each bank, for a total of 18 chips. Each chip contains 256K x 1 bit which produces 256K x 9 bits [8 data bits plus 1 parity bit] in each bank. Together the two banks produce 512K 8 bit bytes plus parity. Operation of the data memory is controlled by the Data Memory Controller chip.

Figure B-7. Micro VP Original CPU/Data Memory PCB (512KB)
4.2.4 512KB Data Memory (Micro VP - Enhanced CPU PCB)

With a 512K Data Memory configuration there are two 256K SIMMs Modules, with 9 SIMMs chips on each module. Each SIMMs chip contains 256K x 1 bit which produces 256K x 9 bits [8 data bits plus 1 parity bit] on each module. Together the two SIMMs modules produce 512K 8 bit bytes plus parity. Data Memory addressing is accomplished by the PAL chip at CPU board location L2.

Figure B-8. Micro VP Enhanced CPU/Data Memory PCB (512KB)
4.2.5 1MB Data Memory (Micro VP – Enhanced CPU PCB)

With a 1MB Data Memory configuration there are four 256K SIMMs Modules, with 9 SIMMs chips on each module. Each SIMMs chip contains 256K x 1 bit which produces 256K x 9 bits [8 data bits plus 1 parity bit] on each module. Together the four SIMMs modules produce 1MB 8 bit bytes plus parity. Data Memory addressing is accomplished by the PAL chip at CPU board location L2.

![Diagram of Memory PAL and SIMMs Data Memory]

Figure B-9. Micro VP Enhanced CPU/Data Memory PCB (1MB)
4.2.6 2MB Data Memory (Micro VP - Enhanced CPU PCB)

With a 2MB Data Memory configuration there are two 1MB SIMMs Modules, with 9 SIMMs chips on each module. Each SIMMs chip contains 1MB x 1 bit which produces 1MB x 9 bits [8 data bits plus 1 parity bit] on each module. Together the two SIMMs modules produce 2MB 8 bit bytes plus parity. Data Memory addressing is accomplished by the PAL chip at CPU board location L2.

Figure B-10. Micro VP Enhanced CPU/Data Memory PCB (2MB)
4.2.7 4MB Data Memory (Micro VP - Enhanced CPU PCB)

With a 4MB Data Memory configuration there are four 1MB SIMMs Modules, with 9 SIMMs chips on each module. Each SIMMs chip contains 1MB x 1 bit which produces 1MB x 9 bits [8 data bits plus 1 parity bit] on each module. Together the four SIMMs modules produce 4MB 8 bit bytes plus parity. Data Memory addressing is accomplished by the PAL chip at CPU board location L2.

Figure B-11. Micro VP Enhanced CPU/Data Memory PCB (4MB)
4.2.8 8MB Data Memory (Micro VP - Enhanced CPU PCB)

With a 8MB Data Memory configuration there are eight 1MB SIMMs Modules, with 9 SIMMs chips on each module. Each SIMMs chip contains 1MB x 1 bit which produces 1MB x 9 bits [8 data bits plus 1 parity bit] on each module. Together the eight SIMMs modules produce 8MB 8 bit bytes plus parity. Data Memory addressing is accomplished by the PAL chip at CPU board location L2.

Figure B-12. Micro VP Enhanced CPU/Data Memory PCB (8MB)
4.3 Memory Partitioning

When using the 512KB Memory, the maximum memory partition size is 28KB if all 16 partitions are used. When Main Memory is increased to 1MB, the maximum memory partition size will increase to 56KB.

4.4 Enhanced CPU/Memory Board Block Diagram

The Enhanced CPU/Memory Board Block Diagram is not included in this edition of the Micro VP Computer System Manual. This information will be provided in a subsequent edition.

Programmable Array Logic (PAL):

Data Memory Addressing is accomplished on the Enhanced CPU Board via PAL circuitry at CPU Board location L2. PAL logic chips are programmable 20 pin DIP packaged AND array that provides inputs to a fixed OR array. Based on proven fuseable-link technology, PALs solve three problem areas which are:

- Decreasing board space due to increasing board density
- Inventory reduction due to less need for logic chips
- PALs accept fast internal design changes limited to fuseable links

Programmable Array Logic (PAL) chips greatly enhance 32 bit design, performance and unique operation of 16 bit processors.
5.1 ILLUSTRATED PARTS

5.1.1 System Components (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>210-8034-1</td>
<td>128KB CPU Board (Original CPU)</td>
</tr>
<tr>
<td>2</td>
<td>210-8034-2</td>
<td>512KB CPU Board (Original CPU)</td>
</tr>
</tbody>
</table>

![Diagram of Data Memory Controller](image)

Figure B-13. Micro VP Computer System Components
5.1 ILLUSTRATED PARTS

5.1.1 System Components (Sheet 2 of 3)

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>210-8937-A</td>
<td>128KB CPU Board (Enhanced CPU Model)</td>
</tr>
<tr>
<td>4</td>
<td>210-8937-B</td>
<td>512KB CPU Board (Enhanced CPU Model)</td>
</tr>
<tr>
<td>5</td>
<td>210-8937-C</td>
<td>1MB CPU Board (Enhanced CPU Model)</td>
</tr>
<tr>
<td>6</td>
<td>210-8937-D</td>
<td>2MB CPU Board (Enhanced CPU Model)</td>
</tr>
<tr>
<td>7</td>
<td>210-8937-E</td>
<td>4MB CPU Board (Enhanced CPU Model)</td>
</tr>
<tr>
<td>8</td>
<td>210-8937-F</td>
<td>8MB CPU Board (Enhanced CPU Model)</td>
</tr>
</tbody>
</table>

![Diagram](image)

Figure B-14. Micro VP Computer System Components
System Components (Sheet 3 of 3)

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>377-4508</td>
<td>256KB SIMMs CPU Memory Module</td>
</tr>
<tr>
<td>10</td>
<td>377-4513</td>
<td>1MB SIMMs CPU Memory Module</td>
</tr>
<tr>
<td>11</td>
<td>377-3483</td>
<td>Memory PAL (L2) (128KB CPU Memory Board)</td>
</tr>
<tr>
<td>12</td>
<td>377-3484</td>
<td>Memory PAL (L2) (512KB CPU Memory Board)</td>
</tr>
<tr>
<td>13</td>
<td>377-3485</td>
<td>Memory PAL (L2) (1MB CPU Memory Board)</td>
</tr>
<tr>
<td>14</td>
<td>377-3486</td>
<td>Memory PAL (L2) (2MB CPU Memory Board)</td>
</tr>
<tr>
<td>15</td>
<td>377-3487</td>
<td>Memory PAL (L2) (4MB CPU Memory Board)</td>
</tr>
<tr>
<td>16</td>
<td>377-3488</td>
<td>Memory PAL (L2) (8MB CPU Memory Board)</td>
</tr>
</tbody>
</table>

![Diagram](image.png)

Figure B-15. Micro VP Computer System Components