Synchronous/Asynchronous
Communications Controller

‘. i User Manual

(Mcdel 2228C, Model 2228B, or Option 62B)

Synchronous/
Asynchronous
Communications Controller
User Manual

(Model 2228C, Model 2228B, or Option 62B)

AAAAAAAAAAAAAAAAA

Disclaimer of Warranties and Limitation of
Liabilities
The staff of Wang Laboratories, Inc., has taken due care in ‘

preparing this manual; however, nothing contained herein
modifies or alters in any way the standard terms and conditions of
the Wang purchase agreement, lease agreement, or rental agree-
ment by which this equipment was acquired, nor increases in any
way Wang's liability to the customer. In no event shall Wang
Laboratories, Inc., or its subsidiaries be liable for incidental or
consequential damages in connection with or arising ffom the use
of this manual or any programs contained herein.

v

LABORATORIES, INC.

(i ' ANG) ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01861, TEL. (617} 469-5000, TWX 710 343-6769, TELEX 94.7421

PREFACE

Chapter 1 discusses the installation and dual capabilities of Wang's
Synchronous/Asynchronous Communications Controller. The chapter is written

primarily for persons having overall responsibility for Wang systems and their
use.

Chapters 2 and 3 independently discuss the two types of communications
supported by the controller. These chapters, written primarily for
programmers, may be omitted by anyone planning to use Wang-developed software
to communicate with another system. Operating instructions are provided with
the software acquired for use with the controller.

iii

CONTENTS

Page
CHAPTER 1 GENERAL INFORMATION
1 L] 1 The controller [[] L] . L] L] [L] L] . L] . L] * L L] L] L] L] . L] L] L] 1
1 1] 2 Installation L] L] [] . L] L] . L] L[] L] L L] . L] * L] L] L] [] L] L] L] L] L] 2
1.3 Modem Considerations v v ¢ ¢ o o o o o o . e e e o o 2 b
CHAPTER SYNCHRONOUS COMMUNICATIONS
.1 Some General Features « v & o o o o o o o o o o o . 5
.2 Synchronous Transmission v v v ¢ v ¢« v o v v o« . b

Programmable Features 8
Asynchronous Transmission v v v v v v v o v ' . 9

Character Transmission

Character Reception
Data Buffering e e s e o
Substitution for Characters Reeeived in Error
Code Translation « v v v v v v v « .
Insertion and Removal of Shift Characters . .
Detecting End-of-record Characters
Monitoring Received Timeouts
Sending and Detecting Break Signals 16
Specifying the Communications Control Vector 18
The Communications Status Vector e s e . . 22
CPU and Controller Interaction via $GIO Statements e ¢« s+ o« o 23
Transmission via PRINT, PRINTUSING, or MAT PRINT

Statements30
An EXamPle . & v v v i b i e e e e e e e e e e e e e e e .. 3

2
2
2
CHAPTER 3 ASYNCHRONOUS COMMUNICATIONS
3
3

L] L] L] L] 1] Ll
N -
L] L] L] L]
L] [L] .
L L] . . L] . L]
L] L 3 L] L] L]
L]
L]
L]
-
-

O~ ouU W

.
.
.
.
.
.
-
=)}

. . ' . .
—_ b a0
wN-= 0O

w WWwwwwwwwww
L]

.
-
=

APPENDIX A ASCIT CODE SET . & v v v v 4 4 o o o o o o o o o o o v oo .36
APPENDIX B SPECIFICATIONS . . & . v v 4 v v o v o o o o o o o o o o o 37
APPENDIX C USING A NULL MODEM &+ & 4 ¢ 4 v v ¢ v o o o o o + . . 38
EQUIPmNT MA INTENANCE . . L] L . L L] L] . . L] L L] L] . . L L . L L . . . L] Ld 3 9
INDEX L] L] L . . L] . . . L] L] L] L] . L] . . L] . . L] . L] L] . . L] L] . . L] . L] L] uo

CUSTOMER COMMENT FORM v + v v ¢« ¢ 4 v o ¢« ¢« o o o s+ + . . Last Page

iv

TABLES

Page
Table 3-1. Valid Communications Control Vector Specifications 20
Table 3-2. Communications Status Vector Information 23

Table 3-3. Microcommand Sequences for Controller and
CPU Interaction v v ¢ o o ¢ o o o o o« o o o o« o 24
" Table A- 1 L] ASCII code .] . L] L] . . L) [L]] L] L] . Ll . L] L] L] . . . - L . 36
FIGURES

Page
Figure 1-1. A Typical Remote Comnection 3
Figure 2-1. Synchronous Data Transmission « ¢ ¢« ¢ ¢ ¢« « « « T
Figure 3-1. Asynchronous Data Transmission 10
Figure 3-2. Communications Control Vector Format 19

]

CHAPTER 1

GENERAL INFORMATION

l.1 THE CONTROLLER

Wang's Synchronous/Asynchronous Communications Controller is available
in two physically different but operationally equivalent versions. The Model
2228B version is a double-card controller attached to a mounting bar for
plug-in compatibility with the I/0 slots in some 2200 Series Central
Processing Units (e.g., the 2200T, 2200VP, and 2200MVP). The Option 62B
version has no mounting bar and is configured for Wang systems with a
console-housed central processor (e.g., the PCS-II). There is also a Model
2228C version which can support Wang's 3275 BSC Emulator in addition to all
the software supported by the Model 2228B controller. A copy of this manual
is provided with each Synchronous/Asynchronous Communications Controller
acquired for a Wang system.

The controller has its own microprocessor, read only memory, and random
access memory, including multicharacter input and output buffers. Thus,
separate tasks related to data transmission and reception can be performed by
the controller and the central processor concurrently--if appropriate software
and a suitable modem are used in conjunction with the controller.

Microcode defining synchronous protocol tasks to be performed by the
controller is produced only by Wang Laboratories and made available in
terminal emulation software packages which also contain a set of program
modules defining tasks to be performed by the central processor. When the
Wang-developed synchronous communications software is used, all necessary
microcode is automatically loaded into the controller.

Built-in microcode supports asynchronous communications tasks;
therefore, asynchronous communications software may be user-developed or
acquired from Wang Laboratories. Information necessary for development of
asynchronous application programs is presented in Chapter 3.

Chapter 1. General Information

Wang's Synchronous/Asynchronous Communications Controller is a
two-in-one controller whose dual capabilities are suited to a wide variety of
communications applications. Hence, to avoid confusion, readers of this
manual should selectively concentrate on the information related to either
synchronous or asynchronous communications, not both types of information at
once. Furthermore, once a Wang system is equipped with the communications
controller, appropriate software, and a compatible modem, anyone planning to
transmit or receive data may wish to go immediately to the manual provided
with the software.

1.2 INSTALLATION

Installation of a communications controller is the responsibility of a
Wang Customer Engineer. If a controller arrives as an addition to existing
equipment, call the Wang Customer Engineer to schedule the installation. Do
not attempt to install the controller--any unauthorized installation voids the
warranty.

A 25-pin EIA (Electronic Industries Association) RS-232-C, CCITT V.24
compatible connector is located on the Model 2228B mounting bar or on the back
panel of a system having a console~housed central processor. A 12-foot (3.6m)
cable is supplied with the controller. The connector and the cable facilitate
hookup of a modem.

After the controller is inspected, diagnostically checked, and
installed, one end of the supplied cable is plugged into the connector
attached to the controller. Then, if a synchronous or asynchronous type modem
has already been installed near the Wang system, the other end of the cable is
plugged into the moden. However, installation of a modem is not the
responsibility of a Wang Customer Engineer, except in those cases where a
"null modem" is to be used. (See Section 1.3.)

1.3 MODEM CONSIDERATIONS

A modem (i.e., a modulator/demodulator) is needed for communications
with remotely located computers or digital equipment since data signals from a
computer must be converted (modulated) into a range of frequencies suitable
for transmission over telephone lines. Similarly, data signals received via
telephone lines must be demodulated before transfer to a computer, (See
Figure 1-1.)

2

Chapter 1. General Information

Wang
Central
Processor
Communications
Controller Modem
Telephone Line
Modem Line Communications Host

Adapter Controller Computer System

Figure 1-1. A Typical Remote Connection

The modem used with Wang's Synchronous/Asynchronous Communications
Controller may be rented from the telephone company serving the locality where
a Wang system is installed or may be purchased from any one of several modem
vendors. However, in either case, arrangements with the telephone company may
be necessary for connection of a modem to the telephone network.

Before a telephone company or a modem company representative arrives to
install a modem, the location of the Wang system must be planned to ensure its
proximity to the telephone equipment. Normally, modems are wired permanently
to a wall; therefore, in such cases, subsequent relocation of the Wang system
any great distance would necessitate relocation of the modem. EIA Standard
RS-232-C recommends use of short cables (less than 50 feet or 15 meters)
 between data terminal equipment and communications equipment. Longer cable
distances are possible only for operations at the lower range of transmission
rates in an environment relatively free of electromagnetic interference.

Usually the compatible modems for a particular software package are
listed in the documentation provided with the software. As one example, the
compatible dial-up modems and supported line speeds for Wang's Binary
?ygihronous Communications (BSC) 2780, 3780, or 3741 emulation software are as

ollows:

Modem Line Speed

(Bell type or equivalent)
201A 2000 bits per second
201C 2400 bits per second
208B 4800 bits per second

Chapter 1. General Information

As another example, the compatible modems for Wang's asynchronous
Teletype or 2741 emulation software are as follows:

Modem Line Speed
(Bell type or equivalent)
1034 or 103J Up to 300 bps (full duplex)
212A For 300 or 1200 bps (full duplex)
202C or 202S Up to 1200 bps (half duplex)

Very likely, other RS-232-C compatible modems commonly used with asynchronous
terminals having transmission rates in the range covered by the controller may
prove suitable for user-developed asynchronous communications software. If
acoustic couplers are used at both ends of a communications link, one acoustic
coupler must have the "originate" feature and the other must have the "answer"
feature, but ideally each acoustic coupler should have both features.

NOTE:

Remember two important requirements when ordering or
attempting to use a modem: .

1. A modem must be compatible with the software used in
conjunction with the communications controller.

2. Modems used at both ends of a communications line must
have the same characteristics (line speeds,
asynchronous or synchronous type, etec.).

Do not expect to communicate with a remotely located host
computer or other digital equipment if either of these
requirements is not satisfied.

Direct connection of a Wang system with either a host computer system or
another Wang system may be feasible under conditions such as the following:

. if the systems are in the same building,
. if electromagnetic interference is minimal,
. %1‘5"5 tzl;e) distance between the two systems does not exceed 50 feet
. b
. if each system has a communications controller, and
. if extension cables and a null modem are obtained from Wang
Laboratories.

Information about the extension cables and null modem is available from a Wang
Sales or Service Office. (Also, see Appendix C.)

2

CHAPTER 2

SYNCHRONOUS COMMUNICATIONS

2.1 SOME GENERAL FEATURES

The "protocols" (the conventions and procedures) for synchronous type
communications are inherently more complex than asynchronous protocols because
information 1is transmitted in "blocks" rather than character-by-character.
The blocks may consist of one or more records, and the records, in turn, may
be fixed or variable in length. Special characters are used, as needed, to
denote an end-of-record, an- end-of-block, or an end-of-transmission; also,
other special characters are used to denote a start-of-header and a
start-of-text. Furthermore, to ensure data reliability, error checking
techniques are incorporated on a block-by-block basis, and provision is made
for retransmission of a data block upon request from a remote site.

When viewed as a group, synchronous transmission devices use a wide
variety of block lengths. Often the physical nature of the data medium
determines the block length. For example, if a device is transmitting punched
card data, 80 characters per block is a convenient choice for the maximum
block length. If a device is transmitting data from diskettes, 128 characters
per block may be a convenient maximum block length. If a device is recelving
data for output to a printer, the print line length may be the most convenient
choice. In other cases, the size of the available buffers may become a
limiting factor. Generally speaking, however, there are two conflicting

trends associated with choosing a larger block size for a communications
protocol:

1. Time 1is required between successive blocks for error checking,
exchange of acknowledgment characters, and transmission of
synchronization characters preceding a new block; thus, when fewer
blocks (i.e., larger block sizes) are used for data transmission,
the overall data transmission rate increases.

2. The probability of transmission errors increases with larger block

sizes; each detected error produces a retransmission request, and
the overall data transmission rate decreases.

Hence, the maximum block length may be a compromise value determined during
system development and testing.

Chapter 2. Synchronous Communications

Among the many other concepts and special considerations associated with
synchronous communications are the following:

. transparent and non-transparent transmission

. point-to-point and multipoint operations

. timeout functions (for transmit, receive, disconnect, and continue
operations)

. record compression

. code translation.

Although discussions of these concepts go beyond the scope of this manual, the
list should remind readers that a variety of features may be required when
hardware and software are designed to support synchronous communications
between terminals and a computer or between computer systems.

By utilizing loadable microcode to support synchronous communications
applications, Wang's Synchronous/Asynchronous Communications Controller
achieves flexibility and avoids obsolescence. As indicated in Section 1.1,
microcode defining synchronous protocol tasks to be performed by the
controller 1is produced only by Wang Laboratories and made available in
terminal emulation software packages which also contain program modules
defining input and output tasks to be performed by the central processor. The
microcode is automatically loaded into the controller when the software is
used.,

Several of the most popular industry standard synchronous protocols
(e.g., the binary synchronous 2780, 3780, 3741, and HASP multileaving
protocols) are available in turnkey software. The software requires no
changes in the host computer software for any mainframe computer which
Supports one or more industry standard protocols. Furthermore, Wang's
software permits flexibility when choosing the peripherals to serve as input
and output devices. For example, a card reader, diskette, or disk can serve
as the input device in combination with a printer, diskette, or disk as the
output device. The console keyboard is active for transmission of sign-on and
other messages to the remote site, and the CRT is active for display of the
prompts and error messages built into the software to ensure operational
simplicity. Upon request, information is available from a local Wang Sales
and Service Office or from Wang Laboratories, Inc.

2.2 SYNCHRONOUS TRANSMISSION

As shown in Figure 2-1, synchronous data transmission requires the
following:

1. A clock signal to mark the location of each data bit.

2. A synchronization pattern, added to the start of the transmission,
to mark the first bit of the message.

3. Contiguous transmission of data bits following the synchronization
pattern (since one data bit is assumed for every clock period).

Chapter 2. Synchronous Communications

S s INY'2 parmrn HA B

One data bit Clock

interval I i i I | | ' 1 | a4
e, |) ! ' I i ' 1 signal

Lo R o | Data
, First data bit | | | | signal‘F_

| I] |] 1 i | .
|] |] |] t , Time —

[
| Typical 8-bit sync pattern
|

1
e —
: One 8-bit character
(01110010)

Synchronous data transmission requires a clock signal and a
synchronization pattern. Each data bit follows
contiguously after the sync word, and one data bit is
assumed for every clock period. A specified clock
transition (rising or falling) marks the start of each data
bit interval.

Figure 2-1. Synchronous Data Transmission

The clock signal requirement is one reason synchronous transmission

equipment is more complex than asynchronous equipment which does not require a

clock signal with the data signal. (See Figure 3-1.) On the other hand,

synchronous transmission does not need synchronizing START/STOP elements for
each character as is the case for asynchronous transmission equipment. The
sync words preceding a synchronous transmission block represent less total
communications ~channel overhead than the START and STOP elements in an
asynchronously transmitted message.

CHAPTER 3

ASYNCHRONOUS COMMUNICATIONS

3.1 PROGRAMMABLE FEATURES

As indicated in Section 1.1, Wang's Synchronous/Asynchronous
Communications Controller has built-in microcode to support asynchronous
application programming. The microcode, residing in the controller's read
only memory, implements the following standard and optional features when
activated by an application program residing in the central processor:

o data buffering
. code translation
. substitution for characters received in error
. communications control, e.g., monitoring CPU ready-busy conditions,
monitoring modem signals, implementing line turnaround procedures
. break signal detection and transmission
. detection of received timeouts
. detection of end-of-record characters
. automatic insertion and removal of shift characters
. sensing the Secondary Received Line Signal Detector and setting the

Secondary Request to Send signal (also called reverse or supervisory
channel data signals).

The controller's random access memory is used for purposes such as the
following: (1) storage of initialization information, including code
translation tables and a communications control vector, (2) storage of current
status information, including parity and framing error detection for received
data, binary counts of both the total number of characters and the number of
end-of-record characters in the receive buffer, the received data timeout
count down, and other conditions, and (3) storage of buffered input and output
data. For each application, the desired transmission rate, communication
mode, character format options, and some special operations are selected under
program control when a $GIO statement in the application program loads the
communications control vector information into the controller.

Chapter 3. Asynchronous Communications

A selectable-speed clock on the controller supports serial asynchronous
transmission and reception at line speeds from 50 to 9600 bps (bits per
second). Any one of the following rates can be set via the initializing
control vector: 50, 75, 100, 110, 134.5, 150, 200, 300, 600, 1200, 1800,
2400, 3600, 4800, 7200, or 9600 bps. Usually rates from 50 to 1800 bps are
used for point-to-point, dial-up telecommunications; rates above 1800 bps are
used for directly connected RS-232-C compatible equipment.

Any one of the following transmission modes is supported:

. half duplex (independent transmission one-way-at-a-time alternately)
. half duplex with automatic deletion of received null characters
. full duplex (independent transmission two-ways simultaneously)
. full duplex with automatic deletion of received null characters.
The desired mode is set via a particular byte in the ten-byte communications
control vector.

Via other bytes in the vector, the asynchronous character format can be
set as follows:

. odd, even, or no parity
. 5,6, 7, or 8 data bits per character
. 1, 1.5, or 2 stop bits per character.

Figure 3-2 shows the byte-by-byte format of the communications control
vector, and Table 3-1 lists the valid values representing the asynchronous
transmission options. Also, Table 3-2 gives the format of the communications
status vector, and Table 3-3 lists the $GIO microcommand sequences needed to
operate the controller. An example in Section 3.14 illustrates some
programming techniques.

3.2 ASYNCHRONOUS TRANSMISSION

The information in this section may be ignored by readers who are not
interested in a detailed description of the character-by-character
transmission procedure used by asynchronous equipment, in general, and Wang's
communications controller, in particular.

Asynchronous transmission 1is often called start-stop transmission
because each character is framed by start and stop elements as shown in Figure
3-1. The start element 1is represented by a transition from a logic "1"
voltage level to a logic "O" voltage level. The nominal interval during which
the logic "0" level is maintained for a start element is the same length as
the interval used for each data bit. In some equipment, the data bit interval
may be a fixed value or one of several possible values (if the transmission
rate for the equipment is selectable). The length of the data bit interval is
shorter when the transmission rate is higher.

Chapter 3. Asynchronous Communications

Immediately following transmission of a start element, the voltage level
is changed or not changed depending upon whether the first data bit is 1 or
0. (See Figure 3-1.) Similarly, after the first data bit interval, the
voltage level is changed or not, as required, to represent the second data
bit--and so on, successively, for each data bit. The number of transmitted
data bits depends upon the equipment being used; it may be a fixed number for
some equipment or a selectable number in other cases.

After the last data bit is transmitted, a parity bit may be transmitted
if provisions for parity information are included in the equipment design.
The parity bit interval is the same length as the data and start bit
intervals. The voltage level may be a logic "0" or "1" depending upon the
type of parity (odd or even) and the number of 1's occurring in the preceding
data bits.

Finally, the stop element is transmitted using a logic "1" voltage level
which is maintained until the next character 1is transmitted. Usually there
is no upper 1limit to the length of a stop element; however, there is a lower
limit depending upon the design of the transmitting equipment. The minimum

length stop element may be a fixed value for some equipment or a selectable
value in other cases.

Wang's Synchronous/Asynchronous Communications Controller provides the
capability to communicate with a variety of asynchronous type equipment since

there are selectable options for the character format, the parity, and the
transmission rate.

Each character is framed by a start

element and a stop element. The

Start element Stop element length of tge start element(is

SBit 3 two data-bit equal to the data bit interval (the

one data-bit interval) (intervals) leading edge of the start element

is represented by a transition from
a logic "1 voltage level to a
________________ logic "0" level), The stop element
has a minimum length determined by
the design of the equipment

""" (typical lower limits are 1,0, 1.5
or 2.0 data bit intervals); there
is no upper limit.

Data bits plus
one parity bit (optional)

Stop element
{one data-bit
interval)

Stop element Stop element l
/_,‘
L] | e l_LT
One 8-bit character // One 8-bit character

)
Start Start
Start element element
element

Figure 3-1. Asynchronous Data Transmission

10

Chapter 3. Asynchronous Communications

g@h Character Transmission

For asynchronous applications, Wang's communications controller
transmits each character by modulating the transmitted data signal on Pin 2 in
the connector as follows:

1. The transmitted data signal is set to "0" for one bit-time,
N representing the start bit.

2. Successively, low-order bit first, the signal is set for one
» bit-time to the value of each data bit until the number of
transmitted data bits equals the number specified in the
communications control vector; therefore, only the low-order 5, 6,
7, or 8 bits of a character are transmitted.

3. If odd or even parity is specified in the communications control
vector, the signal is set for one bit-time to the appropriate value
for the type of parity specified. In particular, if odd parity is
specified, the parity bit is equal to 1 when the preceding data bits
contain an even number of 1-bits; thus, for odd parity, the total
number of 1's in the data bits plus the parity bit is an odd
number. If even parity is specified, the parity bit is equal to 1
when the preceding data bits contain an odd number of 1-bits; thus,
for even parity, the total number of 1's in the data bits plus the
pazttydbit is an even number. If no parity is specified, step 3 is
omitted.

4. The transmitted data signal is set to "1" for a minimum interval
equal to 1, 1.5, or 2 bit-times, depending upon the number of stop
bits specified in the communications control vector.

When no character is being transmitted, the transmitted data signal on Pin 2
is held at the value "1".

Character Reception

During asynchronous communications, the controller receives a character
by detecting changes in the received data signal on Pin 3 in the connector as
follows:

1. A transition from the voltage level representing logic ™1" to the
level representing logic "0" for at least one-half a bit-time is

interpreted as the leading edge of the start bit for an incoming
character.

2. The received data signal is sampled successively at times
corresponding to the nominal center of each data bit. In
particular, the nominal center of the first data bit is 1.5
bit-times after the leading edge of the start bit. The center of
each subsequent bit occurs one bit-time after the center of its
predecessor. Successively, low-order bit first, the bits in the
character being received are set to correspond to the sampled
values. The number of data bit samples taken by the controller
equals the number of data bits specified in the communications

11

Chapter 3. Asynchronous Communications

control vector. If the number of samples is less than 8, the
remaining high-order bits in the received character are

automatically set to 0 (unless the shift character option is in
effect).

3. A parity bit, if specified, is read by sampling the received data
signal again--one bit-time after the last data bit is sampled. The
sampled parity value is compared with a calculated value based on
the received data bits and the type of parity specified. If the
recelved and calculated parity values are unequal, a designated bit
in the communications status vector is set to 1 to indicate a parity
error has occurred.

4. One bit-time after the received data signal is sampled for a parity
value or the last data bit (if a "no parity" option is in effect),
the signal is sampled again. Now, if the signal is ", a valid
stop bit is recognized. On the other hand, if the signal is "o", a

framing error has occurred; consequently, a designated bit in the
status vector is set to 1.

NOTE:

When developing or using an application program, remember
that the transmission rate, the number of data bits, the
type of parity, and the number of stop bits set for the
communications controller must match the specifications for
equipment in use at the other end of a communications link.

3.3 DATA BUFFERING

The controller has two multicharacter data buffers, a 175-byte transmit
buffer and a 255-byte receive buffer. With these buffers, data transmission/
reception operations performed by the controller with respect to the modem can
overlap data input/output operations performed by the CPU with respect to the
I/0 peripherals designated for a communications appliecation.

For example, after the CPU sends a data string to the controller, the
CPU is free to perform an independent task such as fetching the next string of
data to be transmitted from the input device--while the controller is
performing such tasks as code translation, character formatting, and
transmission to the modem.

NOTE:

If the transmit buffer becomes full while the CPU is
Sending data to the buffer, the data transfer rate from the
CPU to the controller automatically slows to the rate at

which characters are being transmitted from the buffer. No
characters are lost.

12

Chapter 3. Asynchronous Communications

On the other hand, the controller is free to receive a data string,
perform operations such as code translation, and store the data in the receive
buffer--while the CPU is performing an independent task such as. outputting
data to a designated peripheral.

NOTE:

If characters are received when the receive buffer is full,
a buffer overrun condition occurs, and the appropriate
error bit is set in the communications status vector. No
other action is taken by the controller.

3.4 SUBSTITUTION FOR CHARACTERS RECEIVED IN ERROR

When a character is received with either a parity or a framing error, a
substitute character (defined by byte 4 in the communications control vector)
is automatically supplied by the controller; also, the appropriate error bit
ijs set in the communications status vector. For example, a special character
such as @ (or any other character not likely to occur in the incoming data)
can be specified as the character to automatically replace any characters
received in error. Replacement occurs before code translation, if any, is
performed.

3.5 CODE TRANSLATION

The controller's code translation feature allows data interchange
between the CPU and the controller in the ASCII code (American Standard Code
for Information Interchange) native to Wang systems--regardless of the
transmission/reception code for a particular application.

Space is reserved in the controller for two 256-byte code translation
tables: (1) a transmit code translation table and (2) a receive code
translation table. Specification of such tables is optional. Translation
tables, supplied in the application program operating in the CPU, must be

loaded into the controller by appropriate $GIO statements in the program. (See
Section 3.12.)

The automatic code translation operation is enabled by loading a
transmit or a receive code translation table (or both) after loading the

communications control vector. If no tables are loaded, the code translation
feature is effectively disabled.

During transmission, the code corresponding to a character sent from the
CPU to the controller is used as an 8-bit index for a table lookup in the
transmit code translation table. Then, an 8-bit character obtained from the
table is placed in the transmit buffer. However, if byte 3 of the
communications control vector specifies less than eight data bits per
character, only the relevant low-order bits of each character are actually
transmitted.

13

Chapter 3. Asynchronous Communications

During reception, the code corresponding to a character received by the
controller is used as an 8-bit index for a table lookup in the receive code
translation table, and an 8-bit character is obtained from the table. If the
translated character is a null character, (00)46, and the high-order
hexdigit in byte 2 in the communications control vector has the value 1 or 4,
the character is discarded. Otherwise, the translated character is placed in
the receive buffer.

NOTE:

Superfluous characters used for timing or fill can be
removed automatically by translating them to null
characters. This feature is applicable to half duplex and
full duplex operations. (See Table 3-1.)

3.6 INSERTION AND REMOVAL OF SHIFT CHARACTERS

For applications involving data transmission and reception in a code set
which utilizes shift characters (e.g., a Baudot code set or an IBM 2741 code
set), a special feature of the communications controller removes the necessity
for the program operating in the CPU to handle insertion and removal of shift
characters. 1Instead, the upshift and downshift characters are defined in
bytes 7 and 8 of the communications control vector. Also, the number of data
bits per character is set to 5 or 6 (depending upon the application) by
choosing an appropriate value for the high-order hexdigit in byte 3 of the
communications control vector. Then, to activate automatic insertion and
removal of shift characters, appropriate code translation tables are defined
and loaded into the controller.

During data transmission, the controller examines and interprets the two
high-order bits of each translated character in the transmit buffer as "shift
status" bits as follows:

Two High-order Bits Meaning
00 Downshifted character.
01 - Upshifted character.
10 Character doesn't care about shift status.
1 Character doesn't care about shift status.

A shift character is automatically transmitted between any two characters
whose shift status bits are different. 1In such cases, if the second character
has upshifted status, an upshift character is transmitted prior to
transmission of the second character. Alternatively, if the second character
has downshifted status, a downshift character is transmitted prior to
transmission of the second character. The shift status bits are not
tmmmmwsmmtMnMMeraaMWawmnywmmnwdmrmwmwr
is only 5 or 6 (low-order bits) if byte 3 in the communications control vector
is appropriately specified.

14

2

Chapter 3. Asynchronous Communications

During reception, the controller sets the value of the high-order bit of
each received character (before code translation) according to the most
recently received shift character as follows:

High-order Bit Meaning
1 Upshifted character.
0 Downshifted character.
NOTE:

If a received character is a shift character, the character
is discarded. Otherwise, the character is code translated
and placed in the receive buffer.

3.7 DETECTING END-OF-RECORD CHARACTERS

The end-of-record detection feature is convenient for applications where
a received data stream contains meaningful record delimiters, e.g., CR
(carriage return) codes. The feature is particularly convenient for
applications where there is no necessity to display the data while it is being
received.

Since any number of characters can be defined as end-of-record
characters, the controller can divide a received data stream into records and,
thus, eliminate the need for the program operating in the CPU to perform the
task.

To activate the end-of-record detection feature, byte 6 in the
communications control vector must be set to HEX(01); also, a suitably defined
receive code translation table must be loaded into the controller. To be
suitably defined, the high-order bit for codes in the receive code translation
table must be set to 1 for each character defined as an end-of-record
character (and set to zero for all other characters).

During reception, if end-of-record detection is enabled, the controller
maintains a count of the number of end-of-record characters currently stored
in the receive buffer. This binary count is maintained in byte 5 of the
communications status vector (see Table 3-2).

With an appropriate $GIO statement (see Section 3.12), the application
program can read the status vector into the CPU. Then, the program can test
the status information to ensure the availability of a complete record before
requesting transfer of buffered data (via another $GIO statement whose
microcommand sequence performs data transfer from the controller to the CPU).

When data is actually transferred from the controller's receive buffer
to the CPU, only those characters up to (and including) the first
end-of-record character are transferred. Furthermore, the high-order bit in
the end-of-record character is changed from 1 to 0 when the character is
transferred.

15

Chapter 3. Asynchronous Communications

NOTE:

If the end-of-record detection feature is not needed for an
application (or cannot be used because the high-order bit
for codes in the receive code translation table is set to 1
for a purpose other than defining an end-of-record
character), byte 6 in the communications control vector
should be set to HEX(00) to disable end-of-record detection.

3.8 MONITORING RECEIVED TIMEOUTS

The communications controller has the capability to monitor received
data timeouts. Byte 5 in the communications control vector is used to set the
binary value of the timeout in units of 0.1 seconds. For example, the minimum
timeout condition, 0.1 seconds, is ,specified by storing HEX(01) in byte 5.
The maximum timeout condition, 25.5 seconds, is specified by storing HEX(FF)
in byte 5. On the other hand, storing HEX(00) in byte 5 disables the
monitoring feature for received timeouts.

NOTE:

If a timeout interval is specified, the controller
maintains a received data timeout countdown in byte 6 of
the communications status vector. (See Section 3.11.)

3.9 SENDING AND DETECTING BREAK SIGNALS

The communications controller has the capability to send and detect
break signals under program control. Bytes 9 and 10 in the communications
control vector are used to define the break signal transmission and detection
intervals in units of 10 milliseconds. For example, HEX(14) stored in byte 9
defines an interval equal to 200 milliseconds for transmitted break signals.
Similarly, HEX(11) stored in byte 10 defines an interval equal to 170
milliseconds for detection of break signals.

In addition to specifying the break signal intervals in bytes 9 and 10,
it is necessary to use the low-order hexdigit position in byte 2 to specify
ghil participating modem signals and the polarity of the break signals as

ollows:

16

3

2

Chapter 3. Asynchronous Communications

Byte 2 Break Signal
(Low-order Hexdigit) Polarity Modem Signals
0 none none
1 1 Transmitted/Received Data
1Ty
2 1 Secondary Request to Send, or
-L—————J_O Secondary Received Line Signal
s Detector
3 1 Secondary Request to Send, or
0 Secondary Received Line Signal
Detector
NOTES:

1. The Transmitted Data and Received Data modem signals
are used with Bell 103 type modems.

2. Normally, the Secondary Request to Send and Secondary
Received Line Signal Detector modem signals are used
with Bell 202 type modems (which must be ordered with

the reverse channel option in order to support break
signal operation).

Transmission of a break signal by the controller involves inverting the
level of the specified modem signal (i.e., Transmitted Data or Secondary
Request to Send) for an interval defined by byte 9 of the communications
control vector.

Detection of a break signal occurs when the controller senses the level
of a specified modem signal (Received Data or Secondary Received Line Signal
Detector) is continuously inverted for an interval at least as long as the
interval defined by byte 10 of the communications control vector.

NOTE:

Detection of a break signal causes the "break signal

received" bit in the status vector to be set. No other
action is taken by the controller.

17

Chapter 3. Asynchronous Communications

3.10 SPECIFYING THE COMMUNICATIONS CONTROL VECTOR

Figure 3-2 shows the format of the communications control vector, and
Table 3-1 gives the valid specifications for the vector. The table is divided
into two portions since the first three bytes of the vector are dual-purpose
while the remaining bytes are single-purpose with respect to the available
communications options and features.

In an application program, the control vector should be defined by a
one-dimensional array having 10 elements with one byte per element. For
example, to represent the control vector by the array C$(), use

DIM C$(10)1

Also, as a general programming practice, all elements should be initialized to
binary zero by a statement of the form

INIT(00) C$()
before assigning values to particular elements in the array.
Then, as illustrated by the following statements, individual bytes in

the control vector can be assigned values other than binary zero to select the
desired options and define any special characters for the application.

Statement Meaning
C$(1) = HEX(17) One stop bit; 300 bits per second.

C$(2) = HEX(11) Half duplex with automatic deletion of null characters;
break enabled on transmit/receive.

C$(3) = HEX(23) Seven data bits; odd parity.

C$(Y4) = HEX(SE) Substitute character for parity or framing error is an
up-arrow, 4 .

C$(5) = HEX(0A) Timeout interval is 1 second.

When defining some special characters, remember to choose a compatible
value in the first three bytes of the communications control vector. For
example, if defining upshift and downshift characters in bytes 7 and 8, the
high-order hexdigit in byte 3 must have the value 0 or 1 (since the shift
feature can be used only with code sets having 5 or 6 data bits per
character). See Section 3.6 and Table 3-1.

NOTE:

The communications control vector must be loaded into the
controller via a $GIO statement containing the appropriate
microcommand sequence from Table 3-3. (See Section 3.12.)

18

£

Chapter 3. Asynchronous Communications

COMMUNICATIONS CONTROL VECTOR BYTES

112 |3|4|5|6|T7T|8]9 /|10

l—a-Break Signal Detection Interval,
b in units of 10 milliseconds.

. » Break Signal Transmit Interval,
] in units of 10 milliseconds.

L» Downshift Character.

L Upshift Character.

L» End-of-record Detection Flagh.

L = Received Data Timeout Interval,
in units of 0.1 seconds.

L--— Received Data Substitute Character
/ for Parity and Framing Errors.

. Number of Data Bits per Character (high-order hexdigit)®.
Parity Option (low-order hexdigit)¥®.

Transmission Mode (high-order hexdigit)®.
Break Signal Option (low-order hexdigit)¥.

{Number of Stop Bits per Character (high-order hexdigit)¥.
Transmission Rate (low-order hexdigit)®.

#See Table 3-1.

Figure 3-2. Communications Control Vector Format

19

Chapter 3. Asynchronous Communications

Table 3-1. Valid Communications Control Vector Specifications

Byte®* High-order Hexdigit Low-order Hexdigit
1 0 = Illegal value 0 = 50 bps (bits per second)
1 = 1 Stop bit 1 = 75 bps
2 = 1.5 Stop bits 2 = 100 bps H
3 = 2 Stop bits 3 = 110 bps
) 4 = 134.5 bps
5 = 150 bps *
6 = 200 bps
7 = 300 bps
8 = 600 bps
9 = 1200 bps
A = 1800 bps
B = 2400 bps
C = 3600 bps
D = 4800 bps
E = 7200 bps
F = 9600 bps
2 0 = Half duplex 0 = Break disabled
-1 = Half duplex with 1 = Break enabled on transmit/receive
deletion of 2 = Break enabled on Secondary Req.
received null to Send & Sec. Rec. Line Sig. Det.
characters 3 = Same as 2 with inverted polarity
2 = Full duplex
.~ 3 = Full duplex with
deletion of received
null characters
3 0 = 5 Data bits per 0 = No parity
character 1 = Even parity
1 = 6 Data bits 2 = No parity
2 = T Data bits 3 = 0dd parity
3 = 8 Data bits
*For bytes Y4 through 20, see Table 3-1 (Continued).

2

20

Chapter 3. Asynchronous Communications

Table 3-1. Valid Communications Control Vector Specifications (Continued)

Byte

Hexadecimal Notation®

Remarks

4

Xy

Substitute character
for parity/framing
errors.

Each received character having a parity
or framing error is replaced by the desig-
nated character (replacement occurs prior
to code translation if translation tables
are being used). See Section 3.4.

Timeout interval in
units of 0.1 seconds.

The specification in hexadecimal notation
represents the timeout interval in units
of 0.1 seconds, e.g., (28)4¢g = (36)10
specifies an interval of 3.6 seconds.
See Section 3.8.

00

01

Disable end-of-record
detection.
Enable end-of-record
detection.

If enabled, the end-of-record characters
must be defined via the receive code
translation table by setting the high-
order bit to 1 for each code corres-
ponding to an incoming end-of-record
character. See Section 3.7.

Upshift character.

Downshift character.

To enable shift code insertion/deletion,
the high-order hexdigit in byte 3 of the
control vector must be 0 or 1 (i.e., the
number of data bits per character must be
5 or 6). Also, the transmit code
translation table must identify all
downshifted, upshifted, and "don't care"
characters by setting the two high-order
bits to 00, 01, and either 10 or 11 as
described in Section 3.6. The receive
code translation table must allow for the
controller's automatic setting (before
translation) of the high-order bit to 1
for all incoming upshifted characters.

Break signal transmit
interval in units of
10 ms.

10

Break signal detection
interval in units of
10 ms.

To enable break signal transmission/detec-
tion, the low-order hexdigit in byte 2 of
the control vector must specify the
polarity and the modem signals. If bytes
9 and 10 are both HEX(00), the low-order
hexdigit in byte 2 should be 0. The byte
9 and 10 specifications in hexadecimal
notation represent break signal transmit
and receive intervals in wunits of 10
milliseconds, e.g., (12)1g = (18)1p
specifies a 180 ms interval. See Section
3.9.

%y and y each denote any hexdigit (0 through 9, A through F).

If a feature is

not desired, the byte positions associated with the feature can be ignored if
the communications control vector has been initiated to binary zero.

21

Chapter 3. Asynchronous Communications

3.11 THE COMMUNICATIONS STATUS VECTOR

Space is reserved in the controller's random access memory for a
communications status vector whose byte and bit positions are used
automatically as shown in Table 3-2. The first three bytes of the status
vector are cleared automatically when the communications control vector is
loaded into the controller from the CPU, and whenever the status vector is
read by the application program. (See Section 3.12.)

Several flags are set in particular bit positions in the first three
bytes of the status vector during controller operations. Also, binary counts
for the current number of characters in the receive buffer and the number of
end-of-record characters are maintained in bytes U4 and 5. Similarly, a binary
count for the current number of characters in the transmit buffer 1is
maintained in byte 7. Byte 6, on the other hand, is similar to a real time
clock whose value is initiated to the received data timeout interval (as
specified in byte 5 of the communications control vector) each time one of the
following events occurs:

a) a $GIO "start receiving data" operation begins,

b) a line turnaround occurs during a $GIO "send, then receive data"
operation, or

¢) a character is received during either operation.

However, if the byte 6 value is not reset by one of these operations, the
countdown proceeds to zero.

Whenever desired, the status vector information can be read (transferred
to the CPU) by a $GIO0 statement containing the appropriate microcommand
sequence from Table 3-3. (See Section 3.12.) After transfer to the CPU,
status vector information can be tested, as required, by the application
program.

22

&

&

2

Chapter 3. Asynchronous Communications

Table 3-2. Communications Status Vector Information

Byte Bit#® Meaning
1 1 1 = Break signal received.
&
2 1 1 = Received Line Signal Detector On.
2 1 = Sec. Ree'd Line Sig. Det. On.
> 3 1 = Data Set Ready modem signal On.
3 1 1 = Receive parity error detected.
2 1 = Receive buffer overrun error detected.
3 1 = Receive framing error detected.
y all Binary count of the number of characters
in the receive buffer.
5 all Binary count of the number of end-of-record
characters in the receive buffer.
6 all Received data timeout countdown.
7 all Binary count of the number of characters in
the transmit buffer.

#Bit positions in each byte are numbered from 1 (low-order) to 8 (high-order).

3.12 CPU AND CONTROLLER INTERACTION VIA $GIO STATEMENTS

To operate the Synchronous/Asynchronous Communications Controller for an
asynchronous application, a user-developed application program residing in the
CPU should include $GIO statements with suitable microcommand sequences. A
1ist of valid microcommand sequences for controller operations is presented in
Table 3-3.

23

Chapter 3. Asynchronous Communications

Table 3-3. Microcommand Sequences for Controller and CPU Interaction

Mierocommand
Controller and CPU Interaction Sequence* Remarks

Set communications control vector 4402 A000 4u0C
Read communications status vector (See ** below)
Load transmit code translation table|4404 A000 L44OC
Load receive code translation table |U405 A000 440C

b
-~

Disconnect 4106 ¢
Send break signal 4uo7

Start receiving data 4408 For half or full duplex.

Transfer received data to CPU (See ** pelow) | For half or full duplex.

Send data 440A A000 340C | For half or full duplex.

Send, then receive data 440B A0OO 440C | For half duplex only.

Stop transmitting yuoc For full duplex protocols.
Continue transmitting 440D For full duplex protocols.

3

*A microcommand sequence can be specified directly or indireectly in a $GIO
statement. If the microcommand sequence is specified directly (as the
arg-l1 component), each four-hexdigit-code can be separated from the
previous one by a space for readability as shown in this table. If the
microcommand is specified indirectly (by assigning the sequence to a
variable and using the variable as the arg-l component), spaces cannot
be used between the four-hexdigit-codes, e.g., AP = HEX(44028000440C).
Furthermore, the dimension of the variable must be large enough to
ensure the presence of two trailing space characters which serve as the
pseudo-microcommand 2020 denoting the end of the sequence.
Unpredictable results may occur if at least one trailing blank does not
follow an indirectly specified microcommand sequence. (See the
discussion of $GIO in the BASIC or BASIC-2 language reference manual
provided with the Wang System.)

¥%*The valid microcommand sequence is dependent upon whether the controller
is installed in either a 2200MVP central processor or some other 2200
central processor. See the following table.

Controller and CPU Interaction non-2200MVP | Sequence for 2200MVP R
Read communications status vector | 4403 C620 4403 1020 02FF 03FF 1223 C620
Transfer received data to CPU 4409 c620 4409 1020 O02FF 03FF 1223 €620 o

24

Chapter 3. Asynchronous Communications

Brief descriptions of the operations in Table 3-3 follow. A sample $GIO
statement is shown for each operation; however, in a user-developed program,
different comments and variables may be used in the $GIO statements. Also,
the address 01C (which corresponds to the standard peripheral address for the
controller) may not be appropriate for the communications controller in the
system being used. :

Set Communications Control Vector

$GIO SET CCV /01C (4402 A0OO 440C, G§) CB()

The communications control vector, defined here by the array C8(), is set
(loaded into the controller) when the statement is executed. Here, 01C is the
address of the controller, and GB represents the error/status/general-purpose
registers.

NOTE:

The controller's transmit and receive buffers, as well as
the communications status vector and code translation
tables, are cleared automatically when the communications
control vector is loaded.

Read Communications Status Vector

$GIO READ CSV /01C (4403 C620, GB) AB
or for a 2200MVP central processor
$GIO READ CSV /01C (4403 1020 O2FF O3FF 1223 C620, GB) AB

The information currently in the communications status vector is read into the
CPU and stored in the character string AB (which must be at least 7 bytes
long) . '

NOTE:

The error and received break indicators (i.e., bytes 1 and
3) in the communications status vector are cleared
automatically after the status vector information is read
into the CPU. In a program for a 2200MVP central
processor, insert a 1line containing a $BREAK statement
before each line containing a "read communications status
vector% statement.

25

Chapter 3.

Asynchronous Communications

Load Transmit Code Translation Table

$GIO LOAD TTBL /01C (4404 AOOO 440C, G$) C1$()

The transmit code translation table is loaded into the controller from the
array C1$() if such an array is previously defined in the application
program. The optional transmit code translation feature is enabled only if a
transmit code translation table is loaded after the communications control

vector is loaded into the controller.

NOTES:

The transmit code translation table should be exactly
256 bytes long. The byte positions in the table should
contain the non-ASCII character codes (the "after
translation characters") arranged in a sequence
corresponding to Wang's ASCII character codes (the
"before translation characters"). In effect, the
translation procedure uses the binary equivalent of an
outgoing character's hexadecimal code as an index for a
table 1lookup operation by which the appropriate
translation character is found. For example, if the
outgoing ASCII character is an uppercase B, i.e.,
HEX(42), whose binary value is 66, the corresponding
non-ASCII character should be located in the 67th
position of the transmit code translation table.
(Remember that the first position in the table
corresponds to the binary value zero.)

If shift character automatic insertion/removal is in
effect (i.e., the specified number of data bits per
character is 5 or 6), the two high-order bits of each
code in the transmit code translation table must
conform to the appropriate values given in Section 3.6.

26

&

e

Chapter 3. Asynchronous Communications

Load Receive Code Translation Table

$GIO LOAD RTBL /01C (4405 A000 440C, G$) C2$()

The receive code translation table is loaded into the controller from the
array C2$() if such an array is previously defined in the application
program. The optional receive code translation feature is enabled only if a
receive code translation table is loaded after the communications control
vector is loaded into the controller.

NOTES:

1. The receive code translation table should be exactly
256 bytes long. The byte positions in the table should
contain ASCII character codes (the "after translation
characters") arranged in a sequence corresponding to
the non-ASCII character codes (the "before translation
characters"). In effect, the translation procedure
uses the binary equivalent of an incoming character's
hexadecimal code as an index for a table 1lookup
operation by which the appropriate translation
character is found. For example, if the incoming
non-ASCII character is a HEX(18), the binary value is
24; therefore, the corresponding ASCII character should
be located in the 25th position of the receive code
translation table. (Remember that the first position
in the table corresponds to the binary value zero.)

2. If shift character automatic insertion/removal is in
effect, the 256-byte receive code translation table
represents two 128-byte tables. The first 128 bytes in
the table should represent the conversions for incoming
downshifted characters corresponding to the hexadecimal
codes HEX(00) through HEX(7F). The second 128 bytes
should represent conversions for incoming upshifted
characters corresponding to the hexadecimal codes
HEX(80) through HEX(FF).

3. If end-of-record character detection is enabled, the
) high-order bit for codes in the receive code
translation table must be set to 1 for each character
defined as an end-of-record character (and set to zero
8 for other characters).

27

Chapter 3. Asynchronous Communications

Disconnect
$GIO DISCONNECT /01C (4406, G§)

The controller disconnects from the line by setting the Data Terminal Ready
signal to zero for a period of three seconds.

Send Break
$GIO0 BREAK /01C (4407, GB)
The controller sends a break signal in accordance with the circuit and

polarity denoted by the low-order hexdigit in byte 2 of the communications
control vector. See Table 3-1 and Section 3.9.

Start Receiving Data

$GIO START RCV /01C (4408, GB)

One "start receiving data" statement is needed to enable data reception via
the controller, whether set for the full or half duplex mode. If set for half
duplex mode, the transmit and receive buffers are cleared first. The
controller enters the receive mode and starts receiving data. Also, the
receive timeout countdown is started by initiating byte 6 of the
communications status vector to the value specified as the timeout interval
(if different from binary zero).

Transfer Received Data to the CPU

$GI0 RCV /01C (4409 C620, GB) DB()
or for a 2200MVP central processor
$GIO RCV /01C (4409 1020 02FF O3FF 1223 €620, GB) DB()

All or part (if an end-of-record character is detected) of the receive buffer
characters are transferred from the controller to the CPU and stored in the
array DB(). (See Section 3.7.) The PGIO data buffer, denoted here by D§(),
should be at least 255 bytes long since the controller has a 255-byte receive
buffer. Bytes 9 and 10 in the error/status/general-purpose registers provided
by the variable GB (i.e., arg-2 of the $GIO statement) are set to the binary
representation of the number of bytes transferred, whether stored or not. 1In
a program for a 2200MVP central processor, insert a line containing a $BREAK
statement before each line containing a "transfer received data" statement.

Send Data
$GIO SEND /01C (440A A0OO 440C, GB) FB() <1, N >
If set for half duplex mode, the receive buffer is cleared first. For half or

full duplex mode, bytes 1 through N of the array FB() are transferred from the

28

(o

*

4
~

Chapter 3. Asynchronous Communications

CPU to the controller where they are stored in the transmit buffer after code
translation is performed, if enabled. Then, the controller transmits the data
and remains in the transmit mode (if set for the half duplex operation).

NOTES:

1. The BGIO microcommand A0OO implements a particular
A signal sequence repeatedly (once per character until
each character in the arg-3 data buffer is transferred
from the CPU to the controller). In Wang BASIC (but
3 not BASIC-2), the RGIO syntax requires a single
argunent format for arg-3. Therefore, generally
speaking, a PBPACK statement should be used to pack
multiargument data into a single argument prior to
executing the '"send data"™ PBGIO statement--if the
application requires a specially formatted buffer.

2. If desired, data can be transmitted via the controller
using a PRINT, PRINTUSING, or MAT PRINT statement in
conjunction with BGI0 statements by employing
techniques such as those described in Section 3.13.

Send Then Receive Data

$GIO SEND RCV /01C (440B A000 440C, GB) FB() <E>

This statement is applicable only for the half duplex mode of operation.
Beginning with the Eth byte, all remaining bytes of the array FB() are
transferred from the CPU to the controller for storage in the transmit buffer
after code translation is performed, if enabled. The controller transmits the
data and then executes a "start receiving data" operation.

NOTES:

1. For half duplex communications, the "send data" PBGIO
operation should be used to send all but the last bytes
of data.. The "send, then receive data" BGIO operation
should be used to send the 1last bytes of data.

? Afterwards, the "transfer received data to CPU"™ PBGIO

operation should be used. (The "send, then receive

data" BGIO operation automatically implements a 1line
turnaround procedure, thereby ensuring the controller's
readiness to receive data without loss.)

2. For full duplex communications, only the "send data"
and "transfer received data to CPU"™ BGIO operations are
needed. The "send, then receive data" $GIO operation
should not be used since the controller (in full duplex
mode) remains in both the transmit and receive modes

simultaneously and line turnaround does not occur.

29

Chapter 3. Asynchronous Communications

Stop Transmitting

$GIO STOP SEND /01C (440C, G$)

This statement is applicable for the full duplex mode of operation, in cases
where the CPU must stop transmission temporarily because a control sequence is
received without clearing the contents of the transmit buffer. Transmission
commences when a "send data" $GIO operation or a "continue transmitting" $GIO
operation is executed.

Continue Transmitting

$GIO CONTINUE SEND /01C (440D, G$)
This statement can be used to restart transmission if the transmit buffer

contains data and transmission has been halted by a "stop transmitting" $GIO
operation.

3.13 TRANSMISSION VIA PRINT, PRINTUSING, OR MAT PRINT STATEMENTS

If desired, data transmission can be implemented via PRINT, PRINTUSING,
or MAT PRINT statements by employing the special technique described here.
The technique effectively preserves the structure of the "send data"™ $GIO
operation (described in Section 3.12) by breaking the operation into three
phases, two of which must be replaced by $GIO operations introduced in this
section.

Consider the following statement:
100 $GIO SEND DATA /01C (u440A AOOO 4i0C, G$) A$()
and note the three phases corresponding to the microcommand sequence--

4404 Sends the code (0A)1g to the controller via a CBS strobe to
initiate data transmission.

A000 Performs data transfer using a prescribed sequence repeatedly
(once for each character) until all data in the arg-3 buffer
A$() is transferred from the CPU to the controller.

4yocC Sends (0C)1g to the controller via a CBS strobe to terminate
data transmission.

Now, for convenience, let's define two operations not shown in Table 3-3:

Operation Microcommand Sequence
Start send 440A
End send hoC

30

Chapter 3. Asynchronous Communications

Using the two new $GIO operations, consider the following alternative
programming sequence as a replacement for the "send data" $GIO operation shown
in the previous line 100:

100 $GIO START SEND /01C (440A, G$)
110 SELECT PRINT 01C (185)

120 PRINT X(7); B$(3); C$(5,12)

130 SELECT PRINT 005 (64)

140 $GIO END SEND /01C (440C, G$)

In the sequence represented by lines 100 through 140, the PRINT statement in
line 120 effectively replaces the microcommand A00O (the data transfer phase)
in the original line 100. A PRINTUSING or a MAT PRINT statement could be used
in line 120.

The technique described in this section must not ocecur in the
programming logic until after the communications control vector has been set.
(See Section 3.10 and Table 3-1.)

3.14 AN EXAMPLE

The program listed in this section illustrates how a Wang system
equipped with a Synchronous/Asynchronous Communications Controller can be
programmed to emulate a Teletype terminal. The Wang keyboard corresponds to
the Teletype keyboard, and the CRT corresponds to the Teletype printer. Many
REM statements are included in the program to highlight special features such
as the following:

1. An asynchronous format with 7 data bits per character, even parity,
and 1 stop bit is specified.

2. Rate = 300 baud (i.e., line speed is 300 bits per second).

3. Mode

half duplex with automatic deletion of null characters.

4., Break signal transmission/detection is enabled with a 200 ms
transmission interval and a 120 ms detection interval.

5. End-of-record detection is enabled. The carriage-return and DC1
(X-ON) characters are defined as terminators in the receive code
translation table. Each carriage-return (OD)qg is translated to
(8D)4g prior to storage in the receive buffer. Each DC1 or X-ON
character is translated to (A0)16 prior to storage in the receive
buffer. Upon transfer to the CPU, the high-order bit of these
end-of-record characters is changed from 1 to 0; hence, each
(8D)1g5 becomes (0D)1g which is the ASCII code for a
carriage-return, and (A0)qg¢ becomes (20)1¢ which is the ASCII
code for a space character.

3

Chapter 3.

Asynchronous Communications

NOTE:

The choice of translation characters is somewhat arbitrary
and actually depends upon whether a programmer wishes to
preserve the identity of an incoming end-of-record
character. To preserve the identity, change the
high-order bit of the incoming code to 1 to obtain the
proper translation code (e.g., the incoming hex code OD is
changed to 8D in the program which follows). On the other
hand, if an incoming character is not suitable for
subsequent printing or processing, first choose a desired
replacement character and then change the high-order bit
of the replacement code to 1 to obtain the proper
translation code (e.g., if a space character is chosen as
the desired replacement character, its hex code 20 becomes
A0 when the high-order bit is changed to 1).

Also, in the sample program, characters received with a parity or
framing error are replaced by the substitute character (TF) 16, the
ASCIT code for a DEL character. Via the receive code translation

%ab}e, each (TF)4g is converted to a null character, 1i.e.,
00
16

If desired, the program can be keyed into the CPU and saved on a disk or
diskette to serve as a test program. However, remember that the program

incorpora

tes special features and cannot be used unless the following

conditions are satisfied:

1.

2.

If the address of the controller is not 01C, change the SELECT
statement in the program accordingly. See line 110.

‘A suitable modem must be available, and modems at both ends of the

communications link must be similar. See Section 1.3.

The number of data bits per character, the number of stop bits, the
type of parity, and the transmission rate must be matched at both
ends of the communications link. If necessary, adjust the values in
the communications control vector. See lines 300 through 390.

If attempting to communicate with a host computer, find out what
sign-on procedure is required.

32

?

&

Chapter 3. Asynchronous Communications

The Sample Program (Requires modification for 2200MVP central processors)

10 REM EXAMPLE --TTY EMULATION-- KYBD FOR INPUT, CRT FOR OUTPUT
20 DIM CR$(16)16, LH(255)1, K$1, XE(10)1, ZH(7)1
21 REM C2$() IS A 256-BYTE RECEIVE CODE TRANSLATION TABLE
22 REM L$() IS A 255-BYTE CPU RECEIVE DATA BUFFFER
23 REM K$ IS A 1-BYTE CPU KEYBOARD INPUT BUFFER
° 24 REM X%() IS A 10-BYTE COMMUNICATIONS CONTROL. VECTOR
25 REM Z#$() IS A 7-BYTE CPU ARRAY FOR READING STATUS VECTOR
30 REMINITIALIZATION MODULE BEGINS

1 40 REM ..DEFINE $GI0 MICROCOMMANDS TO OPERATE CONTROLLER
50 GO$=HEX (4402A000440C) :REM SET CONTROL. VECTOR
&0 G14=HEX (4403C620) :REM READ STATUS VECTOR
70 G3$=HEX (4405A000440C) sREM LOAD RCV TRANSLATE TARBLE
80 Ge$=HEX (4408) :REM START RECEIVING DATA
S0 G7$=HEX (4409C&20) *REM TRANSFER RECEIVED DATA
100 G9%=HEX (440BA000440C) :REM SEND-THEN-RECEIVE DATA
110 SELECT #1 01C tREM SELECT 22278 AS #1
120 REM ..DEFINE RCV TRANSLATION TABLE
130 INIT(OO)IC2%() *REM CLEAR RCY TRANSLATION TABLE

140 C2%(1)=HEX (00010203040506070803000BOCBDOEOF) iREM O0-OF
150 C2$(2)=HEX(10A01R2131415161718191A1B1CIDIEIF) IREM 10-1F
160 C2%(3)=HEX(20212R23R425262728292A2B2CaD2ERF) IREM 20-cF
170 C2$(4)=HEX(303132333435363738393A3B3CAD3E3F) REM 30-3F
180 C2$(5)=HEX(40414R4344454C474B4D4A4B4C4D4ESAF) TREM 40-4F
190 C2%$(6)=HEX(5051525354555€575R8595A0B5CEDEESF) tREM 50-5F
200 C2%$(7)=HEX (60616263E4E56EETEREOCACRBECEDEEEF) REM 60~6F
210 C2%(R)=HEX(TOT172737475767778727TATBTCTDTEOO) REM 70-7F
220 REM ..SPECIAL MEANINGS IN THE ABOVE TABLE ARE AL FOLLOWS
230 REM HEX OD (CARRIAGE RETURN) SET AS TERMINATOR

240 REM HEX 11 (DCl, X~ON) SET AS TERMINATOR/SHOW AL SRPACE
250 REM HEX 7F (DEL, RUBOUT) CONVERT TO NULL

255 REM HEX 80 THRU FF CONVERT TO NULL

260 REM ..DEFINE COMMLINICATIONS CONTROL VECTOR

280 INIT(OO)X®H() :REM INITIALIZE CCV TDO BINARY ZERO
290 REM ..IF THE CCV IS NOT SET TO 00, TIME DELAYS MAY OCCUR.
300 X&(1)=HEX(17) tREM STOP BITS=1, BALD RATE=300
310 XE(2)=HEX(11) *REM MODE=HALF-DUPLEX, BREAK ENABLID
320 XH(3)=HEX(21) :REM DATA BITS=7, PARITY=LVEN
330 X$(4)=HEX(TF) tREM ERROR SURSTITUTE CHARACTLR=DEL.
350 Xe(€)=HEX(O1l) sREM END OF RECORD DETECTION
380 X$(9)=HEX(14) *REM BREAK SEND INTERVAL=200 MS

s 320 X$(10)=HEX(OC) tREM BREAK DETECT INTERVAL=120 MG
400 REM ..
410 PRINT HEX(03),,"EMILATE TTY 300 BAUD" REM CLIZAR CRT

A 41% PRINT TAB(9);"KEYBOARD FOR INPUT--CRT FOR COUTPUT"

420 D, I=1:PRINT

430 $GI0 SET CONTROLS #1 (GO%H,ABIXE()
440 $GI0 SET RCV TABLE #1(G3%,A%)C2%()
450 $GI0 START RCV #1 (GES,AS%)

455 REMEND OF INITIALIZATION MODULE

(continued on next page)

33

Chapter 3. Asynchronous Communications

45¢ REM . .PROMPT OPERATOR

460 PRINT "3H8S00680e#RECIN SIGN-ON PROCEDURE #4333 3634 1

470 PRINT TAB(S); "NOTE-~-8.F. ‘15 I§ PROGRAMMED TO SEND A BREAK
SIGNALL. "

420 GOTO 540

500 REMMAIN LODP BEGING

510 REM ..0UTPUT KEYED DATA TD 22278 <
520 ®GI0 SEND DATA #1(G9%, A$)KS

230 REM ..KEYBOARD/T.C. TEST LOOP .
540 $IF ON /001,770 REM TEST KYBD READY '
550 $6I0 READ STATUS #1 (GL1$,ASYZ$()

560 IF Z$ O FHEX (OO THEN 740 TREM TEST FOR BREAK

570 IF Z$(3)FHEX(OQOYTHEN 730 ~REM TEST FOR ERRORS

580 IF Z$(4)=HEX(OO)THEN 540 =REM TEST FOR COUNT ZERO

530 $GI0 TRANSFER RCVD DATA #1 (G7%,A%) L$()<Ix

00 A= VAL(STR(A%, 10)) SREM A IS COUNT

10 IF A+D:€4 THEN G50 SREM BRANCH IF Al=¢4

G20 $GI0 /005(A000, ASILE() 4T, A SREM DATA TD CRT IF A<G4

630 D=D+A 1GOTO &30 REM D IS OUTPUT POINTER

&40 REM . DISPLAY OVERRUN

650 B=G6L-D AREM B IS LINE LENGTH

G0 $GI0/005(A000 400D 4008, A%)LE) <1, B REM DATAL.CR,LF TO CRT
70 D=A-B

&80 S$GI0 /005(A000, ASM S ()< T+B, D> AREM NEXT LINE TO CRT
@0 I=I+A 1A=I-1

TOO IF LAY CHHEX (OD)THEN %40

710 PRINT

720 INIT(OOLS() 1D, I=1 A GOTO 540

75 REM .18 I8 CLEARED WHEN A C.R. 18 RECEIVED

T30 GOTO 550 sREM RCV ERROR DETECTED
740 PRINT "...BREAK RECEIVED":GOTO 540

THO REM .. .KEYBDARD LOGIC FOLLOWS

770 SELECT PRINT OOSIKEYIN K$, 790,880 *REM ACCEPT KYRBD INPUT
TR0 IF KECHEX(20) THEN 830

200 PRINT Kby sREM DISPLAY K% ON CRT
210 D=D+1:1IF D&5 THEN BR0:PRINT :D=1:6OTO 520

820 PRINT s INITOOM$()2D, I=1:60T0 520

825 REM . .BRANCH AS FOLLOWS FOR A CODE HEX OR THRU OD

830 ON VAL (K$)-7 GOTD 850, B00, 840, 520, 520, 820 *6OTO 520
840 PRINT K3 :60T0O %20

850 D=D-1:IF Dx0 THEN 860:D=642PRINT HEZX(0C) ;

Be0 PRINT HEX(OZ2008) 5 :GOTO 520 °
870 REM ..BRANCH AS FOLLOWS FDR AN S.F. CODE HEX 07 THRU OF
8280 ON VAL (K$) -6 GOTD 840, BEO, 800, 840, 520, 520, 520, 520, 830 =G0 P

TO 520

830 PRINT "....S8END BREAK":$G10 #1(4407,A%)
200 GOTO 540

D10 REM . ..END OF KEYBOARD LOGIC

220 REMEND OF MAIN LOOP

(See notes on next page.)

34

Chapter 3. Asynchronous Communications

NOTES:

1. Wang's Teletype emulation software has many features
not illustrated in the example given in this section.
With the software, data transmission and reception can
be controlled over point-to-point, dial-up

4 communications 1links between Wang systems and host
computer systems which support Teletype-like 1line
protocols. From the viewpoint of a Wang system
operating under control of a Teletype emulation
program, the keyboard 1s always active as an input
device for data transmission, and the CRT is always
active as an output device for data reception.
Additionally, and optionally, stored data can be
transmitted from a disk or diskette, and received data
can be output to a printer, disk, or diskette. The
active I/0 devices can be changed by the operator
during program operation. During an initial phase of
program operation, a parameter selection module lets
the operator choose a set of communications options to
achieve compatibility with a host computer system, For
convenience, a set of default conditions can be
accepted if suitable for a particular communications
link. Otherwise, the parameter module (via prompts on
the CRT) permits the operator to select the following:

. the desired baud rate

. the type of parity

. the number of data bits per character
. the number of stop bits

and to indicate how the host computer system normally
reacts interactively in the following ways:

. whether the host system does or does not echo
each received character

. whether the host system, upon receipt of a line
of data denoted by a carriage-return character,
automatically supplies only a 1line feed
character, or supplies a 1line feed character
followed by one or more characters, or supplies
no characters.

2. If interested in additional information regarding
Wang-developed software systems which can be used with
a Synchronous/Asynchronous Communications Controller,
contact the Wang Sales Office in the area where a Wang
system is being used.

35

APPENDIX A

ASCII CODE SET

The Wang system character set i
bgb7bgbsbybsboby,
correspond to the ASCII (American Standard Code for Information
character set which has 128 assignment positions,

Wang CRT's ‘and printers use the ASC

where bg=0

and

display all the graphic characters shown

the

in Table A-1.

through

S defined by 8-bit codes of the form
bits b7

b4

Interchange)
as shown in Table A-1.

II code set, but some units may not

In some -cases,

Substitute graphic characters may be displayed by a Wang peripheral. For
details, refer to the manual which accompanies a particular peripheral.
Table A-1., ASCII Code*
Low.order:
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1]
ssin | 000 | %, | 015] 01, Yoy | oo | 1y M, | "%, [0, |04 (05, (Y10 | M0 | "1, | I
High hox. 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 !
order- digit H
hex? 0 1 2 3 4 5 6 7 8 9 A B Cc D E F |
4 bus dignt i
NUL |soH |sTx | ETx | eoT | ena | ack | seL 8s HT LF vT | FF CR | sa : s
0000 O . ‘
1 2| 3 4 5 6] 7 8 9 10 1 12 13 14, 15!
0001] DLE | DC1 [DC2 | DC3 [DBCa | NAK | SYN |ETB | caN | em |sus | esc | rs Gs | Rs us |
1 17 18 19) 21 22 23 24 25 26 27 28 29 30 3%:
0010 2 Space] " # $ % & (u:es.l () . + ’) (dash) (ooré'odl / [
32 3:4 34 35 36, 37 38 39 40] a 42 43 a4 45 46! 47]
- = ?
0011 3 0 1 2 3 4 5 6 7 8 9 : < > ?
a8 a9 50 51 52| 53| 54 55 56] 57, 58 59 60 61 62 63
0100/ a @ A B (o D E F G H | J K L M N (0]
64 65| 66| 67 68| 69 70 7 72 73 74 75 76 77 78 79
{under.
o101| s P | Q R S T Uufv | wl|x Y | 2 [\] ! Yine)
80 81 82 83 84 85 86 87 88 89 80 N 92| 93 94 95
grave . .
0110| ¢ [2ccem a b c d e f g h i i k | m n o
96 97, 98 99 100 101 102) 103 104/ 105 108 107 108 108] 1100 111
0111 7 p q r s t sl u v w X zol y z { H } ~ | DEL
12 1 14 s 1 17, nsl 19 1 129 122) 123 124] 125] 128|127
*Numbers in the lower right corner of each box represent the decimal equivalent of the binary
and the hexadecimal code for the charactar shown in the box, a.g.. A = (41),, = (07000001), = (65),,.

LEGEND FOR ASCII CONTROL CHARACTERS

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS

HT

LF
vT
FF
CR

Si

Null

Start of Heading

Start of Text

End of Text

End of Transmission
Enquiry
Acknowledge

Bell (audible or attention signal)
Backspace

Horizontal Tabulation
{punched card skip)
Line Feed

Vertical Tabulation
Form Feed

Carriage Return

Shift Qut

Shift In

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM

Data Link Escape
Device Control 1
Device Control 2
Device Control 3
Device Control 4
Negative Acknowledge
Synchronous Idle

End of Transmission Block
Cancel

End of Medium
Substitute

Escape

File Separator

Group Separator
Record Separator
Unit Separator

Delete

B4

o
-

%

a
-

APPENDIX B

SPECIFICATIONS

Power Requirements

Supplied by the CPU,

Electrical Connection

A 25-pin RS-232-C, CCITT V.24 compatible female plug facilitates hookup
of a modem.

Cable

A 12-foot (3.6m) cable, equipped with 25-pin RS-232-C compatible male
connectors on each end, is supplied as an accessary.

Synchronous Communications Features and Compatible Modems

Determined by Wang-developed software acquired for use with the
controller.

Asynchronous Transmission Rates

50, 75, 100, 110, 134.5, 150, 200, 300, 600, 1200, 1800, 2400, 3600,
4800, 7200 or 9600 bits per second.

Asynchronous Character Format Options

Parity: odd, even, or no parity.
Number of Data Bits: 5,6,7 or 8.
Number of Stop Bits: 1, 1.5 or 2.

Asynchronous Communication Mode

Full or half duplex.

Compatible Modems for Asynchronous Applications

Bell 103 or 202 type, or equivalent.
Null modem, available from Wang, for direct communications link.

Standard Warranty Applies

37

APPENDIX C
USING A NULL MODEM
As indicated in Section 1.3, the modem used with Wang's

Synchronous/Asynchronous Communications Controller for data communications
over telephone lines must satisfy two requirements:

1. it must be compatible with the communications software being used in
the Wang system and

2. it must match the characteristics of the modem at the remote site.

Modems are not available from Wang Laboratories for communications with remote
sites.

On the other hand, for data communications over direct cables, Wang
Laboratories does produce null modems. A null modem is a small, dual-plug
device which ensures that the pin assignments in the cables and connectors
directly linking two systems meet the standards recommended by the Electronic
Industries Association RS-232-C, CCITT V.24 specifications.

The Model 2228N Null Modem is designed for use with either the Model
2228B or the Option 62B version of the Synchronous/Asynchronous Communications
Controller. One null modem and a_pair of RS-232-C, CCITT V.24 cables are
needed when directly connecting the Wang system's communications controller to
a host computer, a terminal, or another Wang system.

Since the 2228N null modem has polarity, care must be exercised when
connecting two systems. The plugs at opposite ends of the null modem are not
labeled individually, but the label reading 2228N is near one end and thereby
distinguishes one plug from the other. The plug nearer the label 2228N should
receive the cable leading from the conector on the Synchronous/Asynchronous
Communications Controller in the Wang system. The other plug on the null
modem should receive the cable leading from a host computer, a terminal, or a
second Wang computer system.

NOTE:

When the 2228N null modem is used in conjunction with the
Synchronous/Asynchronous Communications Controller operati

with asynchronous software, the reverse channel capability
is disabled.

38

i)

Nd

a
-~

EQUIPMENT MAINTENANCE

It is recommended that your equipment be serviced annually. A
Maintenance Agreement is available to assure this servicing automatically. If

no Maintenance Agreement is acquired, any servicing must be initiated by the
customer.

A Maintenance Agreement protects your investment and offers the
following benefits:

1. Preventive Maintenance -

Your equipment is inspected for worn parts, lubricated, cleaned, and
updated with any engineering changes. The service minimizes
"downtime" by anticipating repairs before they are necessary.

2. Fixed Annual Cost -

You issue only one purchase order for service for an entire year and

receive one annual billing. More frequent billing can be arranged,
if desired.

Further information regarding Maintenance Agreements can be obtained
from your local Sales-Service Office.

NOTE:

Wang Laboratories, Inc. does not honor guarantees or
Maintenance Agreements for any equipment modified by a
user. Damage to equipment incurred as a result of user
modification is the financial responsibility of the user.

39

INDEX

Acoustic couplers

Address, controller v v v 4 4 v 4 ..
Application programming
L
Asynchronous transmission

Bellmodem

Binary synchronous communications
Bit, parity e e e e .
Bit, start. s s e e e e e e e ..
Bit, stop L e e e e e e e e e .
Bits, data e e .
Bits, shift status
Bits, status vector
Block length v v v v v v o«
Break signal ¢ v i it v e ..
BSC software ¢ v v v vt e e e e e ..
Buffer, receive v v v v v v 4 v . .
Buffer, transmit . © e s s e e e b s e e e e e
Bytes, control vector e e e o 4 s s 4 e e e e e e
Bytes, status vector
CableS . & &t v i vt e e e e e e e e e e e e e
COITT & v v v ittt e e e o v e o o o e e o e o
Character count ¢ . . v s v v ..
Character format
Character reception

Character substitution
Character transmission
Clock, real time ¢ v v v v v v v v ..
Clock, selectable speed . « . v « v v v o o « o o &
Clock signal & & ¢ ¢ v v v v v v o o v oW
Code, ASCIT . . & v v v 4 o o o o o o o o o o o o
Code translation e o e e e et e e e e
Communications control vector c b s s e e e e s e s
Communications status veector
Comnector . . . v & & v ¢ i i et e e e e e e e e
Continue transmitting
Control vector, communications . . .

Controller, Synchronous/Asynehronous Communications
Countdown, timeout

CPU L]] L] [] L] L]] L] L] L] * L] L] : : : : : : : . . : L]
CPU/controller interaction « « « « .

Lo

e o o o

s . e o e o o o e o o .

e o o o

e o o . e o . Y o o e o e o o o o o o e * o e o o o

e o o o e o o o * o e o o o

o o . e o e o e o . e o o

e e o o e o o . e o

Page

. L] L] L] . . u
. . .. 25,32
. 8,12-13,18
. . 13,27,36
c e e . 9-12

.

e s s s 4 3,6
. 9-12,19-20
. e .. 9-10
. 9-12,19-20
. 9-12,19-20
T
... . 22-23
. e e .. .5
16-17,19-21,23
e e e .. 3,6
e e .. 12-13
R P
c e .. 18-21
... . 22-23
-

. . . L] L] . 2
e o o 22-23

c e e e o0 9
e oo . 1=12
.« 13,19,21
N B
e e e e . 22
. e e e 9

N N
13,27,36
3926'27532
. 8,18-21,25
22-23,25

(e - X .
-
- e o o

e e e e e 2
. . . . 24,30
. . 18-21, »25
e e e e 1,6
e« o . 23
.. .. 24
e « . . 23-24

n

&

g

Data bits « «
Data buffering
Data signal
Deletion, null characters . .
Detection, break signal . . .
Detection, end-of-record . .
Detection, parity error . . .

e« o o o

Detection, receive buffer overrun

Detection, received timeouts
Direct comnection
Disconnect
Dovnshift character

EIA . ¢« ¢ ¢ ¢ ¢ o ¢ o o o o o
End-of-block character . . .
End-of-record character . .
End-of-transmission character
Endsend . . ¢« ¢« ¢ ¢ ¢ ¢« ¢ o
Error, framing
Error, parity
Error, receive buffer overrun
Example, programming
Fill characters
Format, characters

Format, communications control veetor
Format, status vector

Framing €rror« ¢ s o
Full dquplex . . . « « « « . &

Half duplex « .« . . .

Initialization information .

Insertion, shift character .
Installation, controller . .
Installation, modem

Line speeds « « ¢« .« . .

Line turnaround

MAT PRINT statement
Microcode
Microcommands
Microprocessor
Model 2228B . . « &+ ¢« ¢ « o &
Modems .
Modem signals, monitoring

.

11

« QO+ o

9"129
.. 8,

19-20
12-13
11-12

9,20

8,16-17,23
»19,21,27,31

14-15,

. . 5,15-16

9, 20

9,20

. 23
. 23
. 23

.
2“ 28
19,21

. L3 2
.5

. 5
. 30
19-20
. 23
. 23
31-34

. 14
.+ 9
. 19
. 23
19-20
24,29

,2U4,29
. 8,18

. 14
. o 2
2,38

. 3-4
. 22

29-31
1,6,8

e o 1
. 1=2
. 2-4
17,23

Null characters.
Null modem

Option 62B « « « .« .
Parity
Polarity, break signal
Polarity, null modem
PRINT statement
PRINTUSING statement
Protocol
Random access memory
Rates, transmission
Read only memory
Receive buffer
Recelved timeouts
Reverse channel
RS-232-C . .

Sample program .

o o
*« o
. o
* e
. e
.

. .
e o
¢ o
* o

.

o o
e
o o
* o
o o
.
o« o
e o
e 0
¢ o
.

Secondary received line signal detector .
Secondary request to send . . ., .

Selectable-speed clock . . .
Send break
Send data
Send then receive . .
Shift characters
Shift status bits software .
Specification, control vector
Specifications, controller .
Start it
Start receiving data
Start send
Start-of-header character . .
Start-of-text character . . .
Start/stop elements
Statements, $GIO.
Status vector
Stopbits o .
Stop transmitting
Substitution characters . . .
Synchronization pattern . . .
Synchronous transmission . .

e o o =

e o
. o
. e
o 0
« o
o o
¢ o

.
o o
* o
e o
e o
«
* o
. .
o o
. o
o o
. .
o o
. .
¢ o

“ o
*
. .
e o
* o
e o
¢ o
e o
* o
¢ o
e o
. .
.
e o
o o
e o
e o
e o
* o
¢ o
. o
o

42

. . . . L] . L] . . Ll . . L[] L] .

. . o
. . o
o .
. . .

9,14,20
4,38

. 9-12,19-20
e e oo 16-17
.. ... 38
. .. . 29-31
29-31
e .e...5

e .. 1,8
. .. 8,19-20
e e e . . 1,8
. . 12-13,23
O [
. ... 17,38
N

. ... 31-34
R 14
A 14
R
... . 24,28
. . 24,28-29
... . 24,29
14-15,18,26-27
R |

. 23-31
. . 22-23,25
. 9-12,19-20
. . .. 214,30
. 8,13,19,2;

N

s

Dg

A
>

Tables, code translation ¢ ¢ ¢ ¢ o o o o o o o o o o o o 8,13,24,26-27

Table 100KUD .+ + o « o o o o o ¢ o o o s o o o & o

C e e e e e e e s 13-14

Telephone conNECtions . . . o o « o o o o o o o s o o o o o o 0 b oo e 2

Teletype emulation software . . . « « « « ¢ ¢ o
Terminal emulation software . . . « ¢« « ¢ o« ¢ o &
Timeout countdoWn . . « « ¢ o« o ¢ o o o o o o o
Timeout interval . . ¢« . ¢ &4 ¢ ¢ o o o o o ¢ o o o
Transfer received data to CPU . . . « « « . «+ +
Translation tables . . « ¢« ¢ ¢ o ¢ ¢ ¢ ¢ o o ¢ o o
Transmission modes . . . &+ « ¢ ¢ ¢ o o o o ¢ o o o
Transmission rates . . « « ¢« « ¢« ¢ ¢ o o o o 0 .
Transmit buffer . . ¢« « ¢ ¢ ¢ ¢ o o o s o o o o o

Upshift character « ¢« « ¢ ¢ ¢ ¢ o o o o o &

User-developed software . . « « « « ¢« o« o o ¢« o o o

Vector, communications control
Vector, status« « o ¢ o o o 0 0 e 0000
Voltage level . . . o ¢ « ¢« o o o s o o o o o o o o

.
.
.
.
.
.
.
.
.
.

Wang-developed microcode . . . « o ¢« ¢ ¢ o o o o
Wang-developed software « « « ¢ ¢« « o o ¢ &

$GIO statements« ¢« ¢ ¢ 0 e e s e e e e e e

43

... 1,35
. .. 1,6
. . . 8,16
. 16,19,21
. . 24,28
. 13,24-27
. 9,19-20
. 8,19-20
. . 12,23

14-15,19,21

e o o o o 1

e o o 18-21
. 22-23’25
o o o 9-10

... 23-31

To help us to provide you with the best manuals possible, please make your comments and suggestions
concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All
comments and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to
include your name and address. Your cooperation is appreciated.

700-4670A
TITLE OF MANUAL SYNCHRONOUS/ASYNCHRONOUS COMMUNICATIONS CONTROLLER
USER MANUAL (MODEL 2228C, MODEL 2228B, OR OPTION 62B)
i COMMENTS:
Fold

|

1

]

]

]

|

|

]

!

|

{

]

. Fold
]

]

{Please tape, Postal regulations prohibit the use of staples.)

(WANG)

Fold

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Attention: Technical Wtiting Deganment

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 16

Lowell, Mass.

—————— ———————— —— -

Fold

Printed in U.S.A.
13-1019

Cut along dotted line.

-3

N\

)

United States
Alabama Florida Louisiana New Hampshire Oregon Vermont
Birmingham Miami Baton Rouge Manchester Eugene Montpelier
Mobile Hialeah Metairie Portland
Jacksonville New Jersey Virginia
Alaska Orlando Maryland Toms River Pennsylvania Newport News
A T Rockville Mountainside Norfolk
nchorage ampa T ou Allentown
owson Clifton Camp Hill Richmond
. Georgia Erie
:l:l::r:: Atlanta ET.LS::: g New Mexico Philadelphia Washington
seon Savannah Boston Albuquerque Pittsburgh Richland
Burlington Wayne Seattle
. | Hawaii New York Spokane
California Honolul Ehainiin Alban Tacoma
Culver City Lt Lawrence v Rhode Island
Fountain Vall Littleton Buffalo Cranston
Ff’;’:‘:'" alay, Idaho Gl Fairport Wisconsin
Sacramento Pl Worcester ¥ Charleston
lllinois Syracuse Wauwatosa
San Diego A L Columbia
San Francisco Chispgo Michigan
Morton Kentwood North Carolina
Santa Clara Park Ridge 0 Charlotte Tennessee
Ventura 9 e oro Chattanooga
Rock Island Southfield Greensboro K i
Rosemont Raleigh Al
Colorado Minnesota Memphis
Englewood Indiana Eden Prairie Ohio Nashville
Indianapolis - " Cincinnati
Connecticut South Bend M'“"g’ ! Cleveland Texas
New Haven i Middieburg Heights Austin
Stamford Kansas Nebraska Toledo HZ as?on
Wethersfield Overland Park Omaha Waorthington - ,
Wichita San Antonio
District of Nevada Oklahoma
Columbia Kentucky Las Vegas Oklahoma City Utah
Washington Louisville Reno Tulsa Salt Lake City
International Offices International Representatives
Australia France Singapore Abu-Dhabi Kenya
Wang Computer Pty., Ltd. Wang France SARL Wang Computer (Pte) Ltd. Argentina Korea
Adelaide, S A. Paris Singapore Bahrain Kuwait
Brisbane, Qld Bordeaux Bolivia Lebanon
Canberra, AC.T. Lyon Sweden Brazil Liberia
Darwin N.T Marseilles Wang Skandinaviska AB Canary Islands Malaysia
Perth, W.A Nantes Stockholm Chile Malta
South Melbourne, Vic 3 Strasbourg Gothenburg Colombia Mexico
Sydney, NSW Toulouse Malmo Costa Rica Morocco
LS Cyprus Nicaragua
Alistiia &:em (BL:.;all?_ld Switzerland Denmark Nigeria
R DR R Wang A.G. Dominican Republic Norway
\\;’_Iang Gesellschaft, mb.H. H!chn_'nond S iuich Ecuadar Paraguay
lenna Birmingham Basel Egypt Pert
London Geneva El Salvador Phillippines
Belgium Manchester I Finland Portugal
Wang Europe, S.A Northwood Hills Wang Trading A.G. Ghana Saudi Arabia
grussei_s hidaKons Zug Greece Scotland
rpe-Mere Guatemala S
HWOannggKP:;hc Ltd. United States H:iti = Szal.‘:nka
Catiada grgllnh;e:::tmnai Trade, Inc. Honduras Sudan
Wang Laboratories 8psn 3 Iceland Syria
Wang Computer Ltd India Thailand
(Canadal) Ltd. Tok WeastGerman
Burnaby, B.C. okyo Y Indonesia Turkey
¢ Wang Laboratories, GmbH Ireland United Arab
Calgary. Alberta Netherlands Frankfurt relary nited Ara
) rankfur Israel Emirates
Don Mills, Ontario Wang Nederland B.V. Berlin
: il Italy Venezuela
Edmonton, Alberta IJsselstein Colo
> i gne J
Hamilton, Ontario Gronigen Dusseldorf amaica
Montreal, Quebec £ RELED
Ottawa, Ontario New Zealand FrS:iit!):rg Jordan
Winnipeg, Manitoba Wang Computer Ltd
- Auckland :::"_‘t;"::g
Wellingt
China bt Kassel
Wang Industrial Co., Ltd. Panama Munich
Taipei Wang de Panama Nurnberg
Wang Laboratories Ltd (CPEC) S.A. Saarbrucken
Taipei Panama City Stuttgart
LABORATORIES, INC.

v,

(WANG)

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 459-5000, TWX 710 343-6769, TELEX 94-7421

Printed in U.S.A.
700-4670A
1-80-3Mm

Price: see current list

