Variable Storage in Basic 1.2 (MVP)
Storage of variables in the MVP partitioning scheme is outlined in this section. Basically, only two types of variables exist. These are Alphanumeric and Numeric variables. Permutations can then be made to define them as singular or array, Common, Global or Non-Common.

The scope of this document does not permit us to analyze how the storage is accomplished but will permit the user to determine where the variable exists in memory, and to determine what type they are.

1 Variable Computation

Each partition has a control area that utilizes about 768 bytes of memory. The 0900 memory section will point to the start of this area. References here must be relative to the start of the partition area.

At Partition + 0900, 26 pairs of numbers are reserved. Each pair corresponds to a letter in the alphabet, starting sequentially from A to Z. This is the master table for control of the variables. During the initialization process, or during the CLEAR commands, these pairs are set to point to the last location in the current partition. Effectively, this informs the MVP program that no variable exists with that letter.

When a variable is defined, the system resets the address of the letter-pair to the last address in the system less the size of variable, less the control information. By doing so, the system now knows that a variable containing the letter exists, and can now attempt to locate the variable requested.

The variables are 'chained'. That is, each variable in the series will point to the next variable in the series. The last variable in the chain always points to the end of partition memory.

2 Variable definition in memory

Examples of Memory allocation for variables are as follows:

```plaintext
DIM A 41 F0 FFEE 0000000000
   Data
   Element size
   Pointer to next
   Numeric Variable
   Ascii 'A'

DIM B(1) 42 F2 FFEE 0000 000000000000000000000000
   Data
   Size of Array
   Pointer to next
   No second letter
   Numeric Array
   Ascii 'B'
```

No part of this document may be reproduced without the expressed written permission of Computer Concepts Corporation.
Variable Storage

DIM C(10,10) 43 F6 FFEE 0A0A 0000000000000000
Data
X,Y depth of array
No second letter
Matrix array

DIM D$ 44 F1 FFEE 10 202020202020
Size of Var. (16)
Pointer to next
No second letter
Alpha designator
Ascii 'C'

DIM E$ (10) 45 13 FFEE 000A 10 202020202020
Size of element (16)
Size of array
Pointer to end
Second letter = 1
Alpha Array
Ascii 'E'

DIM F$(10,10) 46 F7 FFEE 0A0A 01202020202020
Size of element (1)
Size of array
Pointer to next
Alpha scalar array
Ascii 'F'

DIM G$(2550) 47 F3 FFEE 09F6 02 20202020202020
Array size (2550)
Pointer to next
No second letter
Alpha array
Ascii 'G'

The above indicates every type of variable that can be set by Basic with the exception of Common Global variables. The Common Global variables are conditioned by the '8' bit on in the second byte of the identification. Thus, a Global variable @A would take on the configuration:

41 F8 FFEE 0000 0000000000

Note that the '8' bit is set in the second term. Other than Global common variables, Common variables are simply defined as being above a certain location in memory. This location is set when the Common has been defined. All variables above this address are common, all variables below this address are not. Therefore, selective clears know what to clear by examining these locations.

Copyright © 1982 by Computer Concepts Corporation, Shawnee Mission, Ks. No part of this document may be reproduced without the expressed written permission of Computer Concepts Corporation.
Variable Storage

3.3 Summary

The first two bytes of the actual variable control bytes have the following definitions:

\[xx \ yz \]

Where:
- \(xx \) is the ASCII character for the variable
- \(y \) is the ASCII character for the second letter of the variable, if no second character, then this is set to F.

\(z \) is the type of variable:

- 0 ... Simple Numeric Data
- 1 ... Simple Alpha Data
- 2 ... Numeric Array
- 3 ... Alpha Array
- 4 ... Invalid
- 5 ... Invalid
- 6 ... Two dimensional Numeric
- 7 ... Two dimensional Alpha

By oring the variable type with the '8' bit, Global variables are defined.

Example 41 FA \(\text{DIM EA}(3) \)