The Wang CS central processing unit (CPU) is a high-performance VLSI processor that supports up to 16 terminals and 16 jobs concurrently in a multi-programming environment. The system offers data communications capabilities and an extremely low-overhead operating system. Designed for simplicity of operation and flexibility in system configuration, the CS can be easily adapted to meet each user's unique processing requirements.

The CS utilizes a user-defined, fixed-partition memory configuration and a fast, efficient central processor to extend multi-programming capabilities to system users. In a fixed-partition memory scheme, user memory is divided into a number of distinct areas called partitions, each of which contain a separate program. The central processor allocates intervals of processing time to each partition in turn. Thus, the program in an individual partition executes for a brief time before the CPU services the next partition. Response time is fast for all users, regardless of the number of partitions or types of programs being executed.

System users can communicate directly with the CS by using any 2236, 2336, or 2436 terminal. Each terminal consists of a large, easy-to-read, 24 by 80 (24 lines, 80 characters per line) CRT screen display with a type-writer style keyboard. The system performs automatic data compression on information transmitted to each terminal to accelerate communication and increase response time.

Since each terminal can support its own local printer, screen dumps and standard printing operations can be performed. All 2200, MicroVP, and CS terminals generate extensive bar and line graphics by using standard program statements to provide the user with valuable displays for business applications.

Wang 2436 DW Series terminals support an optional Word Processing software package. This package enables users to perform both word processing and data processing applications at the same terminal.

Terminals can be attached to the CPU either locally, at distances up to 2,000 feet (609.6 meters), or remotely, through the use of modems and telephone lines. Optionally, the CS can be equipped with communications controllers that allow remote devices to be attached directly to the CPU and accessed by a user at the terminal. Asynchronous, synchronous, and advanced bit-oriented protocols are supported by the CS processor.

Additionally, the CS chassis contains nine input/output (I/O) slots to support a wide range of other peripheral devices. Each I/O slot can contain a controller that is capable of controlling one or more peripheral devices. These devices include a selection of flexible and hard disk drives and an extensive array of printers and plotters.

The CS is available in two versions: the CS-2, which has 128K bytes of user memory, and the CS-5, which has 512K bytes of user memory. Both the CS-2 and the CS-5 are programmable in the popular
High-Speed Performance

The CS central processor is a high-performance, custom-designed VLSI processor built with fast, reliable components. CPU memory cycle time is 600 nanoseconds—usually sufficient to execute and retrieve a control memory instruction, as well as to read two bytes of user memory. When combined with the low-overhead operating system and the incremental compiler, the CS provides exceptional response time for all system users.

To illustrate the speed of the CPU, a representative selection of BASIC-2 floating-point arithmetic operations is listed in the following table, along with the times required for each computation. These times represent average execution times and assume full 13-digit precision for each operation.

The CS also provides high-speed, alphanumeric string processing capabilities. For example, the following times were measured when the specified BASIC-2 operations were performed upon an alpha array consisting of 1000 8-character elements.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Central Processing Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition (+)</td>
<td>0.11 msec</td>
</tr>
<tr>
<td>Subtraction (−)</td>
<td>0.11 msec</td>
</tr>
<tr>
<td>Multiplication (*)</td>
<td>0.39 msec</td>
</tr>
<tr>
<td>Division (/)</td>
<td>0.79 msec</td>
</tr>
<tr>
<td>Exponentiation</td>
<td>6.40 msec</td>
</tr>
<tr>
<td>LOG</td>
<td>3.30 msec</td>
</tr>
<tr>
<td>LGT</td>
<td>2.90 msec</td>
</tr>
<tr>
<td>EXP</td>
<td>3.40 msec</td>
</tr>
<tr>
<td>SQR</td>
<td>1.80 msec</td>
</tr>
<tr>
<td>SIN</td>
<td>4.60 msec</td>
</tr>
<tr>
<td>COS</td>
<td>4.70 msec</td>
</tr>
<tr>
<td>TAN</td>
<td>8.00 msec</td>
</tr>
<tr>
<td>ARCSIN</td>
<td>12.90 msec</td>
</tr>
<tr>
<td>ARCCOS</td>
<td>13.00 msec</td>
</tr>
<tr>
<td>ARCTAN</td>
<td>10.20 msec</td>
</tr>
<tr>
<td>RND</td>
<td>0.28 msec</td>
</tr>
<tr>
<td>MOD</td>
<td>1.10 msec</td>
</tr>
<tr>
<td>ROUND</td>
<td>0.12 msec</td>
</tr>
<tr>
<td>Matrix Inversion (10×10)</td>
<td>0.57 sec</td>
</tr>
<tr>
<td>Matrix Inversion (20×20)</td>
<td>4.30 sec</td>
</tr>
</tbody>
</table>

BASIC-2 Alpha Array Operation Times

<table>
<thead>
<tr>
<th>Operation</th>
<th>Central Processing Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for a specified value</td>
<td>0.02 sec (maximum)</td>
</tr>
<tr>
<td>Memory sort of random data</td>
<td>1.68 sec</td>
</tr>
</tbody>
</table>

Easy Operation

The CS is simple to operate and easy to program. There are no special job-control languages or elaborate operating procedures. System resources are allocated through a supplied partition-generation program that guides the user through the process of configuring user memory. By running this program, the user creates partitions and assigns them to terminals. Each terminal can control one or more partitions.

Once the system has been configured, each partition functions independently. Within each partition, a user can develop and execute a program as if the partition were on a single-user system.

Because each user communicates with the system interactively, the program requests required information with clear, nontechnical prompts. For the programmer, interactive operation greatly simplifies program development and maintenance. Programs can be entered, edited, and run directly from the terminal keyboard. In addition, the CS processor performs a range of error checks to detect and identify various types of errors. It also provides an extensive set of edit functions to facilitate error correction.
Functional Organisation
The CS consists of a microprogrammed VLSI processor coupled with a number of special-purpose LSI I/O processors and controllers. The operating system and incremental compiler reside in 32Kb of control storage memory that is independent from user data memory.

The microprogram, comprises of the operating system and incremental compiler, directs the execution of the CPU and co-ordinates communication with the I/O processors. The independent I/O processors permit the overlap of CPU and I/O processing; thus, the CPU is relieved of responsibility for controlling peripherals that would otherwise require frequent or dedicated CPU attention.

Refer to the figure, "Logical Organisation of the CS" for an illustration of the CS architecture.

Memory Organisation
Among the most significant features of the CS are those that contribute to its highly efficient use of memory. These features include the following two characteristics:

1. Use of dedicated control memory for storage of the incremental compiler and the operating system

2. Use of a unique "atomisation" technique for storing program text

3. Use of unpartitioned user memory for RAMDISK

Dedicated Control Memory
The CS control memory contains 32K of 24-bit words. When the system is powered on, the system programs are loaded into control memory from the system disk and remain resident in memory until the system is either powered off or reinitialised. Since the contents of control memory are inaccessible to the user or the user's programs, the system programs are always protected against accidental interference or destruction.

User memory is the area of memory available to the user's programs and data. The CS-2 has 128K bytes of user memory; the CS-5 has 512K bytes of user memory. All user memory, except for a small portion used for system control, is available for user programs and data.

User memory is divided into areas, or banks, of 64K bytes each. The CS-2 can contain a maximum of two banks of user memory; the CS-5 can be organised into a maximum of eight banks. The user can subdivide each bank into a number of partitions of fixed size, each of which is capable of executing a separate program. Partitions cannot span bank boundaries. Within each bank, a fixed amount of memory is reserved for system control information.

The operating system and incremental compiler require 3K bytes of user memory in the first bank for storage of control information, the system requires 8K bytes of user memory in each subsequent bank. Thus, a total of 61K bytes in Bank 1 and 56K bytes in Banks 2 through 8 is available for partitioning.

In addition, the system reserves 1K byte of memory in each user partition for tracking the state of the partition, e.g., which files the partition has open. All remaining memory is available for user programs and data.

Atomisation
The CS uses an atomisation technique to automatically condense each program line. The condensed format conserves the memory needed for program storage and, additionally, contributes to fast program execution.

RAMDISK
RAMDISK allows a portion of user memory to be used as a high-speed disk. All of the BASIC-2 disk statements can be used with the RAMDISK logical platter. Since user memory is used to emulate disk storage and there is no physical disk address, RAMDISK access is considerably faster than access to an actual disk. RAMDISK, however, provides only temporary storage; all information stored is lost when the system is powered off.

Foreground/Background Operation
Since each terminal on the system can be assigned more than one memory partition, each terminal is capable of running several jobs concurrently. The job that is in the process of communicating with the terminal at a given time is said to be running in the foreground. The job or jobs associated with the terminal, but not communicating with it, are said to be running in the background.

The terminal's attention can be transferred from one partition to another to shift the current foreground job into the background and a particular background job into the foreground. Thus, the operator can interact with each program as needed. A typical example of foreground/background operation would be running a batch-type job requiring minimal operator interaction (such as payroll processing) in the background, while running an interactive job (such as word processing) in the foreground.

Multiuser BASIC-2 Operating System
The Multiuser BASIC-2 Operating System supports the BASIC-2 language and runs on the CS. The Multiuser BASIC-2 Operating System provides facilities for program coordination and the sharing of system resources. The operating system protects multiple users from disk and printer conflicts by using BASIC-2 language features that enable a program to seize temporary control of a device and, subsequently, to release it.
Users can select Disabled Programming mode to prevent unauthorised access to important files and unauthorised execution of critical programs. In Disabled Programming mode, all terminal functions are exclusively under program control; an operator is prevented from entering or modifying program text, as well as from directly accessing disk files from the specified terminal.

The Multiuser BASIC-2 Operating System includes a set of BASIC-2 instructions for handling disk operations. These instructions allow the programmer to choose between Automatic File Cataloging mode, in which the system automatically performs the tasks associated with disk maintenance, and Absolute Sector Addressing mode, in which the programmer can directly access any sector on the disk.

Single-User Operation

The CS can be configured as a single-user, stand-alone system with the same features and language capabilities as the multiuser arrangement. Unlike most single-user systems, the CS enables a single terminal to control several programs executing concurrently, while maintaining fast execution speeds. Thus, the CS is an excellent choice for the first-time user because it combines high-performance computing with the capacity for expansion from a single-user system to a multiuser system.

Communications Capabilities

The CS supports a full range of communications capabilities between remote terminals and the CPU and between the CS and other computer systems. Wang also offers a number of software packages to emulate common communications protocols.

Each terminal is connected to the CS by a Wang Model 22C32 Triple Controller or a Model 2236MXE Terminal Processor. These devices control I/O operations between the CPU and the terminals. Line handling between the CPU and each terminal is asynchronous and full-duplex, with selectable line speeds ranging from 300 to 19,200 bits per second (bps).

For remote connection, two RS-232-C-compatible modems are required to provide the communication link. Remote terminals, located miles from the CPU, can function as local terminals, communicating directly with the system to perform operations within their assigned partitions.

Both remote and local terminals can have their own local printers to produce hard copy at the terminal site.
For communicating with other computer systems, the CS can be configured with Wang Communications Controller Model 2227B, 2228B, 2228C, or 2228D. Model 2227B supports asynchronous-only communications in half- or full duplex, at line speeds ranging from 300 to 9600 bps. Models 2228B and 2228C offer a choice of synchronous or asynchronous communications at speeds ranging from 300 to 4800 bps. Additionally, Model 2228C supports 3275 Emulation. Model 2228D offers synchronous communications at speeds ranging from 300 to 19,200 bps and supports the following protocols:

MAILWAY®
2780/3780
3274 SNA
Remote WangNet
X.25 Packet Network Access
3274 BSC (3271)
ASYNCTeletypewriter Emulation
TELETEx

For communicating with the Wang VS, the 2200/VS Local Communications Option (LCO) is supported. This hardware and software package enables a Wang MicroVP, 2200MVP, LVP, or CS to communicate with the Wang VS computer system. Communication between the CS and the VS system occurs at speeds of 4.27 megabits per second over dual coaxial cable facilities.

The BASIC-2 Programming Language

The CS supports the BASIC-2 language, which is a high-level programming language designed for interactive programming on the CS. Beginning programmers can learn BASIC-2 easily. Wang Laboratories, Inc., has developed a variety of extensions and enhancements that have been added to BASIC-2 to facilitate writing, documenting, and debugging programs, as well as to provide flexible language capabilities for a wide range of applications.

The BASIC-2 instruction set is comprehensive and extremely powerful. A math package includes numerous system-defined mathematical and trigonometric functions. The results obtained are accurate to 13 digits and can be either rounded or truncated.

Alphanumeric data can be compared, analyzed, and modified with a variety of data manipulation statements. These statements permit the programmer to manipulate characters at the bit and byte levels and to perform various Boolean and binary arithmetic operations.

System commands let the user use the terminal keyboard to control system operations in each partition. System commands also serve as useful debugging tools.

In addition to the standard general-purpose BASIC statements, BASIC-2 provides several groups of special-purpose statements that perform such specialized operations as code conversion, sorting, matrix arithmetic, and customized I/O control. Language enhancements within BASIC-2 also include statements that enable the user to share program text, manage shared resources, and define system configurations.

Compatibility With 2200 Systems

Software compatibility is an important consideration in the selection of a new system. The CS has been designed to preserve maximum compatibility with single-user and multiuser 2200 Series systems. Since the CS is compatible with the 2200MVP and the MicroVP, multiuser software written for the 2200MVP and MicroVP functions correctly on the CS.

The BASIC-2 language supported on the CS is identical to the BASIC-2 language on the 2200VP, SVP, MVP, and MicroVP. The CS also supports Wang BASIC syntax, providing a significant degree of compatibility with earlier Wang 2200 systems. Since each interactive terminal functions similar to single-user 2200 system for program development purposes, language compatibility ensures that programmers familiar with 2200 systems can quickly become productive on the CS.

The CS enables the programmer to use the memory available for multiuser programs with maximum efficiency. If a programmer must adapt a single-user program for multiuser operations on a CS, the programmer may want to modify the program to capitalize on these multi-programming features. In general, such modification is not extensive. When memory space is not a problem, however, the program can be loaded and run in each partition with little or no modification.

CPU Specifications

Size
Height
22.75 in.
Width
15 in.
Depth
5.75 in.

Weight
70 lb with all nine slots loaded.

Control Memory Size
32K bytes of 24-bit words

User Memory Size
CS-2: 128K bytes
CS-5: 512K bytes

I/O Slots
9
Memory Cycle Time
600 nsec

Power Requirements
115 Vac ± 10%, 60Hz ± 1Hz
230 Vac ± 10%, 50Hz ± 1Hz
230 W

Heat Output
745 Btu/hr

Operating Environment
Temperature
50°F to 90°F (10°C to 32°C)

Relative humidity,
noncondensing
35% to 65%
recommended
20% to 80%
allowable

Operating System
Specifications
Memory available for
partitions
117K (119, 808) bytes for
128K machines
483K (463,872) bytes for
512K machines
Overhead per partition
1K (1,024) bytes

Maximum number of
partitions 16
Minimum partition size
1.25K (1,280) bytes
Maximum partition size
Bank 1: 61K (62,464) bytes
Banks 2-8: 56K (57,344) bytes
Maximum number of
terminals 16

WANG (UK) LIMITED
Head Office,
1000 Great West Road,
Brentford, Middlesex TW8 9HL
Telephone: 01-568 4444,
Telex: 295795 WANGHO G.
Telefax: 01-847 1352

Ordering Specifications
The interactive multiuser central processing unit (CPU) must include the BASIC-2 incremental compiler, the latest release of the BASIC-2 Multiuser Operating System, and extensive system diagnostics. The CPU must contain approximately 32K of 24-bit words of control memory and nine I/O slots. The CPU must be provided with 128K bytes of user memory and must be expandable to 512K bytes. User memory must be divisible into a maximum of 16 separate partitions. The multiuser operating system and the BASIC-2 incremental compiler must reside in a separate control memory. The memory cycle time must be 600 nanoseconds nominal. Full memory parity must be provided throughout both control and user memory. The CPU must be capable of supporting up to 16 interactive terminals concurrently. The system must support the BASIC-2 language, provide a complete set of I/O instructions to control system peripherals, and it must include both automatic cataloging and direct addressing instructions for disk I/O operations. Both synchronous and asynchronous communications hardware, on a single board, must be available for installation directly within the processor.

Wang makes IT work

The materials presented here are summary in nature, subject to change and intended for general information only.
Standard Warranty Applies
Copyright © 1987 Wang (UK) Ltd.
UK CS 003026/87
US 715-0097A
CUSTOMER ENGINEERING

FINAL

MAINTENANCE PLAN

VS/2200/QA NEW PRODUCTS

December 16, 1987

2200 VLSI
8MB CPU/Memory PCB

Joseph P. Costello
New Products Engineer
Joseph P. Costello

Ibrahim Azar
New Products Manager
Ibrahim Azar

Sheila D. Mitchell
Product Line Manager
Sheila Mitchell

Henry A. Schinnagel
Product Line Director
Henry A. Schinnagel
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. PRODUCT DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>A. Overview of the Product</td>
<td>1</td>
</tr>
<tr>
<td>B. Similarities/Differences With Other Wang Products</td>
<td>1</td>
</tr>
<tr>
<td>1) Software</td>
<td>1</td>
</tr>
<tr>
<td>2) Hardware</td>
<td>1</td>
</tr>
<tr>
<td>3) Other</td>
<td>1</td>
</tr>
<tr>
<td>C. First Customer Shipment</td>
<td>1</td>
</tr>
<tr>
<td>1) Domestic</td>
<td>1</td>
</tr>
<tr>
<td>2) International</td>
<td>1</td>
</tr>
<tr>
<td>D. Service Offerings/Warranty</td>
<td>1</td>
</tr>
<tr>
<td>E. Special Programs/Procedures</td>
<td>1</td>
</tr>
<tr>
<td>F. Major Components</td>
<td>2</td>
</tr>
<tr>
<td>G. Configuration Requirements</td>
<td>2</td>
</tr>
<tr>
<td>II. MAINTENANCE PHILOSOPHY</td>
<td></td>
</tr>
<tr>
<td>A. Maintenance Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1) C.E. Level</td>
<td>3</td>
</tr>
<tr>
<td>2) Maintenance Procedures</td>
<td>3</td>
</tr>
<tr>
<td>B. Types of Contract to be Offered</td>
<td>3</td>
</tr>
<tr>
<td>C. P.M. Requirements</td>
<td>3</td>
</tr>
<tr>
<td>1) Customer Performed</td>
<td>3</td>
</tr>
<tr>
<td>2) WANG C.E. Performed</td>
<td>3</td>
</tr>
<tr>
<td>a) Interval</td>
<td>3</td>
</tr>
<tr>
<td>b) Parts/Consumables Required</td>
<td>3</td>
</tr>
<tr>
<td>c) Time to Perform</td>
<td>3</td>
</tr>
<tr>
<td>D. Diagnostics Required</td>
<td>3</td>
</tr>
<tr>
<td>1) Diagnostic Name(s)</td>
<td>3</td>
</tr>
<tr>
<td>III. TRAINING</td>
<td></td>
</tr>
<tr>
<td>A. CUSTOMER ENGINEER COURSE</td>
<td></td>
</tr>
<tr>
<td>1) Course Objective</td>
<td>4</td>
</tr>
<tr>
<td>2) Timetable and Format</td>
<td>4</td>
</tr>
<tr>
<td>3) Prerequisites</td>
<td>4</td>
</tr>
<tr>
<td>B. SALES SUPPORT COURSE</td>
<td>4</td>
</tr>
<tr>
<td>1) Timetable and Format</td>
<td>4</td>
</tr>
<tr>
<td>IV. SPECIAL TOOLS/TEST EQUIPMENT</td>
<td></td>
</tr>
</tbody>
</table>

COMPANY PROPRIETARY
V. OPERATING ENVIRONMENT

A. Temperature Range ... 4
B. Voltage Range .. 4
C. Humidity Range .. 5
D. Physical Specification ... 5
E. Service Space Requirements 5
F. Input Current ... 5
G. Input Power ... 5
H. Power Factor ... 5
I. Heat Loss .. 5
J. Leakage Current (grounding requirements) 5

VI. POWER CORD DATA

A. Plug Type ... 5
B. Length ... 5

VII. DOCUMENTATION LIST

A. Prints .. 6
B. Maintenance Manual .. 6
C. Vendor Manuals ... 6
D. Diagnostic Error Listings 6
E. P.M. Procedures ... 6
F. Repair Plan .. 6
G. Sales Literature ... 6
H. Operators' Guide/User Information 6

APPENDICES

A1 Marketing Forecast
A2 Predicted Reliability 2200 VLSI 8MB CPU/Memory PCB
A3 FRU, CRU Listing, Stocking Locations
A3 P.M. Parts
A3 Diagnostics

COMPANY PROPRIETARY

11
I. PRODUCT DESCRIPTION

A. OVERVIEW OF THE PRODUCT

As a further enhancement of the 2200 CS a modified version of the 2200 VLSI CPU/Memory PCB has been developed. The new version of the CPU/Memory PCB supports up to 8 Megabytes (MB) of user memory. All unused memory, memory not allocated to user partitions, is allocated to RAM Disk. The new version of the CPU/Memory PCB will be supported in all VLSI 2200 systems. This includes the CS, Micro/VP, and the MVP-128/512.

B. SIMILARITIES/DIFFERENCES (with other WANG products)

1) Software:
 Release 3.1 of the 2200 operating system is required to access memory beyond 512 Kilobytes (KB).

2) Hardware:
 The new CPU/Memory PCB is an enhanced version of the current 2200 VLSI CPU/Memory PCB. The new CPU/Memory PCB will increase the maximum user memory from 512KB to 8MB. The 8MB CPU/Memory PCB will use the Micro 2200 chip. This is the same 121 pin gate array CPU used on the previous VLSI CPU/Memory PCB (210-8034-X).

3) Other:
 The increased memory will allow the customer to allocate up to 1MB of Memory to user partitions. Any memory not allocated to user partitions may be used for RAMDISK.

C. ANNOUNCE/FIRST CUSTOMER SHIPMENT DATE

 Volume Ship: January 1988

D. SERVICE OFFERINGS/WARRANTY

This product will be installed by Customer Engineering personnel, and maintained by Customer Engineering with On-Site service.

This product will be covered by the standard Wang 90 day warranty.

E. SPECIAL PROGRAM/PROCEDURES

N/A
F. MAJOR COMPONENTS

The new 2200 VLSI CPU/Memory PCB may be divided into the following components.

1) CPU:
The new CPU/Memory PCB uses the VLSI 2200 CPU chip. This is the same CPU used on the current 2200 VLSI CPU/Memory PCB (210-8034).

2) DRAM Controller:
The new CPU/Memory PCB (210-8937) utilizes a one Megabyte Dynamic RAM Controller chip. From a system perspective this design will provide a maximum of 128 memory segments (banks). Each bank is 64 kilobytes, for a maximum of 8 megabytes of user memory.

3) Boot Proms:
The prom code has not been changed and reflects the current revision of the proms.

4) Control Memory:
The new CPU/Memory PCB will ship with 32 Kilobytes of Control Memory. Space has been provided on the PCB for expansion to 64 Kilobytes of Control Memory.

5) Data Memory:
The Fixed (soldered) RAM chips used on the previous CPU/Memory PCB have been replaced by SIMM modules on the new board and maximum memory size is increased from 512 Kilobytes, on the previous version of the CPU/memory PCB, to 8 Megabytes. PAL (programmable array logic) is used for memory addressing. The flexibility of the PAL allows unique addressing circuitry for each memory configuration.

G. CONFIGURATION REQUIREMENTS

The new CPU/Memory PCB will be configured in 128 KB, 512 KB, 1 MB, 2 MB, 4 MB, and 8 MB versions. The 128 KB, 512 KB, and 1 MB versions will utilize 256 KB SIMM modules. The 2 MB, 4 MB, and 8 MB versions will utilize 1 MB SIMM modules. A jumper (JP2) must be set to indicate which SIMM modules, 256KB or 1MB, are on the board. The PAL chip located at L2 will determine addressing capacity and must be compatible with the amount of memory loaded on the PCB.

Memory upgrades in the field will be accomplished with one of two methods. If the system is being upgraded from the old CPU/Memory PCB to one of the new memory configurations a new CPU/Memory PCB will be supplied. If memory is being upgraded on a new CPU/Memory PCB in the field the kit will include the proper SIMM modules and PAL addressing chip (L2).

COMPANY PROPRIETARY

(2)
II. MAINTENANCE PHILOSOPHY

A. Maintenance Objectives

1) C.E. Level:
 This product will function as part of a 2200 CS, Micro VP, or MVP-128/512 system. Therefore effective maintenance of a system that includes this option will require the following:

 a) Skillful cause analysis at the system level.

 b) Knowledge of the diagnostics on the 2200 system.

 c) Knowledge of the overall system configuration.

2) Maintenance Procedures:
 Maintenance on this product will be performed on-site by a Wang Customer Engineer. Currently existing diagnostics will aid the CE in isolating hardware failures to the failing board. When a board failure occurs, that board will be replaced with a board from C.E. stock and the bad board returned through C.E. logistics channels for repair.

B. Types of contract to be offered

On-Site Maintenance Contracts will be offered.

C. P.M. requirements

1) Customer performed:
 To insure proper operation of this product, and the system in which it is installed, the Customer should observe the Environmental Considerations outlined in the CUSTOMER SITE PLANNING GUIDE (part # 700-5978) section 4.

2) WANG C.E. performed:
 This product will not require P.M.

 a) Interval: N/A

 b) Parts/Consumables required: N/A

 c) Time to perform: N/A

D. Diagnostics required:

1) The Data Memory Diagnostic has been revised to test the increased memory on the enhanced PCB and is incorporated in Release 3.1 of the 2200 Operating System.
III. TRAINING

The 8MB CPU/MEM PCB will be included in the 2200 System training class as they are scheduled. Previously trained 2200 Customer Engineers will be updated via the Technical Service Bulletin (TSB) and PUB's to existing 2200 Product Maintenance Manuals.

A. CUSTOMER ENGINEER COURSE

1) COURSE OBJECTIVE:
The training objective will be to provide information that will enable the Wang Customer Engineer to meet the maintenance objectives for this product. These maintenance objectives are detailed in section II of this plan.

2) TIMETABLE and FORMAT:
Training does not offer scheduled 2200 hardware classes. Training for 2200 is done on an as needed basis depending on demand for classes. The Product Maintenance Manual and TSB will be distributed before FCS date.

3) PREREQUISITES:
The 2200 System Course prerequisites are:

a) 6 months field experience following New Hire Training.

B. SALES SUPPORT COURSE

1) TIMETABLE and FORMAT
TBD

IV. SPECIAL TOOLS/TEST EQUIPMENT

No unique items required to service this product.

V. OPERATING ENVIRONMENT

A. TEMPERATURE RANGE

Storage (packaged) 0 to 120 deg f (-17 to 50 deg c)
Operating 60 to 90 deg f (16 to 28 deg c)

B. VOLTAGE RANGE

This product will require +5 VDC to be supplied by the 2200 system in which it is installed.
C. HUMIDITY RANGE
 Storage (packaged) 10% to 90%
 Operating 40% to 60%
 Wet Bulb Temperature 75 deg f max.

D. PHYSICAL SPECIFICATIONS
 Height 7 inches 17.5 centimeters
 Width 12 inches 30 centimeters

E. SERVICE SPACE REQUIREMENTS
 No additional service space will be required for this product.
 Observe the service space requirements for the 2200 CPU in which
 the product is installed.

F. INPUT CURRENT
 This product will require +5 VDC at 3.4 amps to be supplied by the
 2200 system in which it is installed.

G. INPUT POWER
 The 2200 8 MB CPU/Memory PCB when installed will result in an
 additional 17 watt load on the power supply. This additional load
 results in a trivial increase in input power requirements.

H. POWER FACTOR
 This product will have no measurable effect on the power factor of
 the system in which it is installed.

I. HEAT LOSS
 53 BTU/hr (13.4 KgCal/hr.)

J. LEAKAGE CURRENT (grounding requirements)
 N/A

VI. POWER CORD DATA

A. PLUG TYPE
 N/A

B. LENGTH
 N/A
VII. DOCUMENTATION LIST

A. PRINTS: .. 210-8937

B. MAINTENANCE MANUAL: PUB 741-1769-1 (CS)
 741-1668-2 (MicroVP)
 729-0584-A3 (MVP-128/512)

C. VENDOR MANUALS: N/A

D. DIAGNOSTIC ERROR LISTINGS: Included in Maintenance Manual

E. P.M. PROCEDURES: N/A

F. REPAIR PLAN: Repair Plan # 611-0

G. SALES LITERATURE: Number Not Available

H. OPERATORS' GUIDE/USER INFORMATION: Number Not Available
APPENDICES

COMPANY PROPRIETARY
<table>
<thead>
<tr>
<th></th>
<th>Q3 FY88</th>
<th>Q4 FY88</th>
<th>Q1 FY89</th>
<th>Q2 FY89</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>International</td>
<td>175</td>
<td>175</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>
PRODUCT MATURE PERFORMANCE PREDICTED

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Product Description</th>
<th>Service Parameter</th>
<th>Rate per Year</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>2200 8MB CPU/MEM PCB</td>
<td>Field Failures</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calls</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTTR</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call Duration</td>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation Time</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrades/Model</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrade Install</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRODUCT ANALYSIS WITH GROWTH

Product Field Failures/Year and Calls/Year by Month after Installation

Model Number: N/A
Product Description: 2200 8MB CPU/MEM PCB

<table>
<thead>
<tr>
<th>Month after Installation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Failures/Year</td>
<td>1.16</td>
<td>0.46</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Calls/Year</td>
<td>1.19</td>
<td>0.63</td>
<td>0.48</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
</tr>
</tbody>
</table>

COMPANY PROPRIETARY
NOTE:
Every effort has been made to include the most current information available but, these part numbers are subject to change.
Customer Service Logistics will provide updated, released part numbers through the normal RSL process.

FRUs, CRUs,

<table>
<thead>
<tr>
<th>PART #</th>
<th>DESCRIPTION</th>
<th>FRU:CRU:Unique: B: A: H</th>
</tr>
</thead>
<tbody>
<tr>
<td>210-8937-B</td>
<td>512 KB CPU/MEM. PCB</td>
<td>X : X : X : X : X : X</td>
</tr>
<tr>
<td>210-8937-C</td>
<td>1 MB CPU/MEM. PCB</td>
<td>X : X : X : X : X : X</td>
</tr>
<tr>
<td>210-8937-D</td>
<td>2 MB CPU/MEM. PCB</td>
<td>X : X : X : X : X : X</td>
</tr>
</tbody>
</table>

PARTS LIST

Diagnostic Part Number: 195-2956-0
Parts required for P.M.: N/A
NEW PRODUCT STATUS

CS-2 and CS-5
(repackage MicroVP1 & 2)

Current Status: CS-2 and CS-5, PEP # H0245A

First Customer Ship: Q4 FY87

Logistics:
This product will be a repackaged version of the MicroVP. The new cabinet will house the same FRU's as the MicroVP.

- 270-0986 Power Supply MTBF: 20,000 hrs
- 210-8176 Mother Bd. MTBF: 717,154 hrs
- 210-8034-1A CPU/MEM Bd. MTBF: 24,451 hrs
- 210-8034-2A CPU/MEM Bd. MTBF: 19,616 hrs

Technical Documentation:
Documentation class code is 4103.
Joe Himingway has assigned Ed Bogusz to produce a Product Maintenance Manual in the I/M format for this product.
Have provided Motherboard, Power Supply, CPU/Memory PCB, CS cabinet and typical Device Controllers for artwork.
CS cabinet provided for photo session.
The Product Maintenance Manual is in final editing.

TEE/FSC:
Determine if there is any impact on the existing Repair Plan for the MicroVP.

Diagnostic Support:
No new diagnostics are planned for this product. Existing 2200 Diagnostic package # 195-2956-0 will be used.

Technical Training Center:
This new cabinet should be included in the 2200 System Class. The Product Maintenance Manual and TSB will provide necessary information for Customer Engineers previously trained on the 2200 system.
2200 8MB CPU/MEMORY PCB UPGRADE KITS

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>KIT NUMBER</th>
<th>PART NUMBER</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>128KB</td>
<td>512KB</td>
<td>UJ5057</td>
<td>289-0969</td>
<td>Kit includes new PCB. Remove CPU/Memory PCB from system and install new CPU/Memory PCB (210-8937-B).</td>
</tr>
<tr>
<td>128KB</td>
<td>1MB</td>
<td>UJ5065</td>
<td>289-0968</td>
<td>Kit includes new PCB. Remove CPU/Memory PCB from system and install new CPU/Memory PCB (210-8937-C).</td>
</tr>
<tr>
<td>128KB</td>
<td>2MB</td>
<td>UJ5066</td>
<td>289-0967</td>
<td>Kit includes new PCB. Remove CPU/Memory PCB from system and install new CPU/Memory PCB (210-8937-D).</td>
</tr>
<tr>
<td>128KB</td>
<td>4MB</td>
<td>UJ5067</td>
<td>289-0966</td>
<td>Kit includes new PCB. Remove CPU/Memory PCB from system and install new CPU/Memory PCB (210-8937-E).</td>
</tr>
<tr>
<td>128KB</td>
<td>8MB</td>
<td>UJ5068</td>
<td>289-0965</td>
<td>Kit includes new PCB. Remove CPU/Memory PCB from system and install new CPU/Memory PCB (210-8937-F).</td>
</tr>
<tr>
<td>512KB</td>
<td>1MB</td>
<td>UJ5069</td>
<td>289-0964</td>
<td>Kit includes new PCB. Remove CPU/Memory PCB from system and install new CPU/Memory PCB (210-8937-C).</td>
</tr>
<tr>
<td>512KB</td>
<td>2MB</td>
<td>UJ5070</td>
<td>289-0963</td>
<td>Kit includes new PCB. Remove CPU/Memory PCB from system and install new CPU/Memory PCB (210-8937-D).</td>
</tr>
<tr>
<td>512KB</td>
<td>4MB</td>
<td>UJ5071</td>
<td>289-0962</td>
<td>Kit includes new PCB. Remove CPU/Memory PCB from system and install new CPU/Memory PCB (210-8937-E).</td>
</tr>
<tr>
<td>512KB</td>
<td>8MB</td>
<td>UJ5072</td>
<td>289-0961</td>
<td>Kit includes new PCB. Remove CPU/Memory PCB from system and install new CPU/Memory PCB (210-8937-F).</td>
</tr>
<tr>
<td>FROM</td>
<td>TO</td>
<td>KIT NUMBER</td>
<td>PART NUMBER</td>
<td>COMMENTS</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>1MB</td>
<td>2MB</td>
<td>UJ5059</td>
<td>289-0960</td>
<td>Kit includes 1 PAL chip (377-3486) for memory addressing and 2 1MB x 9 SIMMS (377-4513). Remove CPU/Memory PCB from system. Replace the PAL chip at location L2 with the one in the kit. Remove the 4 256KB SIMM's and insert the 2 1MB SIMM's from the Kit into the first two sockets beginning at the bottom. Put the PCB back in the system and run diagnostics.</td>
</tr>
<tr>
<td>1MB</td>
<td>4MB</td>
<td>UJ5060</td>
<td>289-0959</td>
<td>Kit includes 1 PAL chip (377-3487) for memory addressing and 4 1MB x 9 SIMMS (377-4513). Remove CPU/Memory PCB from system. Replace the PAL chip at location L2 with the one in the kit. Remove the 4 256KB SIMM's and insert the 4 1MB SIMM's from the Kit into the first four sockets beginning at the bottom. Put the PCB back in the system and run diagnostics.</td>
</tr>
<tr>
<td>1MB</td>
<td>8MB</td>
<td>UJ5061</td>
<td>289-0958</td>
<td>Kit includes 1 PAL chip (377-3488) for memory addressing and 8 1MB x 9 SIMMS (377-4513). Remove CPU/Memory PCB from system. Replace the PAL chip at location L2 with the one in the kit. Remove the 4 256KB SIMM's and insert the 8 1MB SIMM's from the Kit into the sockets beginning at the bottom. Put the PCB back in the system and run diagnostics.</td>
</tr>
<tr>
<td>2MB</td>
<td>4MB</td>
<td>UJ5062</td>
<td>289-0957</td>
<td>Kit includes 1 PAL chip (377-3487) for memory addressing and 2 1MB x 9 SIMMS (377-4513). Remove CPU/Memory PCB from system. Replace the PAL chip at location L2 with the one in the kit. Insert the 2 1MB X 9 SIMM's from the kit into the first two empty sockets. Put the PCB back in the system and run diagnostics.</td>
</tr>
<tr>
<td>FROM</td>
<td>TO</td>
<td>KIT NUMBER</td>
<td>PART NUMBER</td>
<td>COMMENTS</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>2MB</td>
<td>8MB</td>
<td>UJ5063</td>
<td>289-0956</td>
<td>Kit includes 1 PAL chip (377-3488) for memory addressing and 6 1MB x 9 SIMMS (377-4513). Remove CPU/Memory PCB from system. Replace the PAL chip at location L2 with the one in the kit. Insert the 6 1MB X 9 SIMM's from the kit into the empty sockets. Put the PCB back in the system and run diagnostics.</td>
</tr>
<tr>
<td>4MB</td>
<td>8MB</td>
<td>UJ5064</td>
<td>289-0955</td>
<td>Kit includes 1 PAL chip (377-3488) for memory addressing and 4 1MB x 9 SIMMS (377-4513). Remove CPU/Memory PCB from system. Replace the PAL chip at location L2 with the one in the kit. Insert the 4 1MB X 9 SIMM's from the kit into the empty sockets. Put the PCB back in the system and run diagnostics.</td>
</tr>
</tbody>
</table>

83 128K
84 512K
85 1
86 2
87 4
377-3488 8 MEG PAL
1. J1 always in.

2. J2 -
 - Center to left = 1 MΩ E1
 - Center to right = 256 K S1

3. Ch. 45: Motes (±4.335 V) to:
 - 744539 -
 - 744529 -

4. Check that pins are all the same. (±10) or (±12)

5. Last resort pull VLSI + Reset it push down on flat surface.
 * This worked 2 times in Canada.

1 MEG Prob.
PURPOSE:
To inform the field of a new VLSI CPU/Memory PCB for the 2200.

EXPLANATION:
Beginning in February, 1988, Wang will begin shipping an enhanced version of the 2200 VLSI CPU/Memory PCB. The new CPU/Memory PCB will be supported in the 2200 CS, MicroVP, and MVP-128/512 system. The new CPU/Memory PCB will increase the maximum user memory from 512 kilobytes (KB) to 8 megabytes (MB). The increased user memory will allow the user to allocate up to 1MB to user partitions. Any memory not allocated to user partitions will be reserved for RAMDISK.

CONFIGURATION:
The new CPU/Memory PCB will be offered with 128KB, 512KB, 1MB, 2MB, 4MB, or 8MB of user memory. The 128KB, 512KB, 1MB versions will use 256KB SIMM modules and the 2MB, 4MB, and 8MB version will use 1MB SIMM modules. A programmable array logic (PAL) chip at location L2 will determine addressing capacity and must be compatible with the amount of memory loaded on the PCB.

JUMPERS:
There are two jumpers located on the new CPU/Memory PCB;

J1, enables the CPU clock and MUST BE IN.

J2, is used to indicate whether 256KB or 1MB SIMM modules are to be used for memory on the PCB. The jumper has three pins. If 256KB SIMM modules are being used the jumper MUST BE INSERTED BETWEEN PINS 2 AND 3. If 1MB SIMM modules are being used the jumper MUST BE INSERTED BETWEEN PINS 1 AND 2.

DIAGNOSTICS:
Testing of the increased memory on the new PCB is supported by revision 179E of the 2200 memory diagnostic. This diagnostic is contained in the 2200 diagnostic package (195-2956-0).

GROUP: VS/2200/OA New Products Hardware
MAIL STOP: 001-220

WANG Laboratories, Inc.
TECHNICAL SERVICE BULLETIN

SECTION: Hardware Technical

NUMBER: HWT 8003
REPLACES: __________
DATE: 02/09/88

MATRIX ID. 4103
PRODUCT/RELEASE# 2200 VLSI 8MB CPU/MEMORY PCB

TITLE: 2200 VLSI 8MB CPU/MEMORY PCB NEW PRODUCT INFORMATION

EXPLANATION (cont'):

DOCUMENTATION:
The new CPU/Memory PCB will be documented in the following publication update bulletins;
741-1769-1 (CS)
741-1668-2 (MicroVP)
729-0584-A3 (MVP-128/512)

PART NUMBERS:

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>PAL 317-</th>
</tr>
</thead>
<tbody>
<tr>
<td>210-8937-A</td>
<td>128KB CPU/Memory PCB</td>
<td>L2 = 3483</td>
</tr>
<tr>
<td>210-8937-B</td>
<td>512KB CPU/Memory PCB</td>
<td>L2 = 3484</td>
</tr>
<tr>
<td>210-8937-C</td>
<td>1MB CPU/Memory PCB</td>
<td>L2 = 3485</td>
</tr>
<tr>
<td>210-8937-D</td>
<td>2MB CPU/Memory PCB</td>
<td>L2 = 3486</td>
</tr>
<tr>
<td>210-8937-E</td>
<td>4MB CPU/Memory PCB</td>
<td>L2 = 3487</td>
</tr>
<tr>
<td>210-8937-F</td>
<td>8MB CPU/Memory PCB</td>
<td>L2 = 3488</td>
</tr>
</tbody>
</table>

MEMORY UPGRADES:
Memory upgrades in the field will be accomplished with one of two methods. If the system is being upgraded from a 128KB or 512KB system to one of the other memory options a new CPU/Memory PCB will be supplied. If the system is being upgraded from 1MB or greater to one of the other memory options the kit will include the proper SIMM modules and a PAL addressing chip to replace the one in location L2.

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Kit #</th>
<th>Part #</th>
<th>Kit Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>128KB</td>
<td>512KB</td>
<td>UJ5057</td>
<td>289-0969</td>
<td>210-8937-B</td>
</tr>
<tr>
<td>128KB</td>
<td>1MB</td>
<td>UJ5065</td>
<td>289-0968</td>
<td>210-8937-C</td>
</tr>
<tr>
<td>128KB</td>
<td>2MB</td>
<td>UJ5066</td>
<td>289-0967</td>
<td>210-8937-D</td>
</tr>
<tr>
<td>128KB</td>
<td>4MB</td>
<td>UJ5067</td>
<td>289-0966</td>
<td>210-8937-E</td>
</tr>
<tr>
<td>128KB</td>
<td>8MB</td>
<td>UJ5068</td>
<td>289-0965</td>
<td>210-8937-F</td>
</tr>
<tr>
<td>512KB</td>
<td>1MB</td>
<td>UJ5069</td>
<td>289-0964</td>
<td>210-8937-C</td>
</tr>
<tr>
<td>512KB</td>
<td>2MB</td>
<td>UJ5070</td>
<td>289-0963</td>
<td>210-8937-D</td>
</tr>
</tbody>
</table>

GROUP: VS/2200/OA New Products Hardware
MAIL STOP: 001-220

COMPANY CONFIDENTIAL
WANG Laboratories, Inc.
TECHNICAL SERVICE BULLETIN
SECTION: Hardware Technical

NUMBER: HWT 8003 REPLACES: _______ DATE: 02/09/88 PAGE 3 OF 4
MATRIX ID: 4103 PRODUCT/RELEASE#: 2200 VLSI 8MB CPU/MEMORY PCB

TITLE: 2200 VLSI 8MB CPU/MEMORY PCB NEW PRODUCT INFORMATION

EXPLANATION (cont'),

MEMORY UPGRADES (cont'),

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Kit #</th>
<th>Part #</th>
<th>Kit Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>512KB</td>
<td>4MB</td>
<td>UJ5071</td>
<td>289-0962</td>
<td>210-8937-E</td>
</tr>
<tr>
<td>512KB</td>
<td>8MB</td>
<td>UJ5072</td>
<td>289-0961</td>
<td>210-8937-F</td>
</tr>
</tbody>
</table>

Instructions:
1. Power down the system.
2. Remove the old CPU/Memory PCB.
3. Install the CPU/Memory PCB from the kit.
4. Power up the system.
5. Run the diagnostics to verify operation.
6. Return the system to the Customer.

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Kit #</th>
<th>Part #</th>
<th>Kit Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MB</td>
<td>2MB</td>
<td>UJ5059</td>
<td>289-0960</td>
<td>PAL addressing chip (377-3486).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Two 1MB x 9 SIMM modules (377-4513).</td>
</tr>
<tr>
<td></td>
<td>4MB</td>
<td>UJ5060</td>
<td>289-0959</td>
<td>PAL addressing chip (377-3487).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Four 1MB x 9 SIMM modules (377-4513).</td>
</tr>
<tr>
<td></td>
<td>8MB</td>
<td>UJ5061</td>
<td>289-0958</td>
<td>PAL addressing chip (377-3488).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eight 1MB x 9 SIMM modules (377-4513).</td>
</tr>
</tbody>
</table>

Instructions:
1. Power down the system.
2. Remove the CPU/Memory PCB from the system.

GROUP: VS/2200/OA New Products Hardware MAIL STOP: 001-220

COMPANY CONFIDENTIAL

WANG Laboratories, Inc.
EXPLANATION (cont'):

MEMORY UPGRADES (cont'):

Instructions (cont')
3. Remove the 256KB SIMMs from the memory sockets on the PCB.
4. Insert the 1MB SIMMs supplied with the kit into the memory sockets.
5. Remove the PAL addressing chip from location L2 on the PCB.
6. Insert the PAL addressing chip supplied with the kit into the socket at location L2 on the PCB.
7. Reposition jumper J2 from pins 2 and 3 to pins 1 and 2.
8. Re-install the CPU/Memory PCB in the system.
9. Power up the system.
10. Run the diagnostics to verify operation.
11. Return the system to the customer.

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Kit #</th>
<th>Part #</th>
<th>Kit Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2MB</td>
<td>4MB</td>
<td>UJ5062</td>
<td>289-0957</td>
<td>PAL addressing chip (377-3487), Two 1MB x 9 SIMM modules (377-4513).</td>
</tr>
<tr>
<td>2MB</td>
<td>8MB</td>
<td>UJ5063</td>
<td>289-0956</td>
<td>PAL addressing chip (377-3488), Six 1MB x 9 SIMM modules (377-4513).</td>
</tr>
<tr>
<td>4MB</td>
<td>8MB</td>
<td>UJ5064</td>
<td>289-0955</td>
<td>PAL addressing chip (377-3488), Four 1MB x 9 SIMM modules (377-4513).</td>
</tr>
</tbody>
</table>

Instructions:
1. Power down the system.
2. Remove the CPU/Memory PCB from the system.
3. Insert the 1MB SIMMs supplied with the kit into the memory sockets.
4. Remove the PAL addressing chip from location L2 on the PCB.
5. Insert the PAL addressing chip supplied with the kit into the socket at location L2 on the PCB.
6. Re-install the CPU/Memory PCB in the system.
7. Power up the system.
8. Run the diagnostics to verify operation.
9. Return the system to the customer.

NOTE: SIMM modules are inserted beginning in location L1.

<table>
<thead>
<tr>
<th>MEMORY SIZE</th>
<th>SIMM'S</th>
<th>LOCATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>128KB</td>
<td>(2) 256KB X 9</td>
<td>L1, L9</td>
</tr>
<tr>
<td>512KB</td>
<td>(2) 256KB X 9</td>
<td>L1, L9</td>
</tr>
<tr>
<td>1MB</td>
<td>(4) 256KB X 9</td>
<td>L1, L9, L10, L13</td>
</tr>
<tr>
<td>2MB</td>
<td>(2) 1MB X 9</td>
<td>L1, L9</td>
</tr>
<tr>
<td>4MB</td>
<td>(4) 1MB X 9</td>
<td>L1, L9, L10, L13</td>
</tr>
<tr>
<td>8MB</td>
<td>(8) 1MB X 9</td>
<td>L1, L9, L10, L13, L14, L15, L23, L24</td>
</tr>
</tbody>
</table>
TECHNICAL SERVICE BULLETIN
SECTION: Hardware General

NUMBER: HWG 7012 REPLACES: ________ DATE: 06/02/87 PAGE 1 OF 1

MATRIX ID. 4103 PRODUCT/RELEASE# CS2 AND CS5

TITLE: CS MODEL NUMBER CORRECTION

PURPOSE:
To inform the field of model number errors in the CS Product Maintenance Manual.

EXPLANATION:
The CS Product Maintenance Manual, both the micro fiche and the hard copy, was printed using incorrect model numbers. The correct model numbers are CS2 and CS5. Any reference in the manual to CS1 should be replaced by CS2 and any reference to CS2 should be replaced by CS5.

For further information on the difference between the CS2 and CS5 see TSB HWT 7092, distribution date 05/05/87.

This error will be corrected in the next printing of the manual.
TECHNICAL SERVICE BULLETIN
SECTION: Hardware Technical

NUMBER: HWT 7092 REPLACES: _______ DATE: 05/05/87 PAGE 1 OF 1
MATRIX ID. 4103 PRODUCT/RELEASE#: CS2 AND CS5

TITLE: CS NEW PRODUCT INFORMATION

PURPOSE:
To inform the field of the new CS.

EXPLANATION:
Starting in April, 1987, Wang will begin shipping the CS. The CS is a re-packaged version of the Micro/VP. There are two models of the CS. The CS2 with 128KB of data memory and the CS5 with 512KB of data memory. Both models have 32KB of control memory and 9 I/O slots.

The CS will support all Wang, vendor, and user software currently supported on the Micro/VP. It is supported by the current release of the 2200 Multi-User Operating System (Rev 2.7).

These systems may utilize existing 2200 controllers such as; MXE, Triple Controller, and many of the disk, printer, and Telecommunications controllers.

PART NUMBER INFORMATION FOR THE CS:

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Part Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>128KB CPU Board</td>
<td>210-8034-1</td>
<td>(same as Micro/VP-1)</td>
</tr>
<tr>
<td>512KB CPU Board</td>
<td>210-8034-2</td>
<td>(same as Micro/VP-2)</td>
</tr>
<tr>
<td>Motherboard</td>
<td>210-8176</td>
<td>(same as Micro/VP)</td>
</tr>
<tr>
<td>Switching Power Supply</td>
<td>270-0986</td>
<td>(same as Micro/VP)</td>
</tr>
<tr>
<td>DC Fan Assembly</td>
<td>270-3403</td>
<td>(unique)</td>
</tr>
<tr>
<td>AC Cable (internal)</td>
<td>220-2569</td>
<td>(unique)</td>
</tr>
<tr>
<td>DC Harness</td>
<td>220-2606</td>
<td>(unique)</td>
</tr>
</tbody>
</table>

DIAGNOSTICS:
195-2956-0

PRODUCT MAINTENANCE MANUAL:
741-1769

GROUP: VS New Products Hardware MAIL STOP: 001-220

COMPANY CONFIDENTIAL
WANG Laboratories, Inc.
PART NO. 209/210-8937/A/B/C/D/E/F
DESCRIPTION CS CPU CARD
DWG NO. 8937
MODEL NO. CS CPU

CLASS I (II) III

PRELIMINARY

DESCRIPTION OF CHANGE

Change parts list and sample board per attached sheets and as follows:

Change BOM 210-8937-A, 210-8937-B, 210-8937-C, 210-8937-D, 210-8937-E and 210-8937-F as follows:

Delete: 377-3490 IC PAL 16R4
Add: 377-3490-R1 IC PAL 16R4

CHANGE PAL AT LOCATION L44.
Delete the part number and product structure for 377-3490.

REASON/SYMPTOM FOR CHANGE

To correct memory sizing problem.

FIXES PROBLEM WHEN PARTITIONING SCREEN SHOWS 512K MEMORY AVAILABLE & LETS YOU PARTITION IT WHEN ONLY HAVE 128K BOARD. WHEN PARTITION MORE THAN 128K RESULTS IN A PCBM ERROR.
IMPACT REVIEW CHECKLIST

WANG ECO# 52361 OEM ECO# ____________ PN# 210-8937A

1. WANG MODEL #s AFFECTED: CS, MICROVAP, MVP 128

2. WANG FRU(s) #s AFFECTED: 210-8937A

3. IS THERE AN IMPACT ON WANG INSTALLED BASE? (IF NO, go to 7) YES __ NO __

4. OF MODEL #s IMPACTED - UNIT FAILURES EXPECTED?: ALL UNITS ____ SOME UNITS ____

5. HOW ARE THESE UNITS IMPACTED? (Check any that apply):

 SAFETY ________ INTERMITTENT ________ ENHANCEMENT __
 FCC COMPLIANCE ________ HARD FAILURE ________ RELIABILITY __
 TEMPEST INTEGR. ________ CATASTROPHIC ________ OTHER (See 7) __

6. PLR DATA:
 Unit Population
 Product Failure Data
 Parts Related To ECO/PN
 Total Calls | Total Fails | Fails per Year | Total Used | Reduction | Reduced %
 last 12 mo. ____________ _________ _________ ____________ _________ _________

7. FIELD REQUIREMENTS:
 Level A Information only
 Level B TSB required
 Level C FCO required
 FCO requirements
 Next Call estimating time
 Immediate ____________ Est. installation time 10 min
 Est. % of units to FCO

8. FSC REQUIREMENTS:
 Level A Information only
 Level B Upgrade on failure only
 Level C Upgrade all assy's (MUB)

9. LOGISTICS REQUIREMENTS:
 Level A Information only
 Level B Future purchases
 Level C Purge stock (FSC rework)

ANY OTHER INFO TO CLARIFY IMPACT: (S/N range, documentation (i.e. Product Maintenance Manual, Service Handbook, etc.), configurations, repair/test process(es), tooling, etc.)

 ONLY THE 210-8937A BOARD NEEDS TO BE ECO'd AS IT IS THE ONLY CONFIGURATION WHERE A PROBLEM EXISTS. ALL NEW BOARDS, 210-8937A-B1CD, SHOULD BE BUILT WITH THIS CHIP AS THE SAME CHIP IS USED ON ALL BOARDS.

 REVIEWER'S SIGNATURE: ____________ DATE: ____________

(OVER FOR DEFINITIONS)
WRITE CLEARLY AND USE BLACK INK

0078P/7-14-88
DESCRIPTION OF CHANGE

Engineering has decided that the artwork will not be modified at this time, it is not cost justifiable.

Change assembly drawing, schematic, parts list and sample board per attached prints and as follows:

- Change L5 from IC prom (377-3139-R1) to IC prom (377-3137-R1)
- Change L35 from IC prom (377-3137-R1) to IC prom (377-3139-R1)
- Change C5 from cap 1uf 50v+80% (300-1929) to cap 1uf 50v+80% (300-1999)
- Change L30 from IC pal 16L8 (577-3489) to IC pal 16L8 (577-3409-R1)
- Change L42 from IC pal 16R4 (577-3490) to IC Bpal 16R4 (577-3501)
- Change L43 from IC pal 16R4 (577-3491) to IC Bpal 16R4 (577-3502)
- Tie L26 pin 12 to L26 pin 7
- Do not load L6, L21 and L36 IC S2KX8 SRAAM (377-0884)

REASON/SYMPTOM FOR CHANGE

To correct errors on drawings and omissions in artwork. Enhancement of program.
Change BOM 209-8937 as follows:

<table>
<thead>
<tr>
<th>WL #</th>
<th>Description</th>
<th>UM</th>
<th>Comp Type</th>
<th>Qty</th>
<th>Qty Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete:</td>
<td>300-1929</td>
<td>CAP 1UF 50V</td>
<td>EA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Add:</td>
<td>300-1999</td>
<td>CAP 1UF 50V</td>
<td>EA</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Change BOM 210-8937-A, 210-8937-B, 210-8937-C, 210-8937-D, 210-8937-E and 210-8937-F as follows:

<table>
<thead>
<tr>
<th>WL #</th>
<th>Description</th>
<th>UM</th>
<th>Comp Type</th>
<th>Qty From</th>
<th>Qty To</th>
<th>Qty Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change:</td>
<td>377-0834</td>
<td>IC 32X8 SRA4</td>
<td>EA</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Delete:</td>
<td>377-3489</td>
<td>IC PAL 16L8</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>377-3490</td>
<td>IC PAL 16R4</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>377-3491</td>
<td>IC PAL 16R4</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Add:</td>
<td>377-3489-R1</td>
<td>IC PAL 16L8</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>377-3581</td>
<td>IC PAL 16R4</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>377-3582</td>
<td>IC PAL 16R4</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>REF. DES.</td>
<td>HANG PART NO.</td>
<td>VALUE/TYPE</td>
<td>DESCRIPTION</td>
<td>QTY.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>-------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 - C8</td>
<td>300-1833-</td>
<td>100N</td>
<td>CAP .1 UF 50V +80-20% Z5U ZR CER MONO AXL</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21 - C27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C38 - C39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>300-999-</td>
<td>1000N</td>
<td>CAP 1UF 50V +80-20% Z5U CER AXIAL</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>300-2620-</td>
<td>10000P</td>
<td>CAP .01 UF 100V 10% Z5R CER MONO RDL</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17 - C20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28 - C34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36 - C37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C42 - C53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C55 - C58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>300-4022-</td>
<td>15000N</td>
<td>CAP 15 UF 20V 10% TANTALUM AXIAL</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12 - C13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15 - C16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25 - C27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>321-1082-</td>
<td>10.0000</td>
<td>CLK OSC 10.0 MHZ .01% T-SITL</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R11 - R14</td>
<td>330-1010-</td>
<td>10</td>
<td>RES 10 OHM 1/4W 5% CARBON COMPOSITION</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1 - R7</td>
<td>330-1010-</td>
<td>39</td>
<td>RES 39 OHM 1/4W 5% METAL FILM 200 PPM</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R15 - R21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>330-2011-</td>
<td>100</td>
<td>RES 100 OHM 1/4W 5% METAL FILM 200 PPM</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1:4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1:8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF. DES.</td>
<td>HANG PART NO.</td>
<td>VALUE/TYP.</td>
<td>DESCRIPTION</td>
<td>DRAWING NO.</td>
<td>QTY.</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>209-8937-</td>
<td></td>
<td>PCA 2200 MICRO VP CPU BD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6 - L7</td>
<td>377-0884-</td>
<td>62'56-12</td>
<td>IC 32K X 8 SDRAM 120NS CMOS 28 PIN</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>L22</td>
<td>377-3137-R1</td>
<td></td>
<td>IC PROM CONTAINS CPU ID #</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L35</td>
<td>377-3138-R1</td>
<td></td>
<td>IC PROM</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L36</td>
<td>377-3139-R1</td>
<td></td>
<td>IC PROM</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L37</td>
<td>377-3483-</td>
<td></td>
<td>IC PAL 20L8 ADDRESS DECODER</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L38</td>
<td>377-3489-R1</td>
<td></td>
<td>IC PAL 16L8 SELECT PROM</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L41</td>
<td>377-3490-</td>
<td>577-3581</td>
<td>IC&PAL 16R4 GENERATE SIGNALS FOR DRAIN</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L44</td>
<td>377-3491-</td>
<td>577-3582</td>
<td>IC PAL 16R4 FOUR SEPARATE CAS SIGNALS</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>377-4508-</td>
<td>41256-12</td>
<td>IC 41256 256K x 9 DRAIN 120NS SIMM NMOS 30P</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>377-5055-</td>
<td>8429-70</td>
<td>PLCC 8429-70 1 MEG/DRAM CONTROLLER ALS 68 PIN</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L32</td>
<td>377-6054-</td>
<td>CUSTOM</td>
<td>IC 2200 CPU CUSTOM 120P PROG GATE ARRAY</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PART</td>
<td>PART NO.</td>
<td>VALUE/TYP</td>
<td>DESCRIPTION</td>
<td>QTY.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>209-8937</td>
<td>62256-12</td>
<td>PCA 2200 MICRO VP CPU BD</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>377-0884</td>
<td>IC 32K X 8 SRAM 120NS CMOS, 28 PIN</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L35</td>
<td>377-3137-RI</td>
<td>IC PROM CONTAIN CPU ID #</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L20</td>
<td>377-3138-RI</td>
<td>IC PROM</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>377-3139-RI</td>
<td>IC PROM</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>377-3484</td>
<td>IC PAL 20LB ADDRESS DECODER</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>377-3489-RI</td>
<td>IC PAL 16LB SELECT PROM</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>377-3490</td>
<td>IC PAL16R4 GENERATE SIGNALS FOR DRAM</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L42</td>
<td>377-3581</td>
<td>IC PAL16R4 FOUR SEPARATE CAS SIGNALS</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L43</td>
<td>377-3582</td>
<td>IC PAL 16R8 WRITE ENABLE</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L44</td>
<td>377-4508</td>
<td>IC 41256 256K X 9 DRAM 120NS SIMM NMOS 30P</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L9</td>
<td>377-5055</td>
<td>8429-70</td>
<td>PLCC 8429-70 1 MEG/DRAM CONTROLLER ALS 68 PIN</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L32</td>
<td>377-6054</td>
<td>CUSTOM</td>
<td>IC 2200 CPU CUSTOM 120P PROG GATE ARRAY</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF. DES.</td>
<td>HANG PART NO.</td>
<td>VALUE/TYP</td>
<td>DESCRIPTION</td>
<td>DRAIWING NO.</td>
<td>QTY.</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>L1 - L7</td>
<td>209-8937-</td>
<td>62256-12</td>
<td>PCA 2200 MICRO VP CPU BD</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L8 - L22</td>
<td>377-0884-</td>
<td>377-3138-R1</td>
<td>IC 32K X 8 SRAM 120NS CMOS 28 PIN</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>L35 - L37</td>
<td>377-3135-R1</td>
<td>377-3139-R1</td>
<td>IC PROM CONTAINS CPU ID#</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L20</td>
<td>377-3138-R1</td>
<td>IC PROM</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>377-3485-</td>
<td>IC PROM</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L38</td>
<td>377-3489-R1</td>
<td>IC PAL 20LB ADDRESS DECODER</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L42</td>
<td>377-3490-</td>
<td>377-3531</td>
<td>IC PAL 16LB SELECT PROM</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L43</td>
<td>377-3491-</td>
<td>377-3512</td>
<td>IC PAL 16R4 GENERATE SIGNALS FOR DRAM</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L44</td>
<td>377-3492-</td>
<td>377-3492</td>
<td>IC PAL 16R4 FOUR SEPARATE CAS SIGNALS</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>377-4508-</td>
<td>41256-12</td>
<td>IC PAL 16R8 WRITE ENABLE</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L9 - L10</td>
<td>377-5055-</td>
<td>8429-70</td>
<td>IC 41256 256K X 9 DRAM 120NS SIMM NMOS 30P</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>377-6054-</td>
<td>CUSTOM</td>
<td>PLCC 8429-70 1 MEG/DRAM CONTROLLER ALS 68 PIN</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L32</td>
<td>377-6054-</td>
<td>CUSTOM</td>
<td>IC 2200 CPU CUSTOM 120P PROG GATE ARRAY</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>REF. DES.</td>
<td>HANG PART NO.</td>
<td>VALUE/TYP</td>
<td>DESCRIPTION</td>
<td>DRAWING NO.</td>
<td>QTY.</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>209-8937-</td>
<td>62256-12</td>
<td>PCA 2200 MICRO VP CPU BD</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>377-0884-</td>
<td></td>
<td>IC 32K X 8 SRAM 120NS CMOS 28 PIN</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>377-3137-R1</td>
<td>377-3137-R1</td>
<td>IC PROM CONTAINS CPU ID #</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L21 - L22</td>
<td>377-3138-R1</td>
<td></td>
<td>IC PROM</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>377-3137-R1</td>
<td>377-3137-R1</td>
<td>IC PROM</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L35 - L37</td>
<td>377-3487-</td>
<td></td>
<td>IC PAL 20L8 ADDRESS DECODER</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L20</td>
<td>377-3489-</td>
<td>R1</td>
<td>IC PAL 16L8 SELECT PROM</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L38</td>
<td>377-3490-</td>
<td>377-3591</td>
<td>IC PAL 16R4 GENERATE SIGNALS FOR DRAM</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L42</td>
<td>377-3491-</td>
<td>377-3590</td>
<td>IC PAL 16R4 FOUR SEPARATE CAS SIGNALS</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L43</td>
<td>377-3492-</td>
<td></td>
<td>IC PAL 16R8 WRITE ENABLE</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L44</td>
<td>377-4513-</td>
<td>31009-12</td>
<td>IC 1MX9 DRAM SIMM 120NS 30 PIN</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L9 - L10</td>
<td>377-5055-</td>
<td>8429-70</td>
<td>PLCC 8429-70 1 MEG/DRAM CONTROLLER ALS 68 PIN</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td>377-6054-</td>
<td>CUSTOM</td>
<td>IC 2200 CPU CUSTOM 120P PROG GATE ARRAY</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF. DES.</td>
<td>HANG PART NO.</td>
<td>VALUE/TYPEN</td>
<td>DESCRIPTION</td>
<td>DRAWING NO.</td>
<td>QTY.</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>L6 - L7</td>
<td>209-8937</td>
<td>62256-12</td>
<td>PCA 2200 MICRO VP CPU BL</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L20</td>
<td>377-0884</td>
<td></td>
<td>IC 32K X 8 SRAM 120NS CMOS 28 PIN</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>377-3127-R1</td>
<td></td>
<td>IC PROM (contains CPU ID)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>377-3138-R1</td>
<td></td>
<td>IC PROM</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L38</td>
<td>377-3488</td>
<td></td>
<td>IC PAL 20L8 ADDRESS DECODER</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L42</td>
<td>377-3489-R1</td>
<td></td>
<td>IC PAL 16L8 SELECT PROM</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L43</td>
<td>377-3490</td>
<td>377-3581</td>
<td>IC PAL 16R4 GENERATE SIGNALS FOR DRAM</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L44</td>
<td>377-3491</td>
<td>377-3582</td>
<td>IC PAL 16R4 FOUR SEPARATE CAS SIGNALS</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>377-4513</td>
<td>31009-12</td>
<td>IC 1MX9 DRAM SIMM 120NS 30 PIN</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>377-5055</td>
<td>8429-70</td>
<td>PLCC 8429-70 1 MEG/DRAM CONTROLLER ALS 68 PIN</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L32</td>
<td>377-6054</td>
<td>CUSTOM</td>
<td>IC 2200 CPU CUSTOM 120P PROG GATE ARRAY</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BOARD NO. & TITLE: C8937</td>
<td>PCA 2200 MICRO VP CPU BD</td>
<td>CREATED: 12/22/86 08:27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTS LIST REVISION <P>: 0</td>
<td></td>
<td>LAST MODIFIED: 11/13/87 11:10 BY: SHA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDITING REVISION: 17</td>
<td></td>
<td>SHEET OF PAGE 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FINAL PARTS LIST

<table>
<thead>
<tr>
<th>210</th>
<th>DESCRIPTION</th>
<th>209</th>
<th>L1, L9</th>
<th>L2</th>
<th>L3</th>
<th>L5</th>
</tr>
</thead>
<tbody>
<tr>
<td>210A</td>
<td>8937(2200 CS12)</td>
<td>209</td>
<td>377(4508)</td>
<td>377(3483)</td>
<td>377(5055)</td>
<td>377(3490) 319-50 R1</td>
</tr>
<tr>
<td>210B</td>
<td>8937(2200 CS5)</td>
<td>209</td>
<td>377(4508)</td>
<td>377(3484)</td>
<td>377(5055)</td>
<td>377(3490) 319-50 R1</td>
</tr>
<tr>
<td>210C</td>
<td>8937(2200 CS10)</td>
<td>209</td>
<td>377(4508)</td>
<td>377(3485)</td>
<td>377(5055)</td>
<td></td>
</tr>
<tr>
<td>210D</td>
<td>8937(2200 CS20)</td>
<td>209</td>
<td>377(4513)</td>
<td>377(5055)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210E</td>
<td>8937(2200 CS40)</td>
<td>209</td>
<td>377(4513)</td>
<td>377(5055)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210F</td>
<td>8937(2200 CS80)</td>
<td>209</td>
<td>377(4513)</td>
<td>377(5055)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>210A</td>
<td>377(0884)</td>
<td>377(3138)</td>
<td>377(1305)</td>
<td>377(6054)</td>
<td>377(3490) 319-50 R1</td>
<td></td>
</tr>
<tr>
<td>210B</td>
<td>377(0884)</td>
<td>377(3138)</td>
<td>377(1305)</td>
<td>377(6054)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210C</td>
<td>377(0884)</td>
<td>377(4508)</td>
<td>377(3138)</td>
<td>377(6054)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210D</td>
<td>377(0884)</td>
<td>377(3138)</td>
<td>377(6054)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210E</td>
<td>377(0884)</td>
<td>377(4513)</td>
<td>377(3138)</td>
<td>377(6054)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210F</td>
<td>377(0884)</td>
<td>377(4513)</td>
<td>377(1305)</td>
<td>377(6054)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>210</th>
<th>L38</th>
<th>L42</th>
<th>L43</th>
<th>L44</th>
</tr>
</thead>
<tbody>
<tr>
<td>210A</td>
<td>377(3489)</td>
<td>377(3490) 377-50</td>
<td>377(3491) 377-50</td>
<td>377(3492)</td>
</tr>
<tr>
<td>210B</td>
<td>377(3489)</td>
<td>377(3490) 377-50</td>
<td>377(3491) 377-50</td>
<td>377(3492)</td>
</tr>
<tr>
<td>210C</td>
<td>377(3489)</td>
<td>377(3490) 377-50</td>
<td>377(3491) 377-50</td>
<td>377(3492)</td>
</tr>
<tr>
<td>210D</td>
<td>377(3489)</td>
<td>377(3490) 377-50</td>
<td>377(3491) 377-50</td>
<td>377(3492)</td>
</tr>
<tr>
<td>210E</td>
<td>377(3489)</td>
<td>377(3490) 377-50</td>
<td>377(3491) 377-50</td>
<td>377(3492)</td>
</tr>
<tr>
<td>210F</td>
<td>377(3489)</td>
<td>377(3490) 377-50</td>
<td>377(3491) 377-50</td>
<td>377(3492)</td>
</tr>
</tbody>
</table>

*** ENDOFREPORT ***
DESCRIPTION OF CHANGE

Change BOM 167-3311, 187-3311, 167-3313, 187-3313, 167-3315 and 187-3315 as follows:

Delete: 210-8034-1A PCA VLSI CPU
 210-8937-A PCA 2200 CPU BD

Add: 210-8034-2A PCA VLSI CPU/MEM
 210-8937-B PCA 2200 CPU BD

Change BOM 167-3312, 187-3312, 167-3314, 187-3314, 167-3316, 187-3316 and 289-0485 as follows:

Delete: 210-8034-2A PCA VLSI CPU/MEM
Add: 210-8937-B PCA 2200 CPU BD

Note: Use all existing inventory when feasible.

REASON/SYMPOTM FOR CHANGE

Implementing a new expandable memory CPU board to manufacturing. Present board (8034) will become obsolete and be replaced by the new expandable 8937.
Change Item Master description as follows:

<table>
<thead>
<tr>
<th>WL#</th>
<th>Line</th>
<th>From:</th>
<th>To:</th>
<th>DESCRIPTION</th>
<th>ITEM</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>510-8034</td>
<td>Line 1:</td>
<td>PCA VLSI CPU/M 32K M</td>
<td>HPL BY 51U-8937 EC47508</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>209-8034</td>
<td>Line 1:</td>
<td>PCA VLSI 512K CPU/M 64K</td>
<td>RPL BY 209-8937 EC47508</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>209-8034-1</td>
<td>Line 1:</td>
<td>PCA VLSI CPU/M 128K/32K</td>
<td>HPL BY 209-8937 EC47508</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>209-8034-2</td>
<td>Line 1:</td>
<td>PCA VLSI CPU/MEM 512K 32K</td>
<td>HPL BY 209-8937 EC47508</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-8034-A</td>
<td>Line 1:</td>
<td>PCA VLSI 512K CPU/M 64K M</td>
<td>HPL BY 210-8937-B EC47508</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-8034-1A</td>
<td>Line 1:</td>
<td>PCA VLSI CPU/MEM 128K/32K</td>
<td>HPLBY 210-8937-A EC47508</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-8034-2A</td>
<td>Line 1:</td>
<td>PCA VLSI CPU/MEM 512K 32K</td>
<td>HPLBY 210-8937-B EC47508</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DESCRIPTION OF CHANGE

Change Item Status for the following items from 1 to 2:

458-3760

Release and change the following drawings to production level, Rev. 0:

<table>
<thead>
<tr>
<th>DWG#</th>
<th>WLI#</th>
<th>DESCRIPTION</th>
<th>DWG REV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C00451-3781</td>
<td>451-3781</td>
<td>PANEL, POWER SUPPLY</td>
<td>F 0</td>
</tr>
<tr>
<td>E00451-5540</td>
<td>451-5540</td>
<td>BRACKET, SUPPORT</td>
<td>B 0</td>
</tr>
<tr>
<td>E00451-5541</td>
<td>451-5541</td>
<td>BRACKET, SWITCH</td>
<td>B 0</td>
</tr>
<tr>
<td>E00452-4902</td>
<td>452-4902</td>
<td>ENCLOSURE</td>
<td>B 0</td>
</tr>
<tr>
<td>D00458-3760</td>
<td>458-3760</td>
<td>COVER, PANEL REAR</td>
<td>B 0</td>
</tr>
<tr>
<td>E00458-3777</td>
<td>458-3777</td>
<td>PANEL, REAR WELDMENT</td>
<td>B 0</td>
</tr>
</tbody>
</table>

Transfer all alpha rev stock listed below to non-alpha rev.

451-5541 452-4902 458-3760 451-5540

NOTE: Notify vendor of alpha rev to non-alpha rev changes.

CONTINUED ON PAGE 2

REASON/SYMPOTM FOR CHANGE

To release drawings and part numbers to production. Update drawings to reflect latest design changes.

COMPANY CONFIDENTIAL
DESCRIPTION OF CHANGE

Change Boms 167/187-3315,3316 as follows:

<table>
<thead>
<tr>
<th>WL</th>
<th>Description</th>
<th>UM</th>
<th>Comp Type</th>
<th>Qty</th>
<th>Qty Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chg.QTY:605-1006</td>
<td>Cable tie</td>
<td>ea</td>
<td>1</td>
<td>From: 2</td>
<td>1</td>
</tr>
<tr>
<td>650-4160</td>
<td>8-32x1/2 ph phl scr</td>
<td>ea</td>
<td>1</td>
<td>From: 8</td>
<td>1</td>
</tr>
<tr>
<td>654-1216</td>
<td>Cable Clamp</td>
<td>ea</td>
<td>1</td>
<td>From: 3</td>
<td>1</td>
</tr>
<tr>
<td>654-1296</td>
<td>Base, Cable mount</td>
<td>ea</td>
<td>1</td>
<td>From: 1</td>
<td>1</td>
</tr>
</tbody>
</table>

ADD: 615-2265 Dock Merge Label EA 1 1 1

REASON/SYMPOTM FOR CHANGE

Updating per actual build configuration.
Engineering Change Order

Manufacturing Impact Sheet

<table>
<thead>
<tr>
<th>MATERIAL DISPOSITION</th>
<th>DISPOSITION</th>
<th>AFFECTED SITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTS ON HAND</td>
<td>1. USE AS IS</td>
<td></td>
</tr>
<tr>
<td>PARTS ON ORDER</td>
<td>2. REWORK</td>
<td></td>
</tr>
<tr>
<td>ASSEMBLIES IN PROCESS</td>
<td>3. SCRAP/SALVAGE</td>
<td></td>
</tr>
<tr>
<td>FINISHED SUB ASSEMBLIES</td>
<td>4. NEXT ORDER</td>
<td></td>
</tr>
<tr>
<td>ASSEMBLIES IN UNITS</td>
<td>5. SEE REMARKS</td>
<td></td>
</tr>
<tr>
<td>PREPARATION, IMPLEMENTATION COSTS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost of Incorporation

PRODUCT COST CHANGE PER UNIT

PRODUCTION QUANTITY FROM MPP IN WKS

PRODUCT COST CHANGE (EXTENDED)

TOTAL COST (OR COST SAVINGS) OF ECO

Remarks

SMS Effectivity Date

Docl. (Retention Only)

Approvals

- ECO ADMIN
- MFG ENG
- QUALITY
- MATERIALS
- PROD. CONTROL
- FINANCE
- RE-MFG
- OTHER
Engineering Change Order

Customer Engineering Impact Sheet

Impact Comments

Documentation

Est. Cost Impact

<table>
<thead>
<tr>
<th></th>
<th>Domestic</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Est. Unit Pop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est. Spare Pop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approvals

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>Labor</td>
<td>Logistics</td>
</tr>
<tr>
<td>Total</td>
<td>FSC Support</td>
</tr>
<tr>
<td>Implementation</td>
<td>Final</td>
</tr>
<tr>
<td>Period</td>
<td></td>
</tr>
<tr>
<td>Annual Cost</td>
<td>Other</td>
</tr>
</tbody>
</table>

ECO No: 45187
Sheet: 3 of 3
TAC

Problem Call

Control Number 08237035

Contact Name LARRY HORNIBROOK Position CE
Rdb # 3522 Tdx # Phone # 405 848 9852 Ext #

System Type 2200CS Device Type DS
Utility Name Software Level

Method of Call P T = Telex, P = Phone, M = Memo, E = Ems
Has the Area or District been contacted
N A = Area, D = District, B = Both, N = None
Is this inquiry pertaining to a National Account ?
U Y = Yes, N = No, U = Unknown

Use the following area to describe the site that created this request
Cust/Office Name OMEGA INSURANCE Phone # 405 769 6701
Address 2K08 City CHOCPAU State OK
On Site Contact Name

Problem (*) Solution (+)

*EMP 28543
*DISPATCH 20A206898
*HAVING CS GETTING PEDM ERROR WHILE BOOTING UNSURE WHETHER
*HARDWARE OR SOFTWARE
8/24/88: LEFT MESSAGE AT OFFICE TO CALL. (5MIN) MIKEB
>REDHAW ACCOUNT USING THE NEW SIMMS CPU BRDS W/
128K MEM. GETTING PEDM ERROR CONSISTENTLY ON BOOT.
TRIED ANOTHER BRD & NO CHANGE. TESTED W/ O/S 3.1 &
NO PROB. REDHAW MUST EITHER UPGRADE THE CUST O/S
TO 3.1 OR MUST DOWNGRADE TO A NON-SIMM BRD. CE TO
TALK W/ CUST & CALL BACK. (15MIN) MIKEB

8/25 4:29 CE CALLED AND SAID THANKS FOR YOUR HELP. HE SAID
IF YOU WANT YOU CAN CALL RUTH AT 1-800-999-1115 AT REDSHAW
ACCOUNT D WHITE

8/26/88: CALLED RUTH AT REDSHAW. WAS NOT AVAILABLE. LEFT
MESSAGE TO CALL. LEFT MESSAGE FOR CE TO CALL.
(10MIN) MIKEB

>RUTH CALLED BACK. RT NOW WILL NEED TO USE THE
OLDER SINGLE BRD CPU CARDS TO ALLEVIATE THE COMPAT
PROB. WILL TALK TO R&D ABOUT STEPS TO TAKE. LEFT
MESSAGE FOR MR TO CALL. (20MIN) MIKEB

8/26 11:06 CE WILL C/B VSP
8/26 1:35 CALLED AND NEEDS A C/B ON HIS BEEPER @ # 405-686-
3286 CAREN 1:35
8/26/88: TALKED W/ CE. NEED TO CHECK CHIP L45 TO INSURE IT IS
NOT A MOTOROLA MC74F539N. IF IT IS, NEED TO TEST
W/ A BRD W/ A DIFFERENT L45 CHIP. IF FAILS W/ GOOD
CHIP WILL NEED TO TEST W/ 8 PARTITIONS OR MORE ON
O/S'S 2.7 & 3.0. IF CAN'T CHECK WILL REQUEST BRD
SENT IN. (20MIN) MIKEB
8/29/88: BRD HAS GOOD CHIP AT L45. CE TO SEND IN BRD FOR TESTING W/ OUR 2.7 & 3.0. (10MIN) MIKEB

9/2/88: RCV'D BRD. OUR MVP 2.7 IS NOT RECOGNIZING THE PAL CHIP & AS A RESULT IT WILL ALLOW YOU TO GEN 512K MEM. GEN'G BEYOND 128K WILL CAUSE A PEDM ERROR. R&D LOOKING INTO SITUATION. PROB LOOKS TO ONLY EXIST ONLY W/ 128K BRDS. R&D TO TEST A 512K W/ OUR 2.7. (1HR) MIKEB

9/6 CALLED AND WILL CALL BACK LATER. CAREN 11:15

FLASHED

12:15 CALLED CE. CUST NOW HAVING ANOTHER PROB, CAN'T ACCESS DISK. CE GOING ON SITE TODAY. TOLD CE THERE IS A PROB W/ 2.7 USING THE NEW BRDS AS 2.7 WILL NOT READ THE PAL & THINKS 128K BRD HAS 512K. WAITING FOR WORD BACK FROM R&D ON FIX. ALSO WANTS TO KNOW IF OLD & NEW BRDS LOGISTICALLY INTERCHANGEABLE. (1HR) MIKEB

9/12/88: BRDS ARE LOGISTICALLY INTERCHANGEABLE /JC. CALLED CE. INSTALLED O/S BRD. LEAVING CALL OPEN AS POSSIBLE BETA SITE FOR NEW PAL. (10MIN) MIKEB

10/17/88: CE TO CHECK W/ CUST TO SEE IF WILLING TO BETA TEST NEW CHIP. WILL CALL BACK. (10MIN) MIKEB

10/18/88: CE CALLED IN. CUST RELUCTANT TO BETA UNTIL END OF MONTH. WILL CHECK FOR OTHER BETA SITES WHICH COULD TEST EARLIER & USE THIS SITE AS A BACKUP IF NEEDED. (10MIN) MIKEB

10/19 9:05 CALL BACK TO OFC VSP

10/20/88: TALKED W/ CE. REDSHAW DOES NOT WANT US BETA TESTING CHIP AT SITE. REDSHAW WILL BETA TEST AT THEIR HO. RUTH MOORE IS CONTACT AT REDSHAW, 1-800-999-1115. WILL CHECK W/ R&D THEN CALL REDSHAW. (5MIN) MIKEB

12/12/88: IN TRAINING TILL 12/26. LEFT MESSAGE. (5MIN) MIKE

12/27/88: TALKED W/ CE. WILL SEND OUT CHIP FOR BETA TESTING TODAY. (5MIN) MIKEB

>CHIP SENT OUT FED XPRESS, AIR BILL 1069820735. CE TO CALL BACK WHEN INSTALLED & TESTED. (10MIN) MB

12/28/88: RCV'D BETA CHIP BUT INSTALLED AT SITE ON 512K BRD. NEEDS TO PUT ON 128K BRD & VERIFY AT PARTITIONING SCREEN ONLY SHOWING 128K. CE TO CORRECT & TEST. (10MIN) MIKEB

+INSTALL NEW CHIP AT L42 & WORKING PERFECTLY. CLOSING CALL. 1/4/88 (10MIN) MIKEB
NOTE: TERMINATING RESISTORS OF WINCHESTER DRIVE MUST NOT BE REMOVED.
TECHNICAL SERVICE BULLETIN

SECTION: Hardware General

NUMBER: HWT 9449 REPLEACES: ______ DATE: 04/17/90 PAGE 1 OF 2

MATRIX ID. 4103 PRODUCT/RELEASE# 2200 CS-D/N

TITLE: DPU Disk Port & Jumper Information/Part Number Correction

PURPOSE:
To inform the field of the purpose of the disk/mux port and jumper on the 212-7113 DPU Board which is not documented and to provide the field with the correct part numbers for the Power Supply & On/Off switch.

EXPLANATION:
Every CS-D CPU comes with a 212-7113 DPU Board used to control all internal drives. The DPU Board consists of a 210-9558 Motherboard which has two I/O connectors and a 210-9559 Daughter Board. The top connector is a standard system printer port. The bottom connector is a disk/mux port. The disk/mux port is used to allow access to the internal CS-D drives by other CPUs. This port is activated by the MUX/BUS jumper located on the 210-9558 motherboard up next to the rail between the 2 I/O connectors.

Normally this jumper will be in the BUS position. This causes the disk/mux port to be inactive allowing only the internal CPU to have access to it's drives. When the jumper is moved to the MUX position all access must be through the disk/mux port including access by the CS-D CPU itself.

In the MUX position, the drives and DPU Board should be thought of as a separate device much like the DS Cabinet or the 2275. The disk port on the 212-7113 DPU Board is the I/O connector similar to the I/O connectors on the back of the DS & 2275. Any CPU requiring access to these drives must now have a disk controller cabled to this port. Normally when in the MUX position a 2275MUX Master Board, 210-8824, would be installed in the I/O section with a cable from it's disk port to the disk/mux port of the DPU Board. This connection allows the CS-D to access the internal CS-D drives. Other CPU's (up to 16 can be mux'd) using 210-7715 boards can be cabled (100' max) to the 2275MUX Master CPU ports allowing them access to the internal CS-D drives. Of course a standard disk controller in any CPU could be cabled directly to this port, but that would limit access to only that CPU. When used in the MUX position, the disk controller in the CPU accessing the drives determines the device address via the device address switch bank on that board. This overrides the device address set on the CS-D DPU Board. This is the same way it is done on all similar 2200 disk connections. Switch settings are discussed on page 2.

GROUP: 2200 Product Support MAIL STOP: 001-330

COMPANY CONFIDENTIAL

WANG Laboratories, Inc.
TECHNICAL SERVICE BULLETIN
SECTION: Software General

NUMBER: HWT 9449 REPLACES: ______ DATE: 03/06/90 PAGE 2 OF 2
MATRIX ID. 4103 PRODUCT/RELEASE# 2200 CS-D/N

TITLE: DPU Disk Port & Jumper Information/Part Number Correction

EXPLANATION (cont'
Switch settings for the CS-D DPU Board can be found on a sticker on the right side panel of the CS-D cabinet. These switch settings are correct.
Appendix A of the CS Maintenance Manual, 741-1769-2, covers the CS-D & CS-N CPU's and on page A-38 incorrectly shows the drive type switch settings. What is shown as ON should be OFF and vice versa. There is also added confusion as the sticker & manual do not agree on the switch labeling and the male connectors on the sticker do not match the board.
Use the side panel for SW settings but beware, labeling may not match. To access, remove the top cover by removing the 2 screws in back. The side panel can then be removed by sliding it up. The correct SW settings are:

210-9558 Motherboard:
SW 1 - Winc Drive Type - between L8 & L13 near bottom of board
 No Winc = All OFF
 10 Meg Winc = 6 ON only
 10 Meg Quantum Q540 = 7 ON only
 32 Meg Quantum = 8 ON only
 32/42 Mq Micropolis = 5, 6, 7 ON
 112 Meg Maxtor = 8 ON only

SW 2 - Printer Address - next to L69 just above connector J5
 215 = 1, 3, 5 ON only
 216 = 2, 3, 5 ON only
 217 = 1, 2, 3, 5 ON only

SW 3 - Drive/s Device Address - between L76 & L77 at top of board
 310 = 5 ON only
 320 = 6 ON only
 330 = 5 & 6 ON only

210-9559 Daughter Board:
SW 1 - Factory Use Only - 8 bank SW at top of board ALL OFF
SW 2 - Floppy/Tape Switch - 4 bank switch at bottom of board
 1 OFF = 320 Kb Floppy
 1 ON = 1.2 Meg Floppy
 2 OFF = No Tape
 2 ON = Tape Drive installed
 3, 4 = OFF (not used)

ADDITIONAL INFORMATION:
Also in Appendix A of the CS Manual, 741-1769-2, on pages A-54 and A-55 the AC On/Off Switch and the CS-D/N SPS-255 Power Supply have incorrect part numbers. The part numbers shown are for the CS. The On/Off switch is not physically compatible and although both CPU's use the same base Power Supply the harness is different. The correct part numbers are:

CS-D/N On/Off Sw 325-0105
CS-D/N SPS-255 Power Supply 270-089-1

GROUP: 2200 Product Support MAIL STOP: 001-330

COMPANY CONFIDENTIAL
WANG Laboratories, Inc.
CS-D/N COMPUTER SYSTEM – DESCRIPTION/STRATEGY

CS-5D 512KB CPU with internal disk storage
CS-5N 512KB CPU without internal disk storage

The CS-D combines into one package the functionality of a CS CPU, a data processing unit (DPU) as contained in a DS, and a 22C11 printer/disk I/O controller. With the ability to have up to three internal storage devices, the user whose requirements do not go beyond a single fixed Winchester (or 140MB) need not purchase a data storage cabinet or a 22C11.

The CS-D is an enhanced, redesigned, repackaged and cost-reduced VLSI-based CPU, consistent with the image and appearance of the VS product line. The hardware is compatible with all 2200, MicroVP and CS peripherals, I/O controllers and CS/DS options, with one exception: the DS-10R is not supported on the CS-D/N. This unit is also upgradeable to either the CS/386 or Turbo, providing extensive growth and performance possibilities. Built on the base of the CS, the CS-D has a restyled cabinet and a new mother board to accommodate an external DPU and three internal storage devices. The CPU, a high-performance VLSI processor, supports up to 16 terminals and 16 jobs concurrently in a multi-programming environment. Including the CPU and storage devices in one cabinet results in a compact and cost-effective mini-computer system. The CS-D chassis contains nine input/output (I/O) slots to support a wide range of other peripheral devices. Each I/O slot can contain a controller for one or more peripheral devices. These devices include a selection of flexible and hard external disk drives and an extensive array of printers. The CS-D system offers data communications capabilities and an operating system with low overhead. Designed for simplicity of operation and flexibility in system configuration, the CS-D can be easily adapted to meet each user’s unique processing requirements. The system performs automatic data compression on information transmitted to each terminal to accelerate communication and increase response time.

The CS-D control memory contains 32 KB of 24-bit words. When the system is powered on, the operating system is loaded into control memory from the system disk and resides in memory until the system is either powered off or re-initialized. Since the contents of control memory are inaccessible to the user or the user’s programs, the system is always protected against accidental interference or destruction.

User memory is the area of memory available to the user’s programs and data. User memory is divided into areas, or banks, of 64 KB each. The user can subdivide each bank into a number of partitions of fixed size, each of which is capable of executing a separate program. Partitions cannot span bank boundaries. Within each bank, a fixed amount of memory is reserved for system control information. Only 16 banks (up to 1 MB) of user memory can be used for programs and data. The remaining banks can be used only for RAMDISK.

The CS-D is easy to operate and to program. No special job-control languages or elaborate operating procedures are involved. System resources are allocated through a supplied partition-generation program that guides the user through the process of configuring user memory. By running this program, the user creates partitions and assigns them to terminals. Each terminal can control one or more partitions. In a fixed-partition memory scheme, user memory is divided into a number of distinct areas called partitions, each of which can contain a separate program. The central processor allocates intervals of processing time to each partition in turn. Thus, the program in an individual partition is executed briefly before the CPU services the next partition.

The CS-D/N supports all 2200/MicroVP series terminals. Terminals can be attached to the CPU either locally, at distances up to 2000 feet, or remotely, through the use of modems and telephone lines. Since each terminal can support its own local printer, screen dumps and standard printing operations can be performed.

Optionally, the CS-D can be equipped with communications controllers that allow remote
devices to be attached directly to the CPU and accessed by a user at the terminal. The CS-D also supports asynchronous, synchronous and advanced bit-oriented protocols.

The DPU can support either a 320KB or 1.2MB diskette, a 150MB tape streamer, one fixed Winchester and 1,024 sectors of cache. The Winchester supports are a 20MB, 32MB, 64MB and a 140MB that can either be formatted as fourteen 10MB platters (140MB) or seven 16MB platters (112MB). The diskette and tape streamer are visible and easily accessible for inserting and removing media. The fixed Winchester is inside the cabinet, but a disk activity light, located below the power-on indicator light, is provided on the front of the CPU panel.

Unlike the DPU contained in the DS, the DPU for the CS-D is an external board that is inserted into I/O slot 9, the same as an I/O controller. The DPU also contains a system printer port. Hence, no I/O slots are lost because the DPU occupies the same I/O slot that a 22C11 dual printer/disk controller would occupy if used in an external DS.

The DPU has the same functionality as the DPU in the DS, except that it only supports three storage devices instead of six, making it attractive to users with modest storage requirements. 1,024 sectors of cache are included, plus the ability to allocate up to 990 sectors (256 bytes/sector) of the cache memory to DSDC RAMDISK. Once the DSDC RAMDISK is established, it is accessed as a normal disk platter and supports all disk commands. It is best suited for frequently accessed programs or data files whose contents remain constant. If the number of sectors to allocate is specified as 0, the DSDC RAMDISK is de-allocated. NOTE: RAMDISK provides only temporary storage. All data is lost when the system is turned off.

Up to 1MB of main memory can be allocated to program (twice the previous capacity), and all unused main memory can be allocated to RAMDISK. Therefore, with an 1MB CPU, a user can have up to fifteen 56KB partitions and one 61KB partition. With an 8MB CPU, a user can have 1MB allocated to program and 7MB of RAMDISK.

The fixed Winchester can be multiplexed the same as a DS, with up to 16 CPUs by using a combination of 2275MUX and 2275MUXE controllers. The difference is that the DPU, instead of the DS, is cable-connected to the 2275MUX. Three CPUs can be cable-connected to the 2275MUX. Additional CPUs can be multiplexed to the fixed disk storage unit by adding up to three model 2275 MUXEs (MUX Extenders). Each 2275MUXE supports four CPUs. These boards are placed next to the 2275MUX and are connected to the 2275MUX by a ribbon cable. Participating CPUs must each have a 22C80 controller.

CPUs multiplexing the fixed Winchester can be any type of CS/2200 CPU that supports a 22C80 board. These CPUs can be CS-Ds with their own local storage. Up to two external DSs can be added to a CS-D via 22048 disk/printer controllers. In addition, the end-user can remove the storage devices from the CS-D and insert them into a DS, if the need arises to replace the internal storage with a DS. The DPU is then removed and replaced by a 22C11 disk controller.

The CS-N is a CS-D without a DPU board. Panels cover the diskette and tape streamer slots. The CS-N is available with either 128KB, 512KB, 1MB, 2MB, 4MB or 8MB (CS-80N) of main memory. The CS-N replaces the CS-2 through CS-80. As with the previous CS-2 through CS-80, an external DS is required for storage. CS-N models are field-upgradeable to a CS-D.

Using Release 3.3 or later of the multi-user operating system, up to 1MB of memory may be allocated to program. Any unused main memory or memory in excess of 1MB (up to 7MB on an 8MB CPU), may be allocated to RAMDISK. RAMDISK allows a portion of memory to be used as a high-speed disk, and all of the BASIC-2 statements can be used with RAMDISK. Since user memory is used to emulate disk storage and there is no I/O to a physical disk address, RAMDISK access is considerably faster than access to an actual disk.

The CS-D/N can be configured as a single-user, standalone system with the same features and language capabilities as the multi-user arrangement. Unlike most single-user systems, the CS-D/N enables a single terminal to control several programs executing concurrently, while maintaining fast execution speeds. Thus the CS-D/N are
excellent choices for the first time user because they combine high-performance computing with the capacity for expansion from a single-user system to a multi-user system.

The new multi-user operating system supports up to 16 users, has more than 35 BASIC-2 enhancements, and the ability to support all unused main memory as RAMDISK.

Both the CS-D and CS-N are compatible with the CS-1100 or CS-1200 systems and provide extensive enhancements.

Users needing less storage than 140MB or a single Winchester should purchase a CS-D series CPU, but those needing more than 140MB or more than a single fixed Winchester should order a CS-N and a DS.

Users who buy a CS-D CPU but later need more than 140MB or a second Winchester would now order a DS and have the option of transferring CS-D drives to the DS.

Users who want a lower-cost multiplexed CPU solution should order a CS-D as the main CPU and CS-Ns without the built in DPU as CPUs multiplexing the internal disk drive.

Larger users wanting unlimited storage flexibility, with the ability to multiplex a common disk or disks and have local storage capabilities, should order either a CS-D or CS-N with a DS as CPU 1, and CS-Ds as additional CPUs.
CS-D/N COMPUTER SYSTEM – BASIC SYSTEM COMPONENTS

12/17/92

- CPU with 128K, 512K, 1MB, 2MB, 4MB or 8MB of User Memory
- 32K of Control Memory
- Multi-user BASIC-2 Operating System
- 9 I/O Slots
- DPU controller (CS-D models only)

COUNTRY KITS
When ordering a CS-D or CS-N, a country kit, CS-D-CK-XX or CS-N-CK-XX, must be ordered for each CPU. A country kit is a no charge item containing a country-specific power cord and documentation.

OPTIONS

DISK CONTROLLER
2275MUX – 2275/DS Disk Multiplexing Unit. Supports up to 3 CPUs
2275MUXE – 2275/DS Disk Multiplexing Extender. Supports up to 4 CPUs
22C11 – Dual Controller for Disk/Diskette and Printer
22C80 – Disk Multiplexing Controller. One required for each CPU interfacing with 2280MUX or 2275MUX

LOCAL COMMUNICATIONS OPTION
2258-X – Allows the CS-D or CS-N to communicate with a VS

PRINTER CONTROLLER
22C11 – Dual Controller for Disk/Diskette and Printer

TELECOMMUNICATIONS CONTROLLER
2227B – Async. Communication Controller (Includes 195-2056-X software)
2228B – Communication Controller 8K. (Includes 195-2057-X software)
2228C – Communication Controller for IBM 3275 Emulation. (Includes 195-2048-5 software)
2228D-4 64K Communication Controller RS-232-C/V.24/RS-449 only
2229N – Null Modem

WORKSTATION CONTROLLER
2236MXE – 4-Port Terminal Processor with Asynchronous Communication capabilities
22C32 – Triple Controller for diskette, printer and workstation
CS-D/N COMPUTER SYSTEM - SPECIFICATIONS

12/17/92

CENTRAL PROCESSOR

Floating Point
Interrupt Levels
Logic Terminology
Microprogrammed
Standard Registers

Yes
8
MSI
Yes
48

MEMORY

Control Memory
Minimum User Memory
Maximum User Memory

32K
128K
8MB

SYSTEM MAXIMUMS

Disk Units
Partitions
Printers
Terminals

3
16

PERFORMANCE

Cycle Time
Word Length

600ns
16 bits

PHYSICAL DIMENSIONS

Height
Width
Depth
Weight

23.10 inches
13.60 inches
20.30 inches
66 lbs (without drives)

POWER REQUIREMENTS

Dedicated Branch Circuit
Incoming Line Voltages
Line Frequency
Power Connection

Yes
5 amps @ 115V or 2.5 amps @ 230V
50Hz +/- 1Hz or 60Hz +/- 1Hz
8-ft power cord

ENVIRONMENTAL

Heat Dissipation
Humidity
Noise Level
Temperature Range

1020 BTU/hour
35 to 65% noncondensing
35 dB (A)
50 to 90 degrees F
For detailed information regarding the following currently marketed disk drives, use the PF16 key and choose the PERIPHERALS pick off the 2200 PRODUCT menu.

Information regarding support of select discontinued disk drives can be found in the Discontinued Product Support section.

<table>
<thead>
<tr>
<th>DS</th>
<th>Data Storage Cabinet</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-1.2</td>
<td>1.2MB Floppy Diskette</td>
</tr>
<tr>
<td>DS-20</td>
<td>20MB Fixed Winchester</td>
</tr>
<tr>
<td>DS-32</td>
<td>32MB Fixed Winchester</td>
</tr>
<tr>
<td>DS-64</td>
<td>64MB Fixed Winchester</td>
</tr>
<tr>
<td>DS-140</td>
<td>140MB Fixed Winchester</td>
</tr>
<tr>
<td>DS-320</td>
<td>320KB Diskette Drive</td>
</tr>
</tbody>
</table>

The following table illustrates the maximum number and type of fixed/removable Winchesters, diskette and tape streamer the CS-D can accommodate. The CS-D uses the same storage devices as the DS, with the exception of the DS-10R. Orders for storage devices must always include either a DS-320 or DS-1.2, in addition to any other storage device. A minimum allowable configuration is a CS-D and either a DS-320 or DS-1.2. The CS-D supports a maximum of three devices. Order DS-TSA, DS-20A, DS-32A, 64A or DS-140A model numbers for field upgrades. For CS-Ns, order DS plus peripherals, the same as a CS/DS configuration.

<table>
<thead>
<tr>
<th>Diskette</th>
<th>Tape Streamer</th>
<th>20MB Winchester</th>
<th>32MB Winchester</th>
<th>64MB Winchester</th>
<th>140MB Winchester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: The DS-140 can be configured as either ten 14MB platters or seven 10MB platters. With the latest firmware and software these Winchester can be configured by the user with from 1 to 14 addresses up to 16 MB in size not to exceed in total the maximum capacity of the drive.
CS-D/N COMPUTER SYSTEM – PRINTER SUPPORT

12/17/92

For detailed information regarding the following currently marketed printers, use the PF16 key and choose the PERIPHERALS pick off the 2200 PRODUCT menu.

Information regarding support of select discontinued printers can be found in the Discontinued Product Support section.

2200-PM017 400 cps matrix printer
2273-1 250 lpm band printer with 1 utility B print band
2273-2 600 lpm band printer with 1 utility C print band
DM50/300 50/300 cps multi-functional matrix printer
LCS8-DSK 8 ppm postscript laser printer
LCS15-CMB 15 ppm laser printer
LCS15-DSK 15 ppm laser printer
PM060 Multi-functional matrix printer
HQ300 300 cps matrix printer

CS-D/N COMPUTER SYSTEM – SOFTWARE SUPPORT

12/17/92

For detailed information regarding the following currently marketed software, use the PF16 key and choose the SOFTWARE pick off the 2200 PRODUCT menu.

Information regarding support of select discontinued software can be found in the Discontinued Product Support section

2200/CS Word Processing
DATAMERGE
IDEAS Release 1
IDEAS Release 2
ISS Release 5.5

CS-D/N COMPUTER SYSTEM – TAPE SUPPORT

12/17/92

For detailed information regarding the following currently marketed tape drives, use the PF16 key and choose the PERIPHERALS pick off the 2200 PRODUCT menu.

Information regarding support of select discontinued tape drives can be found in the Discontinued Product Support section.

2209A 1600 bpi 9-track tape drive with controller
DS-TS150 150MB tape streamer
For detailed information regarding the following currently marketed telecommunications, use the PF16 key and choose the TELECOMMUNICATION pick off the 2200 PRODUCT menu.

Information regarding support of select discontinued telecommunications can be found in the Discontinued Product Support section.

IBM BSC Batch
Remote Control and Maintenance

For detailed information regarding the following currently marketed workstations, use the PF16 key and choose the PERIPHERALS pick off the 2200 PRODUCT menu.

Information regarding support of select discontinued workstations can be found in the Discontinued Product Support section.

2536DW Async Workstation
LITERATURE

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>700-3231G</td>
<td>Programming in BASIC</td>
</tr>
<tr>
<td>700-4080G</td>
<td>CS Multi-user BASIC-2 Language Reference Manual Update</td>
</tr>
<tr>
<td>700-4080E.01</td>
<td>CS Multi-user BASIC-2 Language Reference Manual Update</td>
</tr>
<tr>
<td>700-0050A</td>
<td>CS BASIC-2 Utilities Reference Manual</td>
</tr>
<tr>
<td>700-0050A.01</td>
<td>BASIC-2 Utilities Reference Manual</td>
</tr>
<tr>
<td>700-0050A.02</td>
<td>CS BASIC-2 Utilities Reference Manual</td>
</tr>
<tr>
<td>700-8098A</td>
<td>Asynchronous Communications User's Guide</td>
</tr>
<tr>
<td>714-9219</td>
<td>2200 DS Floppy Install</td>
</tr>
<tr>
<td>715-1831A</td>
<td>Multi-user BASIC-2 Operating System CSRN</td>
</tr>
<tr>
<td>715-2211</td>
<td>Data Storage Cabinet Utilities CSRN</td>
</tr>
<tr>
<td>715-2252</td>
<td>2536DW Interactive Terminal User's Guide</td>
</tr>
<tr>
<td>715-2364A</td>
<td>CS-D User's Guide</td>
</tr>
</tbody>
</table>

DATA SHEETS/MANUALS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>715-2363</td>
<td>CS-D Data Sheet</td>
</tr>
</tbody>
</table>

FOCUS

<table>
<thead>
<tr>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS/386 Turbo System 10/01/91</td>
<td></td>
</tr>
<tr>
<td>SCSI Disk Controller for 2200 Products</td>
<td>12/01/90</td>
</tr>
<tr>
<td>CS 2200 DS peripherals repriced/discontinued</td>
<td>11/01/90</td>
</tr>
<tr>
<td>PC2200 2200/CS/CS386 Workstation Terminal Emulator</td>
<td>07/15/89</td>
</tr>
<tr>
<td>CS/2200 Mature computer architecture incorporates new platform</td>
<td>05/15/89</td>
</tr>
<tr>
<td>New CS System Package and Rel 3.1 Operating System Enhancements</td>
<td>12/15/87</td>
</tr>
</tbody>
</table>
Upgrades from 128K or 512K to at least 1MB involve removal of the existing memory board and replacing it with the new board.

Any VLSI CPU (MVP-128, MVP-512, MicroVP-1, MicroVP-2, CS, CS-D, or CS-N) that has 1MB or more can be field upgraded to a maximum of 8MB by adding memory modules to the CPU board.
The following represents a list of select discontinued products that are currently supported. This list is not all inclusive.

Disk Drives:
- 2230-1: Fixed/removable disk drive
- 2230-2: Fixed/removable disk drive
- 2230-3: Fixed/removable disk drive
- 2260: 10MB fixed/removable disk drive
- 2260BC: 5MB fixed/5MB removable disk drive with 22C13 controller
- 2260C: 5MB fixed/5MB removable disk drive with 22C12 controller
- 2270A-1: .25MB Industry Compatible Single Removable Diskette Drive
- 2270A-2: .50MB Industry Compatible Dual Removable Diskette Drive
- 2270A-3: .75MB Industry Compatible Triple Removable Diskette Drive
- 2275-10: 10MB 5 1/4" Winchester Drive 320KB Floppy Drive
- 2275-20: Dual 10MB 5 1/4" Winchester drive
- 2275-30: 30MB 5 1/4" Winchester Drive 320KB Floppy Drive
- 2275-60: Dual 30MB 5 1/4" Winchester drive
- 2280-1: 13.4 Removable/13.4MB fixed disk drive
- 2280-2: 13.4 Removable/40.2MB fixed disk drive
- 2280-3: 13.4 Removable/67MB fixed disk drive
- 2280-3A: 13.4 Removable/67MB fixed disk drive with 22C14 DPU
- 2280N-1: 13.4 Removable/13.4MB fixed disk drive without DPU
- 2280N-3A: 13.4 Removable/67MB fixed disk drive without DPU
- DS-10R: 10MB Removable drive for DS

Tape Drives:
- 2209: 800 bpi 9-Track tape drive
- 2229: Four track, 6400 bpi, 14MB tape drive
- DS-TS: 45MB tape streamer

Printers/Plotters:
- 2200-PM018: 60 cps daisy printer
- 2201L: 15 cps output writer
- 2211M: Printer multiplexer
- 2221W: 200 cps matrix printer with stand
- 2231: 80 column line printer
- 2231W-1: 120 cps 112 column matrix printer
- 2231W-2: 120 cps 132 column matrix printer
- 2231W-3: Graphic matrix printer
- 2231W-6: 70 cps 132 column high density matrix printer
- 2232-A: Digital flatbed plotter
- 2232B: Digital flatbed plotter
- 2235: 180/222 cps 10/12.2 pitch bidirectional matrix printer
- 2241: 80 column thermal printer
- 2245: 80 cps draft matrix printer
- 2245/160: 160 cps 132 column draft matrix printer
- 2251: 60 cps matrix printer
- 2261: High speed printer
- 2261W: 220 lpm dual pitch matrix printer
- 2263-1: 400 lpm 64 character line printer
- 2263-2: 600 lpm 64 character line printer
- 2263-3: 430 lpm 96 character line printer
- 2271: Bidirectional output writer
2271P Plotting output writer
2272-1 One-pen drum plotter
2272-2 Three-pen drum plotter
2281 Daisy output writer
2281P 30 cps plotting output writer
2281W 30 cps Wang daisy printer/plotter
DW/22-20 20 cps bidirectional daisy printer
LDP8-DSK 8 ppm laser printer

Workstations:

2236D Interactive terminal
2236DE Interactive DP workstation
2236DW Interactive DP/WP workstation
2282 Graphic CRT
2326DW DP/WP workstation with expanded keyboard
2336DE DP Workstation
2336DW DP/WP Workstation
2426DW DP/WP Workstation with Expanded Keyboard
2436DE DP Workstation
2436DW DP/WP Workstation
2436WP 512K CPU, 1 Floppy System
2436WP-1 512K CPU, 2 Floppy System and Printer
2436WP-2 512K CPU, Winchester and Printer
PC/APC PC/APC with PC/2200 Support Utilities Software

Controllers:

2207A I/O interface controller
2228D-4E 64KB communications controller
2228D-4X 64KB data communications controller X.21 only
2228D-8E 128KB communications controller
2228D-8X 128KB data communications controller X.21 only
2228N Null Modem
2230MXA Disk multiplexer controller
2230MXB Disk multiplexer controller
2236MXD 4-Port Terminal Multiplexer
2280MUX Disk multiplexing unit
2280MUX-E Disk multiplexer for 4 additional CPUs
22C01 Output write/plotter controller
22C02 Printer/Plotter Controller
22C03 Disk/Diskette drive controller
22C05 2230/2240 disk drive controller
22C12 2260C disk drive controller
22C13 2260C disk drive controller for multiplexing
22C14 DPU for 2280 Disk Drive

2227N Null Modem

Software:

195-2217-X Wang P.R.I.S.M. software
 Univac 1004 RMS-1 Batch Emulation
 Univac Uniscope 100/200 Single Station Emulation
 CDC UT200 Emulation
 3271 BSC Emulation
 Asynchronous Communications
 Burroughs Poll/Select
PC2200, a distributed software product is now available to CS/386, CS, MicroVP users. PC2200 is a terminal emulator which allows users to operate Wang PC200/300 or other XT or AT compatible personal computers as a CS/200 terminals. For detailed information refer to the 07/15/89 FOCUS.

Operating system Release 3.3 is recommended for the CS-D and CS-N. However, if the end-user does not wish to use Release 3.3, the CS-D/N can use any operating system supported on the CS.

Release 3.1 or greater of the multi-user operating system is required in order to access memory greater than 512K.

Release 3.3 of the operating system is required to support the PM060 printer.

The Generalized Printer Driver that ships with 3.1 or greater contains the @LASRJVO printer driver table, which supports the LCS15-DSK and LDP8-DSK printers.

The DM50/300 printer is supported by the @DM50/VO printer driver table included with Release 3.1 or greater of the multi-user operating system.

Current users of earlier versions of the 2200 OS that are not under WSS contract may purchase a per-incident update copy of release 3.3 through Wang Direct.

The use of 2236MXDs in lieu of 2236MXEs is not recommended.

Any of the "D" series data communications controllers on the 2200 that indicate an RS-366 compatibility will support an auto-calling unit. The modem must have auto-dial capability as well.

When ordering removable storage devices for the CS-D like the DS-320, DS-1.2, or DS-TS, the end-user is responsible for ordering the necessary diskette, disk or tape media. This media must be present at the time the Wang customer service rep installs the drives into the CS-D so testing of the drive(s) can be performed. Also, the CS-D will not be shipped with the drives installed; all drives must be installed at the customer site. Therefore, it is recommended that the system be delivered directly to the end-user and not set up at a VAR site. In the event a VAR has the equipment sent to its office prior to customer delivery, the drives should not be unpacked. If VARs have CS-Ds set up at their offices, all drives must be removed from the CS-D and repacked in their original containers prior to shipment to the customer. There is a charge for this service if performed by a Wang customer service rep.

The CS-D and CS-N models cannot be rented. In addition, the CS-D does not come with any storage devices. The devices must be ordered separately.

The CS-D and CS-N are warranted to be free from defects in materials or workmanship for a period of 90 days from date of installation. Warranty is in accordance with terms and conditions in effect at the time of sales.

Wang's standard on-site maintenance agreement, On-Site (Plan A), provides for 12 months of on-site service.

Per-Call On-Site service is available on a time and material basis. Customers who wish to use this service should call the nearest Regional Call Control Center toll-free number to arrange for a service appointment.

The new CS/386 CPUs replace the CS-10D through CS-80D, and CS-10N through
CS-80N VLSI series. Orders for CS-10D through CS-80D and CS-10N through CS-80N CPUs will be accepted up to August 31, 1989. Orders submitted after August 31, 1989 must be for CS/386-D or CS/386-N configurations.

UPGRADES TO A 386 OR TURBO SYSTEM REQUIRE SOME CHANGES TO EXISTING SOFTWARE. SEGMENTATION IF NOT PROPERLY PROGRAMMED MIGHT BE ACCOMMODATED TO CPU ID NUMBER OR STATUS BYTE IN THE OF A CHANGE THAT MAY BE REQUIRED.

MANY MOST OLD SOFTWARE WILL RUN AS IT CURRENTLY EXISTS.

CHANGES COULD BE REQUIRED IF A PROGRAM USED A UNIQUE RESOURCE OF IT CURRENT CPU TYPE. THIS COULD INCLUDE CPU ID NUMBER OR CERTAIN O/S STATUS BYTE, PARTITION CODE, OR ADDITIONAL CHANGES TO SEGMENTATION, STORAGE CONTROL, OTHER

RESTRICTIONS OR CHANGES MAY APPLY. CONSULT YOUR WANG REPRESENTATIVE FOR ADDITIONAL INFORMATION.
CUSTOMER ENGINEERING

FINAL

MAINTENANCE PLAN

VS/2200/OA NEW PRODUCTS

January 26, 1989

CS-D

[Signatures]

New Products Engineer
Joseph P. Costello

New Products Manager
Ibrahim Azar

Product Line Manager
Sheila Mitchell

Product Line Director
Henry A. Schinnagel
TABLE OF CONTENTS

I. PRODUCT DESCRIPTION

A. Overview of the Product ... 1
B. Similarities/Differences With Other Wang Products 1
 1) Software ... 1
 2) Hardware ... 1
 3) Other .. 1
C. First Customer Shipment 1
 1) Domestic ... 1
 2) International ... 1
D. Service Offerings/Warranty 1
E. Special Programs/Procedures 2
F. Major Components ... 2
G. Configuration Requirements 2

II. MAINTENANCE PHILOSOPHY

A. Maintenance Objectives 3
 1) C.E. Level ... 3
 2) Maintenance Procedures 3
B. Types of Contract to be Offered 3
C. P.M. Requirements .. 3
 1) Customer Performed 3
 2) WANG C.E. Performed 3
 a) Interval .. 3
 b) Parts/Consumables Required 3
 c) Time to Perform 3
D. Diagnostics Required 4
 1) Diagnostic Name(s) 4

III. TRAINING

A. CUSTOMER ENGINEER COURSE 4
 1) Course Objective 4
 2) Timetable and Format 4
 3) Prerequisites ... 4
B. SALES SUPPORT COURSE 4
 1) Timetable and Format 4

IV. SPECIAL TOOLS/TEST EQUIPMENT 4

COMPANY PROPRIETARY
V. OPERATING ENVIRONMENT

A. Temperature Range ... 4
B. Voltage Range .. 4
C. Humidity Range ... 5
D. Physical Specification ... 5
E. Service Space Requirements 5
F. Input Current .. 5
G. Input Power ... 5
H. Power Factor ... 5
I. Heat Loss .. 5
J. Leakage Current (grounding requirements) 5

VI. POWER CORD DATA

A. Plug Type .. 5
B. Length ... 5

VII. DOCUMENTATION LIST

A. Prints .. 6
B. Maintenance Manual .. 6
C. Vendor Manuals .. 6
D. Diagnostic Error Listings ... 6
E. P.M. Procedures ... 6
F. Repair Plan ... 6
G. Sales Literature ... 6
H. Operators' Guide/User Information 6

APPENDICES

A1 Marketing Forecast
A2 Predicted Reliability CS-2D and CS-5D
A3 Predicted Reliability CS-10D and CS-20D
A4 Predicted Reliability CS-40D
A5 Predicted Reliability CS-80D
A6 FRU, CRU Listing, Stocking Locations
A6 P.M. Parts
A6 Diagnostics
I. PRODUCT DESCRIPTION

A. OVERVIEW OF THE PRODUCT

The CS-D has a restyled cabinet and a new motherboard to support a disk processing unit (DPU) and three internal storage devices. The DPU can support either a 320 kilobyte (KB) or 1.2 megabyte (MB) diskette, a 45MB tape streamer, one fixed winchester, and 1024 sectors of cache memory. The winchesters supported are 20MB, 32MB, 64MB, and a 140MB that can be formatted as fourteen 10MB platters (140MB) or seven 16MB platters (112MB).

The DPU is constructed as a standard I/O controller and is inserted into I/O slot 9. The DPU incorporates a printer port that allows it to function as a printer/disk controller.

There are six models of the CS-D based on memory size. CS-2D (128KB), CS-5D (512KB), CS-10D (1MB), CS-20D (2MB), CS-40D (4MB), and the CS-80D (8MB). The CS-D will use the CS memory upgrade kits.

B. SIMILARITIES/DIFFERENCES (with other WANG products)

1) Software:
 Release 3.1 of the 2200 operating system is required to access memory beyond 512 Kilobytes (KB). To fully utilize all of the enhancements of the CS-D the customer should be using O/S version 3.3.

2) Hardware:
The CS-D uses the same CPU board and memory configurations as the current CS. The CS-D will accommodate all of the I/O controllers supported on the Micro/VP and CS. With the exception of the DS-1OR (10MB removable winchester) all of the peripherals supported on the Micro/VP and CS are compatible with the CS-D.

3) Other:
 Software is compatible with all existing 2200, Micro/VP, and CS software.

C. ANNOUNCE/FIRST CUSTOMER SHIPMENT DATE

 Volume Ship:March 1989

D. SERVICE OFFERINGS/WARRANTY

This product will be installed by Customer Engineering personnel, and maintained by Customer Engineering with On-Site service.

This product will be covered by the standard Wang 90 day warranty.
E. SPECIAL PROGRAM/PROCEDURES

N/A

F. MAJOR COMPONENTS

The CS-D may be divided into the following subassemblies (FRU's):

1) CPU:
 The CS-D uses the same CPU PCB (210-8937) as the current.
 The PCB has 32KB of control memory and up to 8MB of user
 memory. Programmable array logic (PAL) is used for memory
 addressing. The flexibility of the PAL allows unique
 addressing circuitry for each memory configuration.

2) DPU:
 The disk processing unit consists of a mother board and
 daughter board. The Z80 controlled logic is capable of
 supporting three internal storage devices. I/O slot 9 is
 reserved for the DPU.

3) Mother Board:
 The CS-D mother board has a slot for the CPU/Memory PCB and
 nine I/O slots. It provides the interface between the
 CPU/Memory PCB and the I/O controllers. The interface consists
 of an 8 bit address bus, 8 bit output data bus, a 9 bit
 bus, and control strobes.

4) Power Supply:
 The CS-D utilizes a 255 watt switching power supply. It
 provides +5, -5, +12, and -12 volts DC. The power supply
 can use a line voltage of 110 or 230 volts AC, selectable by a
 switch on the power supply.

5) Disk Drives:
 The CS-D will support either a 320 KB or 1.2 MB floppy drive, or
 45 MB streaming cartridge tape drive, and one fixed winchester.
 The wincheater may be either a 20 MB, 32 MB, 64 MB, or a 140 MB.
 The 140MB may be formatted as fourteen 10 MB platters or seven 16 MB platters.

G. CONFIGURATION REQUIREMENTS

The CPU/Memory PCB will be configured in 128 KB, 512 KB, 1 MB,
4 MB, and 8 MB versions. The 128 KB, 312 KB, and 1 MB versions
will utilize 256 KB SIMM modules. The 2 MB, 4 MB, and 8 MB
versions will utilize 1 MB SIMM modules. A jumper (JP2) must be
set to indicate which SIMM modules, 256KB or 1MB, are on the
board. The PAL chip located at L2 will determine addressing
capacity and must be compatible with the amount of memory loaded on
the PCB.
G. CONFIGURATION REQUIREMENTS (cont')

On the DPU the CE must set switches to indicate the floppy drive type, if the cartridge tape drive is present in the system, and the capacity of the winchester drive installed in the system. Switches for the disk and printer address must also be set. The DPU must be installed in I/O slot number 9.

The internal winchester disk drive may be multiplexed with up to 16 CPU's by using a combination of 2275MUX and 2275MUXE controllers. This is accomplished by cabling the MUX port on the DPU to the 2275MUX controller.

II. MAINTENANCE PHILOSOPHY

A. Maintenance Objectives

1) C.E. Level:
 This system is a migration of the current 2200 CS with the additional capability of internal disk storage. Effective maintenance of the system will require the following:
 a) Skillful cause analysis at the system level.
 b) Knowledge of the diagnostics on the 2200 system.
 c) Knowledge of the overall system configuration.

2) Maintenance Procedures:
 Maintenance on this product will be performed on-site by a Wang Customer Engineer. Currently existing diagnostics will aid the CE in isolating hardware failures to the failing board. When a board failure occurs, that board will be replaced with a board from C.E. stock and the bad board returned through C.E. logistics channels for repair.

B. Types of contract to be offered

On-Site Maintenance Contracts will be offered.

C. P.M. requirements

1) Customer performed:
 To insue proper operation of this product, and the system in which it is installed, the Customer should observe the Environmental Considerations outlined in the CUSTOMER SITE PLANNING GUIDE (part # 700-5978) section 4.

2) WANG C.E. performed:
 This product will not require P.M.
 a) Interval: N/A
 b) Parts/Consumables required: N/A
 c) Time to perform: N/A

COMPANY PROPRIETARY

(3)
D. Diagnostics required:

1) The CS-D will utilize the same CPU/memory diagnostics as the CS. A prom based built in test has been provided on the DPU. This will aid the CE in isolating problems to the DPU.

III. TRAINING

The CS-D will be included in the 2200 System training class as they are scheduled. Previously trained 2200 Customer Engineers will be updated via the Technical Service Bulletin (TSB) and PUB's to existing 2200 Product Maintenance Manuals.

A. CUSTOMER ENGINEER COURSE

1) COURSE OBJECTIVE:
The training objective will be to provide information that will enable the Wang Customer Engineer to meet the maintenance objectives for this product. These maintenance objectives are detailed in section II of this plan.

2) TIMETABLE and FORMAT:
The CS-D will be included in the 2200 training class. Currently, 2200 classes are scheduled once per quarter. The Product Maintenance Manual and TSB will be distributed before FCS date.

3) PREREQUISITES:
The 2200 System Course prerequisites are:
a) 6 months field experience following New Hire Training.

B. SALES SUPPORT COURSE

1) TIMETABLE and FORMAT
TBD

IV. SPECIAL TOOLS/TEST EQUIPMENT

No unique items required to service this product.

V. OPERATING ENVIRONMENT

A. TEMPERATURE RANGE

Storage (packaged) 0 to 120 deg f (-17 to 50 deg c)
Operating 60 to 90 deg f (17 to 28 deg c)

B. Voltage Range
115vac +/- 12 volts, 60 hz. +/- 0.5 hz.
230vac +/- 24 volts, 50 hz. +/- 0.5 hz.

COMPANY PROPRIETARY
C. HUMIDITY RANGE

Storage (packaged) 10% to 90%
Operating 20% to 80%
Wet Bulb Temperature 75 deg f max (24.4 deg c).

D. PHYSICAL SPECIFICATIONS

Height 23.9 inches 60.7 centimeters
Width 15 inches 38.1 centimeters
Depth 15.75 inches 40.0 centimeters

E. Service Space Requirements

Front: 30 in (91.4 cm)
Rear: 36 in (76.2 cm)
Top: 20 in (96.5 cm)

F. Input Current

2.0 amps @ 115V 60hz (running)
1.0 amps @ 230V 50hz (running)

G. Input Power

170 Watts
230 VoltAmps

H. Power Factor

0.74 lagging

I. Heat Loss

581 BTU/hr (146.4 KgCal/hr.)

J. Leakage Current

0.2 Ampere @ 115V 60hz
0.2 Ampere @ 230V 50hz

VI. POWER CORD DATA

A. Plug Type

NEMA 5-15 120V

B. Length

6 Feet (1.8 Meters)
PRODUCT MATURE PERFORMANCE PREDICTED

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Product Description</th>
<th>Service Parameter</th>
<th>Rate per Year</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-2D</td>
<td>2200 Computer System</td>
<td>Field Failures</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>CS-5D</td>
<td>2200 Computer System</td>
<td>Calls</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTTR</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call Duration</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation Time</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrades/Model</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrade Install Time</td>
<td>1.03</td>
<td></td>
</tr>
</tbody>
</table>

PRODUCT ANALYSIS WITH GROWTH

Product Field Failures/Year and Calls/Year
by Month after Installation

Model Number: CS-2D and CS-5D

Product Description: 2200 Computer System

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Failures/Year</td>
<td>1.07</td>
<td>0.43</td>
<td>0.41</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>Calls/Year</td>
<td>2.22</td>
<td>1.18</td>
<td>0.89</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
</tbody>
</table>

COMPANY PROPRIETARY
PRODUCT MATURE PERFORMANCE PREDICTED

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Product Description</th>
<th>Service Parameter</th>
<th>Rate per Year</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-10D</td>
<td>2200 Computer System</td>
<td>Field Failures</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>CS-20D</td>
<td>2200 Computer System</td>
<td>Calls</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTTR</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call Duration</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation Time</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrades/Model</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrade Install Time</td>
<td>1.03</td>
<td></td>
</tr>
</tbody>
</table>

PRODUCT ANALYSIS WITH GROWTH

Product Field Failures/Year and Calls/Year by Month after Installation

Model Number: CS-10D and CS-20D

Product Description: 2200 Computer System

<table>
<thead>
<tr>
<th>Month after Installation</th>
<th>Field Failures/Year</th>
<th>Calls/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Field Failures/Year</td>
<td>1.16</td>
<td>0.46</td>
</tr>
<tr>
<td>Calls/Year</td>
<td>2.38</td>
<td>1.26</td>
</tr>
</tbody>
</table>

COMPANY PROPRIETARY
PRODUCT MATURE PERFORMANCE PREDICTED

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Product Description</th>
<th>Service Parameter</th>
<th>Rate per Year</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-40D</td>
<td>2200 Computer System</td>
<td>Field Failures</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calls</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTTR</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call Duration</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation Time</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrades/Model</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrade Install Time</td>
<td>1.03</td>
<td></td>
</tr>
</tbody>
</table>

PRODUCT ANALYSIS WITH GROWTH

Product Field Failures/Year and Calls/Year by Month after Installation

Model Number: CS-40D

Product Description: 2200 Computer System

<table>
<thead>
<tr>
<th></th>
<th>Month after Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Field Failures/Year</td>
<td>1.32</td>
</tr>
<tr>
<td>Calls/Year</td>
<td>2.74</td>
</tr>
</tbody>
</table>

COMPANY PROPRIETARY
PRODUCT MATURE PERFORMANCE PREDICTED

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Product Description</th>
<th>Service Parameter</th>
<th>Rate per Year</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-40D</td>
<td>2200 Computer System</td>
<td>Field Failures</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calls</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTTR</td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call Duration</td>
<td></td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation Time</td>
<td></td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrades/Model</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrade Install Time</td>
<td></td>
<td>1.03</td>
</tr>
</tbody>
</table>

PRODUCT ANALYSIS WITH GROWTH

Product Field Failures/Year and Calls/Year by Month after Installation

Model Number: CS-40D

Product Description: 2200 Computer System

<table>
<thead>
<tr>
<th>Field Failures/Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.32</td>
<td>0.52</td>
<td>0.50</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
</tr>
</tbody>
</table>

| Calls/Year | 2.74| 1.46| 1.10| 0.99| 0.99| 0.99| 0.99| 0.99|

COMPANY PROPRIETARY
PRODUCT MATURE PERFORMANCE PREDICTED

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Product Description</th>
<th>Service Parameter</th>
<th>Rate per Year</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-80D</td>
<td>2200 Computer System</td>
<td>Field Failures</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calls</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTTR</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call Duration</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation Time</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrades/Model</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrade Install Time</td>
<td>1.03</td>
<td></td>
</tr>
</tbody>
</table>

PRODUCT ANALYSIS WITH GROWTH

Product Field Failures/Year and Calls/Year by Month after Installation

Model Number: CS-80D

Product Description: 2200 Computer System

<table>
<thead>
<tr>
<th>Month after Installation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Failures/Year</td>
<td>1.65</td>
<td>0.66</td>
<td>0.63</td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>Calls/Year</td>
<td>3.41</td>
<td>1.81</td>
<td>1.37</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
</tr>
</tbody>
</table>

COMPANY PROPRIETARY
NOTE:

Every effort has been made to include the most current information available but, these part numbers are subject to change.

Customer Service Logistics will provide updated, released part numbers through the normal RSL process.

FRUs, CRUs,

<table>
<thead>
<tr>
<th>PART #</th>
<th>DESCRIPTION</th>
<th>FRU:CRU:Unique</th>
<th>stocking</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>210-8937-A</td>
<td>128 KB CPU/MEM. PCB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>210-8937-B</td>
<td>512 KB CPU/MEM. PCB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>210-8937-C</td>
<td>1 MB CPU/MEM. PCB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>210-8937-D</td>
<td>2 MB CPU/MEM. PCB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>210-8937-E</td>
<td>4 MB CPU/MEM. PCB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>210-8937-F</td>
<td>8 MB CPU/MEM. PCB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>212-7113</td>
<td>DPU Assembly</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>270-0890-1</td>
<td>Power Supply</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>270-3483</td>
<td>DC Fan Assembly</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>210-9560</td>
<td>Mother Board</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>220-2849</td>
<td>Indicator Cable</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>220-2850</td>
<td>Power Harness #1</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>220-2851</td>
<td>Power Harness #2</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>220-2852</td>
<td>Power Extension Cable</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>220-3707</td>
<td>Tape Drive I/O Cable</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>220-3708</td>
<td>Floppy Drive I/O Cable</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>220-3709</td>
<td>Mini I/O Cable</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>220-2057</td>
<td>On/Off switch cable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PARTS LIST

Diagnostic Part Number: 195-2956-0

Parts required for P.M.: N/A

COMPANY PROPRIETARY
CUSTOMER ENGINEERING

FINAL

MAINTENANCE PLAN

VS/2200/OA NEW PRODUCTS

January 26, 1989

CS-N

J. P. Costello
New Products Engineer
Joseph P. Costello

Ibrahim Azar
New Products Manager

Sheila D. Mitchell
Product Line Manager
Sheila Mitchell

Henry A. Schinnage
Product Line Director

COMPANY CONFIDENTIAL
TABLE OF CONTENTS

I. PRODUCT DESCRIPTION

A. Overview of the Product .. 1
B. Similarities/Differences With Other Wang Products 1
 1) Software .. 1
 2) Hardware ... 1
 3) Other .. 1
C. First Customer Shipment .. 1
 1) Domestic ... 1
 2) International .. 1
D. Service Offerings/Warranty 1
E. Special Programs/Procedures 2
F. Major Components .. 2
G. Configuration Requirements 2

II. MAINTENANCE PHILOSOPHY

A. Maintenance Objectives .. 3
 1) C.E. Level .. 3
 2) Maintenance Procedures 3
B. Types of Contract to be Offered 3
C. P.M. Requirements ... 3
 1) Customer Performed 3
 2) WANG C.E. Performed 3
 a) Interval .. 3
 b) Parts/Consumables Required 3
 c) Time to Perform 3
D. Diagnostics Required ... 4
 1) Diagnostic Name(s) 4

III. TRAINING

A. CUSTOMER ENGINEER COURSE 4
 1) Course Objective 4
 2) Timetable and Format 4
 3) Prerequisites ... 4
B. SALES SUPPORT COURSE 4
 1) Timetable and Format 4

IV. SPECIAL TOOLS/TEST EQUIPMENT 4
V. OPERATING ENVIRONMENT

A. Temperature Range .. 4
B. Voltage Range .. 4
C. Humidity Range .. 5
D. Physical Specification .. 5
E. Service Space Requirements 5
F. Input Current .. 5
G. Input Power ... 5
H. Power Factor ... 5
I. Heat Loss .. 5
J. Leakage Current (grounding requirements) 5

VI. POWER CORD DATA

A. Plug Type .. 5
B. Length .. 5

VII. DOCUMENTATION LIST

A. Prints ... 6
B. Maintenance Manual ... 6
C. Vendor Manuals .. 6
D. Diagnostic Error Listings 6
E. P.M. Procedures .. 6
F. Repair Plan ... 6
G. Sales Literature .. 6
H. Operators' Guide/User Information 6

APPENDICES

A1 Marketing Forecast
A2 Predicted Reliability CS-2D and CS-5D
A3 Predicted Reliability CS-10D and CS-20D
A4 Predicted Reliability CS-40D
A5 Predicted Reliability CS-80D
A6 FRU, CRU Listing, Stocking Locations
A6 P.M. Parts
A6 Diagnostics
I. PRODUCT DESCRIPTION

A. OVERVIEW OF THE PRODUCT

The CS-N is a CS-D without a disk processing unit (DPU). The slots where the diskette and tape streamer would be located are covered by panels in the CS-N. The CS-N is available with either 128KB (CS-2N), 512KB (CS-5N), 1MB (CS-10N), 2MB (CS-20N), 4MB (CS-40N), or 8MB (CS-80N) of main memory. The CS-N will replace the current CS-2 through CS-80 models and is field-upgradeable to a CS-D.

Like the CS-D, the CS-N has 32KB of control memory, nine I/O slots and supports 16 users. The CS-N will also use CS memory upgrade kits.

With the CS-N as with the previous CS-2 through CS-80 an external disk storage cabinet (DS) is required for data storage.

B. SIMILARITIES/DIFFERENCES (with other WANG products)

1) Software:
Release 3.1 of the 2200 operating system is required to access memory beyond 512 Kilobytes (KB). Using release 3.3 or later of the multi-user operating system, up to 1MB of memory may be allocated to program. Any unused main memory or memory in excess 1MB may be allocated to RAMDISK.

2) Hardware:
The CS-N uses the same CPU board and memory configurations as the current CS. The CS-N will accommodate all of the I/O controllers supported on the Micro/VP and CS. All of the peripherals supported on the Micro/VP and CS are compatible with the CS-N.

3) Other:
Software is compatible with all existing 2200, Micro/VP, and CS software.

C. ANNOUNCE/FIRST CUSTOMER SHIPMENT DATE

Volume Ship:March 1989

D. SERVICE OFFERINGS/WARRANTY

This product will be installed by Customer Engineering personnel, and maintained by Customer Engineering with On-Site service.

This product will be covered by the standard Wang 90 day warranty.

COMPANY PROPRIETARY

(1)
E. SPECIAL PROGRAM/PROCEDURES

N/A

F. MAJOR COMPONENTS

The CS-N may be divided into the following subassemblies (FRU'S).

1) CPU:
 The CS-N uses the same CPU PCB (210-8937) as the current CS. The PCB has 32KB of control memory and up to 8MB of user memory. Programmable array logic (PAL) is used for memory addressing. The flexibility of the PAL allows unique addressing circuitry for each memory configuration.

3) Mother Board:
 The CS-N mother board has a slot for the CPU/Memory PCB and nine I/O slots. It provides the interface between the CPU/Memory PCB and the I/O controllers. The interface consists of an 8 bit address bus, 8 bit output data bus, a 9 bit input bus, and control strobes.

4) Power Supply:
 The CS-N utilizes a 255 watt switching power supply. It provides +5, -5, +12, and -12 volts DC. The power supply can use a line voltage of 110 or 230 volts AC, selectable by a switch on the power supply.

G. CONFIGURATION REQUIREMENTS

The CPU/Memory PCB will be configured in 128 KB, 512 KB, 1 MB, 2 MB, 4 MB, and 8 MB versions. The 128 KB, 512 KB, and 1 MB versions will utilize 256 KB SIMM modules. The 2 MB, 4 MB, and 8 MB versions will utilize 1 MB SIMM modules. A jumper (JP2) must be set to indicate which SIMM modules, 256KB or 1MB, are on the board. The PAL chip located at L2 will determine addressing capacity and must be compatible with the amount of memory loaded on the PCB.

The CS-N may be upgraded to a CS-D by ordering kit UJ6047 (PN 205-6047). This kit contains a DPU that must be installed in I/O slot 9. Any disk drives must be ordered separately.
II. MAINTENANCE PHILOSOPHY

A. Maintenance Objectives

1) C.E. Level:
This system is a migration of the current 2200 CS with the additional capability of internal disk storage. Effective maintenance of the system will require the following:

a) Skillful cause analysis at the system level.
b) Knowledge of the diagnostics on the 2200 system.
c) Knowledge of the overall system configuration.

2) Maintenance Procedures:
Maintenance on this product will be performed on-site by a Wang Customer Engineer. Currently existing diagnostics will aid the CE in isolating hardware failures to the failing board. When a board failure occurs, that board will be replaced with a board from C.E. stock and the bad board returned through C.E. logistics channels for repair.

B. Types of contract to be offered
On-Site Maintenance Contracts will be offered.

C. P.M. requirements

1) Customer performed:
To insure proper operation of this product, and the system in which it is installed, the Customer should observe the Environmental Considerations outlined in the CUSTOMER SITE PLANNING GUIDE (part # 700-5978) section 4.

2) WANG C.E. performed:
This product will not require P.M.

a) Interval: N/A
b) Parts/Consumables required: N/A
c) Time to perform: N/A
D. Diagnostics required:

1) The Data Memory Diagnostic has been revised to test the increased memory on the enhanced PCB and is incorporated in Release 3.3 of the 2200 Operating System.

III. TRAINING

The CS-N will be included in the 2200 System training class as they are scheduled. Previously trained 2200 Customer Engineers will be updated via the Technical Service Bulletin (TSB) and PUB's to existing 2200 Product Maintenance Manuals.

A. CUSTOMER ENGINEER COURSE

1) COURSE OBJECTIVE:
The training objective will be to provide information that will enable the Wang Customer Engineer to meet the maintenance objectives for this product. These maintenance objectives are detailed in section II of this plan.

2) TIMETABLE and FORMAT:
The 2200 training classes are currently scheduled once per quarter. The Product Maintenance Manual and TSB will be distributed before FCS date.

3) PREREQUISITES:
The 2200 System Course prerequisites are:

a) 6 months field experience following New Hire Training.

B. SALES SUPPORT COURSE

1) TIMETABLE and FORMAT
TBD

IV. SPECIAL TOOLS/TEST EQUIPMENT

No unique items required to service this product.

V. OPERATING ENVIRONMENT

A. TEMPERATURE RANGE

Storage (packaged) 0 to 120 deg f (-17 to 50 deg c)
Operating 60 to 90 deg f (17 to 28 deg c)

B. Voltage Range

115vac, +/- 12 volts, 60 hz. +/- 0.5 hz.
230vac +/- 24 volts, 50 hz. - 0.5 hz.

COMPANY PROPRIETARY
APPENDICES

COMPANY PROPRIETARY
MARKETING FORECAST ALL MODELS

<table>
<thead>
<tr>
<th></th>
<th>Q3 FY89</th>
<th>Q4 FY89</th>
<th>Q1 FY90</th>
<th>Q2 FY90</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMESTIC</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>INTERNATIONAL</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>TOTAL</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
</tr>
</tbody>
</table>

COMPANY PROPRIETARY
PRODUCT MATURITY PERFORMANCE PREDICTED

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Product Description</th>
<th>Service Parameter</th>
<th>Rate per Year</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-2N</td>
<td>2200 Computer System</td>
<td>Field Failures</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calls</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTTR</td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call Duration</td>
<td></td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation Time</td>
<td></td>
<td>1.30</td>
</tr>
<tr>
<td>CS-5N</td>
<td>2200 Computer System</td>
<td>PM Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrades/Model</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrade Install</td>
<td></td>
<td>1.03</td>
</tr>
</tbody>
</table>

PRODUCT ANALYSIS WITH GROWTH

Product Field Failures/Year and Calls/Year by Month after Installation

Model Number: CS-2N and CS-5N

Product Description: 2200 Computer System

<table>
<thead>
<tr>
<th>Month after Installation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Failures/Year</td>
<td>0.74</td>
<td>0.29</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>Calls/Year</td>
<td>1.52</td>
<td>0.81</td>
<td>0.61</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
</tr>
</tbody>
</table>

COMPANY PROPRIETARY
PRODUCT MATURE PERFORMANCE PREDICTED

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Product Description</th>
<th>Service Parameter</th>
<th>Rate per Year</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-1ON</td>
<td>2200 Computer System</td>
<td>Field Failures</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>CS-2ON</td>
<td>2200 Computer System</td>
<td>Calls</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTTR</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call Duration</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation Time</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrades/Model</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrade Install Time</td>
<td>1.03</td>
<td></td>
</tr>
</tbody>
</table>

PRODUCT ANALYSIS WITH GROWTH

Product Field Failures/Year and Calls/Year by Month after Installation

Model Number: CS-1ON and CS-2ON

Product Description: 2200 Computer System

<table>
<thead>
<tr>
<th>Month after Installation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Failures/Year</td>
<td>0.82</td>
<td>0.33</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>Calls/Year</td>
<td>1.69</td>
<td>0.90</td>
<td>0.68</td>
<td>0.61</td>
<td>0.61</td>
<td>0.61</td>
<td>0.61</td>
<td>0.61</td>
</tr>
</tbody>
</table>

COMPANY PROPRIETARY
PRODUCT MATURE PERFORMANCE PREDICTED

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Product Description</th>
<th>Service Parameter</th>
<th>Rate per Year</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-40N</td>
<td>2200 Computer System</td>
<td>Field Failures</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calls</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTTR</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call Duration</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation Time</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrades/Model</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrade Install Time</td>
<td>1.03</td>
<td></td>
</tr>
</tbody>
</table>

PRODUCT ANALYSIS WITH GROWTH

Product Field Failures/Year and Calls/Year by Month after Installation

Model Number: CS-40N

Product Description: 2200 Computer System

<table>
<thead>
<tr>
<th></th>
<th>Month after Installation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Field Failures/Year</td>
<td>0.99</td>
</tr>
<tr>
<td>Calls/Year</td>
<td>2.02</td>
</tr>
</tbody>
</table>

COMPANY PROPRIETARY
PRODUCT MATURE PERFORMANCE PREDICTED

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Product Description</th>
<th>Service Parameter</th>
<th>Rate per Year</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-80N</td>
<td>2200 Computer System</td>
<td>Field Failures</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calls</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTTR</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call Duration</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation Time</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO Calls</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO MTTR</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrades/Model</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upgrade Install Time</td>
<td>1.03</td>
<td></td>
</tr>
</tbody>
</table>

PRODUCT ANALYSIS WITH GROWTH

Product Field Failures/Year and Calls/Year by Month after Installation

Model Number: CS-80N

Product Description: 2200 Computer System

<table>
<thead>
<tr>
<th>Month after Installation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Failures/Year</td>
<td>1.32</td>
<td>0.52</td>
<td>0.50</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>Calls/Year</td>
<td>2.71</td>
<td>1.44</td>
<td>1.09</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
</tbody>
</table>

COMPANY PROPRIETARY
NOTE:

Every effort has been made to include the most current information available but, these part numbers are subject to change.

Customer Service Logistics will provide updated, released part numbers through the normal RSL process.

FRUs, CRUs,

<table>
<thead>
<tr>
<th>PART #</th>
<th>DESCRIPTION</th>
<th>FRU:CRU:Unique</th>
<th>B</th>
<th>A</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>210-8937-A</td>
<td>128 KB CPU/MEM. PCB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-8937-B</td>
<td>512 KB CPU/MEM. PCB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-8937-C</td>
<td>1 MB CPU/MEM. PCB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-8937-D</td>
<td>2 MB CPU/MEM. PCB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-8937-E</td>
<td>4 MB CPU/MEM. PCB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-8937-F</td>
<td>8 MB CPU/MEM. PCB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270-0890-1</td>
<td>Power Supply</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270-3483</td>
<td>DC Fan Assembly</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-9560</td>
<td>Mother Board</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220-2850</td>
<td>Power Harness #1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220-2851</td>
<td>Power Harness #2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220-2852</td>
<td>Power Extension Cable</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220-2057</td>
<td>On/Off switch cable</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>325-0105</td>
<td>On/Off Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PARTS LIST

Diagnostic Part Number: 195-2956-0

Parts required for P.M.: N/A
Diagnostic Functional Specification

Documentation Release: xxxx
Documentation Part No: 760-xxxx
Software Release: xxxx
Software Part Number: 7xx-xxxx
PROM Part Number: 379-xxxx

Product Name: CS-D Disk Controller
Originator: W.J Lo
Date: March 16 1988

Tables of Contents

1.0 Reference Documentation
2.0 Configuration Requirements
3.0 Program Description
4.0 Load Procedure
5.0 Operating Instruction
6.0 Miscellaneous
7.0 Program Revision History
Appendix A - Test and error table

Engineering Service Department
Wang Computer (Taiwan) Ltd.
2, Science-Based Industrial Park
Hsinchu, Taiwan, R.O.C.

page (1)
(c) Copyright Wang Laboratories, Inc., 1988 All Rights Reserved
1.0 Reference Documentation

2275F/R Disk Unit for the 2200
Software functional specification
Author: Dave Barrett
CS-D/CS-N Hardware Specification. Rev. A

2.0 Configuration Requirements

2.1 Hardware

Minimum required configuration for the BIT portion of the diagnostic
consists of a 2200 CS-D Disk Controller (210-XXXX), chassis and a PROM
containing the latest version of firmware linked along with the latest
version of the diagnostic BIT. The minimum required configuration for
the Burn-In portion of the diagnostic consists of a 2200 CS-D disk
controller(210-XXXX), chassis, a PROM containing the latest version of
firmware linked along with the latest version of the diagnostic BIT.
and a chip with a LED on it. that gets attached to the chip at location
LXXX (for Mfg. only). The minimum required configuration for the repair
aids portion of the diagnostic consists of a 2200 CS-D Disk Controller
(210-XXXX), chassis, a PROM containing the latest version of firmware
linked along with the latest version of the diagnostic BIT, a 5 1/4"
floppy drive, a 20 Meg winchester disk drive, a TEAC cassette tape
drive and a Z-BUG Emulator. In addition, a diskette with the file
"DATTEST" on it and a 2200 system is needed in order to be able to on
the optional interface test.

2.2 Software

A 32k PROM loaded with the latest revision of diagnostic and operating
system code located at LXXX of the (210-XXXX) board. Also a 5 1/4"
diskette with a basic program on it called "DATTEST" is needed to run
the optional interface test.

3.0 Program Description

3.1 Applications

To test hardware locate on the 2200 CS-D Disk Controller (210-XXXX) and
clear a path for the 2200 operating System. There is also a board
repair diagnostic included in the PROM code, as well as, an optional
interface test. These additional tests are designed to provide
Manufacturing with a more complete diagnosis of the hardware and give
them Burn-In capabilities.

3.2 User Interface

Refer to the 2200 DS Disk Processing Unit (DPU) BIT, June 24,1987
3.3 Hardware Tested

The hardware on the board consists of a 32K PROM, 16K of RAM, 256K of bank selectable RAM (16K banks), 280 CPU chip, CTC, 765 Floppy Disk Controller chip, 2010 Winchester Controller chip and a QIC-02 Interface.

3.4 Tests in the Program

<table>
<thead>
<tr>
<th>Name of Test</th>
<th>Hardware Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cache Data Lines Shorts Test</td>
<td>Data lines of all Cache banks</td>
</tr>
<tr>
<td>2. Data Line Stuck Test</td>
<td>Data lines of RAM</td>
</tr>
<tr>
<td>3. Address Lines Test</td>
<td>RAM address lines</td>
</tr>
<tr>
<td>4. Address Line Test</td>
<td>Cache address lines</td>
</tr>
<tr>
<td>5. Bank Select Test</td>
<td>Cache bank select hardware</td>
</tr>
<tr>
<td>6. Push/Pop Memory Test</td>
<td>RAM & Cache</td>
</tr>
<tr>
<td>7. Reverse Parity & Parity GEN. Test</td>
<td>Parity circuitry</td>
</tr>
<tr>
<td>8. CTC Control, Data, & Addr. Test</td>
<td>CTC</td>
</tr>
<tr>
<td>9. CTC Downcounter & Timer Mode Test</td>
<td>CTC</td>
</tr>
<tr>
<td>a. CTC Interrupt Test</td>
<td>CTC</td>
</tr>
<tr>
<td>b. DMA Clear Test</td>
<td>DMA, temporary register</td>
</tr>
<tr>
<td>c. DMA Channel Addressing Test</td>
<td>DMA</td>
</tr>
<tr>
<td>d. DMA Current Address Reg. Test</td>
<td>DMA, current address register</td>
</tr>
<tr>
<td>e. DMA Verify Transfer Test</td>
<td>DMA, EOP</td>
</tr>
<tr>
<td>f. 765 FDD Chip Test</td>
<td>UPD765 FDC chip</td>
</tr>
<tr>
<td>10. 2010 Wini Controller Chip Test</td>
<td>WD2010 chip</td>
</tr>
<tr>
<td>11. QIC-02 Interface Test</td>
<td>QIC-02 Interface</td>
</tr>
</tbody>
</table>

3.4.1 Program Jump Table

A program jump table at the beginning of the program gives user the ability to go directly to a test routine and execute from that point on. The procedure for doing this is as follows. Using the Z-Bug emulator set the Program Counter (PC) to X‘6050’ and load the accumulator with the test routine desired using the hex value of the test routine that precedes each test in the table of tests above. This is a function of the Board Repair portion of the diagnostic.

4.0 Load Procedures

Refer to the 2200 DS Disk Processing Unit (DPU) BIT, June 24, 1987

5.0 operating instructions

Refer to the 2200 DS Disk Processing Unit (DPU) BIT, June 24, 1987

6.0 Miscellaneous

None

7.0 Program Revision History
Appendix A

TEST AND ERROR TABLE
As described earlier in section 3.2 of this document the Z-Bug emulator may be halted on an error and viewing of the Z80 prime registers will contain specific fault isolation information. This means that without a Z-bug emulator error information cannot be retrieved from the diagnostic. Error codes are left in the 'B' register for all tests except test 6. For test 6 the error code will be left in 'A' the address at fault will be in register 'BC'. Depending on what test is running determined what the other prime registers are holding for information. The following is a listing of tests with the error codes associated with it. Further information may be found in the listing test headers.

<table>
<thead>
<tr>
<th>TEST ROUTINES</th>
<th>ERROR CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cache Data Lines Shorts Test</td>
<td>01</td>
</tr>
<tr>
<td>2. Data Line Stuck Test</td>
<td>02</td>
</tr>
<tr>
<td>3. Address Lines Test</td>
<td>03</td>
</tr>
<tr>
<td>4. Address Line Test</td>
<td>04</td>
</tr>
<tr>
<td>5. Bank Select Test</td>
<td>05</td>
</tr>
<tr>
<td>6. Push/Pop Memory Test</td>
<td>06</td>
</tr>
<tr>
<td>7. Reverse Parity & Parity GEN. Test</td>
<td>07</td>
</tr>
<tr>
<td>8. CTC Control, Data, & Addr. Test</td>
<td>08</td>
</tr>
<tr>
<td>9. CTC Downcounter & Timer Mode Test</td>
<td>09</td>
</tr>
<tr>
<td>A. CTC Interrupt Test</td>
<td>0A</td>
</tr>
<tr>
<td>B. DMA Clear Test</td>
<td>0B</td>
</tr>
<tr>
<td>C. DMA Channel Addressing Test</td>
<td>0C</td>
</tr>
<tr>
<td>D. DMA Current Address Reg. Test</td>
<td>0D</td>
</tr>
<tr>
<td>E. DMA Verify Transfer Test</td>
<td>0E</td>
</tr>
<tr>
<td>F. 765 FDD Chip Test</td>
<td>0F Thru 15</td>
</tr>
<tr>
<td>10. 2010 Wini Controller Chip Test</td>
<td>16 Thru 19</td>
</tr>
<tr>
<td>11. QIC-02 Interface Test</td>
<td>1A Thru 23</td>
</tr>
</tbody>
</table>
Diagnostic Engineering Plan

Preliminary

PEP Number: HO212E Revision 0.0

Product Name: CS-D Disk Controller

Originator: W.J. Lo

Date: March 16 1988

Tables of Contents

1.0 Personnel
2.0 Hardware
3.0 Reference Documents
4.0 Diagnostic Plan
5.0 Prototype development
6.0 Applications
7.0 Schedule

Engineering Service Department
Wang Computer (Taiwan) Ltd.
2, Science-Based Industrial Park
Hsinchu, Taiwan, R.O.C.

(c) Copyright Wang Laboratories, Inc., 1988 All Rights Reserved
1.0 PERSONNEL

1.1 Hardware Engineering S.M. Chiou, G.L. Su
1.2 Mechanical Engineering K.C. Yang
1.3 Software Engineering W.J. Lo
1.4 Diagnostic Development M.K. Kao
1.5 Manufacturing
1.6 System Integration
1.7 Customer Engineering
1.8 Product Planning & Marketing
1.9 Product QA

2.0 Hardware

The disk controller, located in the CS-D cabinet, consists a mother board and a daughter board with the 280 controlled logic that is capable of supporting one ST-506 Winchester disk drives, a 1.2 MB floppy drive, and a TEAC 45DF Streaming Tape Drive (STD). The Winchester can be the RICOH RHS130 10 MB removable cartridge drive. The disk controller can be accessed through built in 22C03 by 2200 CS-D data storage controller or through MUX cable to access disk controller by other 2200 CPU(incuding CS-N).

3.0 Diagnostic Plan

The Diagnostic Plan is to design a PROM with Built-In-Test (BIT) and Board repair Functionality. Both will have Burn-in capabilities. Also in the PROM is a 2200 Interface test that Handshakes with a special 2200 program that will reside on a separate floppy diskette. Further details are in the sections that follow.

3.1 Built-in-Test (BIT) Diagnostic

The Built-In-Test (BIT) will consist of electronic and drive tests. The electronic tests will not require any drives to be present and will be local to the 2275 board. Failures will result in the controller being unaccessible to the 2200 (control not being passed to PROM firmware) and a flashing floppy drive LED (if possible). Failures within the drive test will result in a flag being set in a semaphore address to be defined later and eventual control being passed to operational firmware. Catastrophic drive problems will result in an error flag 'FF' being set, while media related problems will set an error flag 'FE'.

(c) Copyright Wang Laboratories, Inc., 1988 All Rights Reserved
BIT Fatal Kernal Tests

PROM
CPU
RAM/BANKING
CTC / Interrupts
765 status and control
2010 status and control
QIC-02 status and control

BIT Non-Fatal Tests

Winchester Drive (Status / Sector 0 Integrity Read)
Streaming Tape (Status / Self Test)
Floppy (Status / Sector 0 Integrity Read)

3.2 Board Repair

Setting Switch bank 2 (at location SW2) to X'OF', will signal to the BIT that board repair functionality is desired. The BIT will process through the above fatal Kernal tests, but upon error detection will attempt to loop on the condition causing the error. A register will contain the error code. A recalibrate, a formal cylinder, a write sector, a read sector, a step function (with verification that the step was successful), cylinder, a write sector and a read sector will be executed on the floppy, on the fixed winchester (if present), on units (must be the same type as the fixed winchester). The streaming tape drive must contain a tape and will be tested using standard drive commands. Upon error detection an attempt will be made to loop on the condition causing the error. If no errors are detected, control will pass to operational firmware. To aid with problem isolation. A jump table will be available in PROM which will provide entry points to debug routines. These routines will be accessible using a Zebug and will provide simple functions such as: read sector, formal cylinder, write sector and will use low level firmware routines where possible.

Setting switch bank 2 to X'0E' will signal to the BIT that the 2200 interface test is selected. This test will verify the 2200 to 2275 interface by executing code which will handshake with a special 2200 interface test program.

3.2.1 Burn-In

Setting Switch 2 to X'FF' will signal to the BIT that burn-in mode is selected. This will be an extention to the BIT and will perform non-destructive testing of the media (like the BIT), but will continuously loop instead of passing control to operation firmware.

Setting Switch bank 2 to X'FO', will signal to the BIT that burn-in mode with destructive testing is desired. This mode is the same as the board repair mode with the exception is not passed to operational firmware upon successful completion, but instead it will continuously loop.
4.0 Prototype Support

Diagnostic support will be provided in bringing up prototype hardware. The tests provided for this purpose will be incorporated into the programs listed in section 3 above as appropriate.

5.0 Application

<table>
<thead>
<tr>
<th>Diagnostic Package</th>
<th>Hardware Tested</th>
<th>Minimum Equip. Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOARD TEST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board Repair</td>
<td>Controller</td>
<td>2275 & Drives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zebug & 2200</td>
</tr>
<tr>
<td>BOARD RUNIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIT</td>
<td>Controller</td>
<td>2275 & Zebug</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2200</td>
</tr>
<tr>
<td>UNIT TEST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board Repair</td>
<td>Controller</td>
<td>2275 & Drives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zebug & 2200</td>
</tr>
<tr>
<td>UNIT RUNIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIT or Board Repair</td>
<td>Controller</td>
<td>2275 & Drives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zebug & 2200</td>
</tr>
<tr>
<td>SYSTEM INTEGRATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board Repair</td>
<td>Controller</td>
<td>Configuration System</td>
</tr>
<tr>
<td>CUSTOMER SIDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIT</td>
<td>Controller</td>
<td>Configuration System</td>
</tr>
</tbody>
</table>

6.0 Schedule

Plan to test prototype on 5/21/88
Plan to finish diagnostic program on 6/15/88
CS-D/CS-X
Hardware Specification
(Preliminary)

Rev B

By
G.L.Su
K.C.Yang
S.M.Chiou

Date: Mar.11, 1988

Company confidential
Copyright Wang Laboratories, Inc., 1988
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Overview</td>
<td>1</td>
</tr>
<tr>
<td>2. Cabinet Diagram</td>
<td>1</td>
</tr>
<tr>
<td>3. CPU Chassis and Configuration</td>
<td>1</td>
</tr>
<tr>
<td>4. Power Supply</td>
<td>2</td>
</tr>
<tr>
<td>5. Data Storage System</td>
<td>3</td>
</tr>
</tbody>
</table>
System Overview

CS-X is a new cabinet and new chassis system which is 100% hardware and software compatible with the current CS system.

CS-D is a CPU built in less than 140 MB can impact data storage cabinet. This model is the same as CS-X except includes a cost reduced DS DPU board with a 22CO3-type interface to the I/O bus.

2. Cabinet

This cabinet is available with or without internal disks/tape and DPU board. CS-X models without the internal DPU would have a panel covering the disk/tape opening.

CS-D models with the internal DPU would have 2 half-height opening, one for 320 KB or 1.2 MB diskette and other one for tape streamer or cartridge. Other mounting choice of a single internal 20, 32 or 42, 64 or 140 MB fixed winchester, with external visible red light for the fixed Winchester.

Cabinet Assembly Diagram see attachment.

3. CPU Chassis and Configuration

CS-X Configuration

Slot 0	---------------	up to 8MB extended memory CPU board
Slot 1	---------------	I/O Controller
Slot 2	---------------	I/O Controller
Slot 3	---------------	I/O Controller
Slot 4	---------------	I/O Controller
Slot 5	---------------	I/O Controller
Slot 6	---------------	I/O Controller
Slot 7	---------------	I/O Controller
Slot 8	---------------	I/O Controller
Slot 9	---------------	I/O Controller

Note: All I/O Controller must be same as all existing I/O Controller used on the CS series.

page 1
CS-D Configuration

Slot 0	up to 8MB extended memory CPU board
Slot 1	I/O Controller
Slot 2	I/O Controller
Slot 3	I/O Controller
Slot 4	I/O Controller
Slot 5	I/O Controller
Slot 6	I/O Controller
Slot 7	I/O Controller
Slot 8	I/O Controller
Slot 9	Internal D.S.Controller

Note: All I/O Controller must be same as all existing I/O Controller used on the CS series.

Internal D.S.Controller is costed reduced DPU board with a 22C03-type interface to the I/O bus. This controller will support one diskette, one streamer tape or cartridge and winchester fixed disk. The winchester can be 20, 32 or 42, 64 or 140 MB fixed Winchester, so User needing more than 140 MB or more than a single fixed winchester, would order a CS-X without a DPU and a old DS.

4. Power Supply

This system use WANG SPS-255 switching power supply and Computer Product Inc. (Boschert) Model No. SL-40-8601 Switching power supply.

A. SPS-255

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V</td>
<td>36 A</td>
<td>used for full system</td>
</tr>
<tr>
<td>-5V</td>
<td>0.2A</td>
<td>used for full system</td>
</tr>
<tr>
<td>+12V</td>
<td>6A</td>
<td>used for full system except tape and floppy disk</td>
</tr>
<tr>
<td>-12V</td>
<td>0.5A</td>
<td>used for full system</td>
</tr>
</tbody>
</table>

B. SL40-8601

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12V</td>
<td>3.5A</td>
<td>used for tape and floppy disk</td>
</tr>
</tbody>
</table>
5. Data Storage System

GENERAL:
The disk controller, located in the CS-D cabinet, consists of a motherboard and a daughter board with the Z80 controlled logic that is capable of supporting a one ST-506 model Winchester disk drives, a 1.2 Mb or 320 KB floppy drive, and a TEAC 45DF Streaming Tape Drive (STD). The Winchester can be the RICOH RH5130, 10 Mb removable cartridge drive. The disk controller can be only accessed thru built in 22C03 by 2200 CS-D CPU or thru MUX cable to access disk controller by other 2200 CPU (including CS-X).

The disk controller is comprised of the following:

- 4 MHz Z80A Microprocessor.
- 32 KB EPROM.
- Four-Channel DMA controller chip.
- Two Four-Channel CTC chips.
- 16 system RAM with parity.
- 16 banks of 16 KB cache RAM with parity.
- 765 floppy disk controller, together with a companion data separator.
- Western Digital 2010B Winchester Disk Controller.
- Western Digital 10C20B Data Separator.
- QIC-02 interface logic for controlling the TEAC tape drive.
- 2200 bus interface logic.
2200 Bus Interface

This Interface logic is 100% hardware compatible with 22C03 logic in function. Using this logic to direct interface with data storage unit (such as tape, floppy drive, fixed drive) and not thru MUX. But the function of 22C03 would disable if connect a cable with MUX or MUXE and the DPU would become a storage controller only. In this case the function are the same as old DS system except capable of supporting Winchester drive. The new DPU is supporting a one ST-506 Winchester drive but old DS system is supporting a total of four ST-506 Winchester disk drive.

MEMORY CONTROL

The disk controller memory consists of 32 Kbytes of EPROM, 16 Kbytes of system RAM, and 256 Kbytes of cache RAM. Cache RAM is organized in 16 banks. Only one of the 16 banks can occupy the top 16k slot of the Z80A memory address space. Bank selection is done with MEMBKSEL/ (OUT 70) in conjunction with DO - D3 (see Lxx, sheet 1).

```
FFFE
! Cache Memory ! 1 1 1
! (One of 16 banks)!
C000
BFFFF
! System RAM ! 1 0 1
! 16 Kbytes!
8000
7FFFF
! EPROM ! 0 1 0
! 32 Kbytes!
0
Memory Allocation

A15 A14 A13
```

A15=0: EPROM is selected
A15=1: RAM is selected
A14=0: System RAM is selected
A14=1: Cache RAM is selected, one bank at a time.

page 4
Address lines ABO – AB14 (sheet 1) are buffered by external registers. These address lines are driven by the Z80 during a Z80 memory cycle, and by the DMAC during a DMA cycle. Z80 and DMAC access to RAM is possible only if SRAMEN/ has been asserted. SRAMEN is generated by either MREQ/ or DACK/. SRAMEN/ generation is inhibited when any one of the following signals are asserted (ground level): IORQ/, BCS/, AB15, and RFSH/. The logic level of AB15 determines whether RAM or EPROM is selected. RAM is selected when AB15=1, and EPROM is selected when AB15=0.

DISK CONTROLLER I/O COMMANDS.

MAIN DECODER:

<table>
<thead>
<tr>
<th>A7 A6 A5 A4</th>
<th>A3 A2 A1 A0</th>
<th>MNEMONIC</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 X X X X</td>
<td>DMACS</td>
<td>See DMA I/O Commands.</td>
<td></td>
</tr>
<tr>
<td>0 0 0 1 0 X X X</td>
<td>2010CS/</td>
<td>See 2010 I/O Commands.</td>
<td></td>
</tr>
<tr>
<td>0 0 0 1 1 X X X</td>
<td>WDSELEN/</td>
<td>See WDSELEN I/O Commands.</td>
<td></td>
</tr>
<tr>
<td>0 0 1 0 X X X X</td>
<td>CTC1CS/</td>
<td>See CTC I/O Commands.</td>
<td></td>
</tr>
<tr>
<td>0 0 1 1 X X X X</td>
<td>CTC2CS/</td>
<td>See CTC I/O Commands.</td>
<td></td>
</tr>
<tr>
<td>0 1 0 0 X X X X</td>
<td>FLOPCS/</td>
<td>See FLOPPY I/O Commands.</td>
<td></td>
</tr>
<tr>
<td>0 1 0 1 X X X X</td>
<td>WREN/</td>
<td>See I/O Write Commands.</td>
<td></td>
</tr>
<tr>
<td>0 1 1 0 X X X X</td>
<td>DEN/</td>
<td>See I/O Read Commands.</td>
<td></td>
</tr>
<tr>
<td>0 1 1 1 X X X X</td>
<td>WEMBKSELE/</td>
<td>See MEMBKSELE I/O Commands.</td>
<td></td>
</tr>
</tbody>
</table>

1 0 0 0 0 0 0 0 Separately decoded in Tape Drive section.

To

1 0 0 0 0 0 1 1 1 See TAPE DRIVE I/O Commands.
I/O WRITE COMMANDS:

<table>
<thead>
<tr>
<th>I/O Cmdn(Hex) Data</th>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>x FLPYRST/</td>
<td>Reset Floppy Drive Logic.</td>
</tr>
<tr>
<td>52</td>
<td>D0=0 FLOUT/</td>
<td>Floppy motor off.</td>
</tr>
<tr>
<td>52</td>
<td>D0=1 FLOUT/</td>
<td>Floppy motor on.</td>
</tr>
<tr>
<td>54</td>
<td>x SETRDY/</td>
<td>Set 2200 Rdy/Bsy line to ready.</td>
</tr>
<tr>
<td>56</td>
<td>DATA ZWR2200/</td>
<td>Send data to 2200.</td>
</tr>
<tr>
<td>58</td>
<td>x WDSL/</td>
<td>Set 2010 Buffer Ready line to ready.</td>
</tr>
<tr>
<td>5A</td>
<td>X SETBSY/</td>
<td>Set 2200 Rdy/Bsy line to busy.</td>
</tr>
<tr>
<td>5C</td>
<td>D6=1 AUXHEADSEL/</td>
<td>Select Aux. Winchester Heads.</td>
</tr>
<tr>
<td>5C</td>
<td>D6=0 AUXHEDSEL/</td>
<td>Deselect Aux. Winchester Heads.</td>
</tr>
<tr>
<td>5E</td>
<td>D7=1 FCLKSEL/</td>
<td>Select 1.2 Mb. Floppy (8 MHZ clk).</td>
</tr>
<tr>
<td>5E</td>
<td>D7=0 FCLKSEL/</td>
<td>Select 320 Kb. Floppy (4 MHZ clk).</td>
</tr>
<tr>
<td>80</td>
<td>DATA QWRS/</td>
<td>Write data to tape</td>
</tr>
<tr>
<td>81</td>
<td>X QWRDMA/</td>
<td>Generate QDRQ3</td>
</tr>
<tr>
<td>82</td>
<td>X CLRDRQ3/</td>
<td>Enable QDRQ3</td>
</tr>
<tr>
<td>83</td>
<td>D1=1 SETONL/</td>
<td>Set tape interface online</td>
</tr>
<tr>
<td>84</td>
<td>D2=1 SETREQ/</td>
<td>Set tape interface request</td>
</tr>
<tr>
<td>85</td>
<td>D3=1 SETQPAR/</td>
<td>Enable tape interface parity error interrupt</td>
</tr>
<tr>
<td>86</td>
<td>X CLRQPAR/</td>
<td>Clear tape interface parity error</td>
</tr>
<tr>
<td>87</td>
<td>D4=1 QSOFRST/</td>
<td>Reset tape interface logic</td>
</tr>
<tr>
<td>87</td>
<td>D5=1 RSTBRDY/</td>
<td>Reset winchester buffer ready</td>
</tr>
<tr>
<td>I/O Comnd(Hex)</td>
<td>Data</td>
<td>Mnemonic</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>60</td>
<td>D0-D7</td>
<td>STATUS/</td>
</tr>
<tr>
<td>60</td>
<td>D0=0</td>
<td>FLOPINDEX</td>
</tr>
<tr>
<td>60</td>
<td>D0=1</td>
<td>FLOPINDEX</td>
</tr>
<tr>
<td>60</td>
<td>D1=0</td>
<td>DN3/</td>
</tr>
<tr>
<td>60</td>
<td>D1=1</td>
<td>DN3/</td>
</tr>
<tr>
<td>60</td>
<td>D2=0</td>
<td>FLPDROP</td>
</tr>
<tr>
<td>60</td>
<td>D2=1</td>
<td>FLPDROP</td>
</tr>
<tr>
<td>60</td>
<td>D3=0</td>
<td>WPORP</td>
</tr>
<tr>
<td>60</td>
<td>D3=1</td>
<td>WPORP</td>
</tr>
<tr>
<td>60</td>
<td>D4=0</td>
<td>PORFLAG</td>
</tr>
<tr>
<td>60</td>
<td>D4=1</td>
<td>PORFLAG</td>
</tr>
<tr>
<td>60</td>
<td>D5=0</td>
<td>WHRP</td>
</tr>
<tr>
<td>60</td>
<td>D5=1</td>
<td>WHRP</td>
</tr>
<tr>
<td>60</td>
<td>D6=0</td>
<td>CPB/</td>
</tr>
<tr>
<td>60</td>
<td>D6=1</td>
<td>CPB/</td>
</tr>
<tr>
<td>60</td>
<td>D7=0</td>
<td>PARITY/</td>
</tr>
<tr>
<td>60</td>
<td>D7=1</td>
<td>PARITY/</td>
</tr>
<tr>
<td>62</td>
<td>DATA</td>
<td>HDDTYPE/</td>
</tr>
<tr>
<td>66</td>
<td>DATA</td>
<td>ZRD2200/</td>
</tr>
<tr>
<td>68</td>
<td>D0=0</td>
<td>RDBDRQ/</td>
</tr>
<tr>
<td>68</td>
<td>D0=1</td>
<td>RDBDRQ/</td>
</tr>
<tr>
<td>68</td>
<td>D1=0</td>
<td>RDBDRQ/</td>
</tr>
<tr>
<td>68</td>
<td>D1=1</td>
<td>RDBDRQ/</td>
</tr>
<tr>
<td>68</td>
<td>D2=0</td>
<td>RDBDRQ/</td>
</tr>
<tr>
<td>68</td>
<td>D2=1</td>
<td>RDBDRQ/</td>
</tr>
</tbody>
</table>
D3=0 RDBDRQ/ Switch #3 position #3 off
D3=1 RDBDRQ/ Switch #3 position #3 on
X SETBADPAR/ Force bad parity during BIT
X SETGOODPAR/ Force good parity during BIT
D7=1 QPARERR Tape parity error
D6=1 QXFR Tape data transfer
D5=1 QREQ Tape request
D4=1 QONL Tape online
D3=1 QDIR Tape bus in input direction
D2=1 QEXC Tape interface exception
D1=1 QRDY Tape interface ready
DO=1 QACK Tape interface acknowledge
DATA RDQDATA/ Read data from tape

Detailed switch setting information appears elsewhere in this text.

'BIT' indicates Built In-Test

'X' indicates that the data portion of the I/O command is a "don't care"

MEMBKSEL I/O WRITE COMMANDS

<table>
<thead>
<tr>
<th>I/O Comnd(Hex)</th>
<th>Data</th>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>DO-D3</td>
<td>MEMBKSEL/</td>
<td>Selects memory banks 0 to FF.</td>
</tr>
<tr>
<td>72</td>
<td>X</td>
<td>ENPARITY/</td>
<td>Enable System/Cash parity</td>
</tr>
<tr>
<td>74</td>
<td>X</td>
<td>CLRPARITY/</td>
<td>Clear System/Cash parity</td>
</tr>
<tr>
<td>76</td>
<td>X</td>
<td>OTC/</td>
<td>Signals TC(Terminal count) to the Floppy Controller Chips.</td>
</tr>
</tbody>
</table>

page 8
2010 I/O COMMAND:

TASK FILE

The task File is a bank of nine, 8-bit registers used to hold status information indicating the success or failure of an operation, as well the parameters under which the drive is to operate. They are addressed by A0 through A2 lines. A0 through A2=0 is unused by the 2010 and when received, puts its bus in the tri-state condition isolating it from the bus.

IN 11-ERROR REGISTER

! D7 ! D6 ! D5 ! D4 ! D3 ! D2 ! D1 ! D0 !
! B8 !CRC/ECC! 0 ! ID ! 0 !AC2 ! TK ! DM !

Bit 7 - Bad Block Detect

This bit is set when an ID field has been encountered that contains a Bad Block Mark. It is used for bad sector mapping.

Bit 6 - CRC/ECC Data Field Error

CRC mode of operation (SDH 7=0): this bit is set when a CRC error occurs in the data field. When Retry is enabled, ten more attempts are made to read the sector correctly. If none of these attempts are successful, bit zero in the Status Register is set also. If one of the attempts is successful, this bit remains set to inform the Host that a marginal condition exists. However the zero status bit is not set. No attempt is made to correct the error.
ECC mode of operation (SDH 7=1): This bit is when the first non-zero syndrome is detected. When Retry is enabled, up to ten attempts are made to correct the error. If successful this bit remains on. However bit 2 of the Status Register is set to inform the Host that the error has been corrected. If unsuccessful, this bit remains on and bit zero of the Status Register is set also. When Retry is disabled no attempt is made to correct the error.

The data may be read even if errors do exist.

NOTE: If the Long Mode it is set in the Read Or Write command, no error checking is performed.

Bit 5 - Not used, forced to zero.

Bit 4 - ID Not found

This bit is set to indicate that the correct cylinder, head, sector, or size parameter could not be found, or an CRC error occurred on the ID field. This bit is set on the first failure and remains set even if the error is recovered on retry. When recovery is unsuccessful, the Error Status bit is also set.

For a Scan ID Command with Retry enabled (T=0), the Error Status bit is set after ten unsuccessful attempts have been made to find the correct ID. With Retry disabled (T=1) only two attempts are made before setting the Error Status.
For a Read and Write Command with Retry enabled (T=0), ten attempts are made to find the correct ID field. If there is still an error on the tenth try, an auto-scan and auto-seek are performed. Then, ten more tries are made before setting the Error Status. When the Retry is disabled (T=1) only two tries are made, and no auto-scan or auto-seek operations are performed.

Bit 3 - Reserved
Not used, forced to zero

Bit 2 - Aborted Command
The command is aborted and this bit is set if, DRDY(data ready) has not been asserted, WF(write fault) is asserted, or the command issued had an undefined code.

Bit 1 - Track Zero Error
This bit is set during Restore Command when TK000(track zero) input has indicated that the head has reached track zero by 2047 steps.

Bit 0 - Data Address Mark Not Found
This bit is set during Read Sector Command if the Data Address Mark is not found following the proper sector ID.
OUT 11-WRITE PRECOMP CYLINDER

This register is used to define the cylinder number where the RWC(reduce write current) output signal is asserted. In this design, this signal is connected to the WPCEN(write precompensation enable) input of the 10C20B Data Separator chip. It is not connected to the RWC input of the Winchester drives. The RWC Winchester input is used as auxiliary head select. Maxtor drives use this signal to select a second set of 8 heads.

! D7 ! D6 ! D5 ! D4 ! D3 ! D2 ! D1 ! D0 !
! CYLINDER NUMBER / 4

The value 00–FF loaded into this register is internally multiplied by four to specify the actual cylinder where RWC(WPCEN in this case) is to be asserted. Thus a value of 9C hex causes the RWC to be asserted on cylinder 270 hex, 9D hex on cylinder 274 hex, etc. RWC is asserted when the present cylinder is equal to, or greater than the value of this register. For example, the ST506 requires precomp 80 hex(128 dec.) and above. Therefore, the write precomp cylinder should be loaded with 20 hex(20 dec.)

A value of FF hex causes RWC to remain de-asserted, regardless of the cylinder number value.

The Sector Count, Sector Number, Cylinder Low, Cylinder High, and SDH Registers allow both read and write operations.
IN/OUT 12 ACCESS SECTOR COUNT REGISTER

In multiple sector operations, this register contains the number of sectors involved with Read Sector, Write Sector, and Format commands.

\[\begin{array}{cccccccc}
D_7 & D_6 & D_5 & D_4 & D_3 & D_2 & D_1 & D_0 \\
\end{array} \]
\[\text{NUMBER OF SECTORS} \]

The value written in this register is decremented by one after each sector is transferred to or from the Sector Buffer. A zero represents a 256 sector transfer, a one sector, etc. This register is disregarded when a single sector command is specified.

IN/OUT 13 - ACCESS SECTOR NUMBER REGISTER

This register holds the number of the desired sector.

\[\begin{array}{cccccccc}
D_7 & D_6 & D_5 & D_4 & D_3 & D_2 & D_1 & D_0 \\
\end{array} \]
\[\text{SECTOR NUMBER} \]

This is the starting sector in a multiple sector command. It is incremented by one after each sector has been transferred to or from the Sector Buffer. The register can contain any value from 0 to 255.

This register also specifies the minimum GAP 3 length, minus 3 during Format Command.
IN/OUT 14 CYLINDER NUMBER LOW REGISTER

This register the least significant 8 bits of the desired cylinder number.

! D7 ! D6 ! D5 ! D4 ! D3 ! D2 ! D1 ! D0 !
! LS BYTE OF CYLINDER NUMBER !

It is used in conjunction with cylinder Number High Register to specify a range of 0 to 2047.

IN/OUT 15 - CYLINDER NUMBER HIGH REGISTER

This register contains the three most significant bits of the desired cylinder number.

! D7 ! D6 ! D5 ! D4 ! D3 ! D2 ! D1 ! D0 !
! X ! X ! X ! X ! # ! # ! # !

These registers determine where the R/W are to be positioned. The Host writes the desired cylinder into these registers. Internal to the 2010 is another pair of registers pointing to where the heads are presently located. When any command, other than Restore, is executed these registers are compared. The difference between them results in a DIRIN and STEP signaling the drive how many cylinder to move the heads and in which direction.
The Present Cylinder Position Register is updated to equal the Cylinder Number Register at the completion of the seek.

When a Restore Command is executed, the Present Cylinder Position Register is reset to zero, while DIRIN and step move the heads to track zero.

IN/OUT 16 – ACCESS THE SDH REGISTER

This register contains the desired sector size, drive number, and head number parameters.

<table>
<thead>
<tr>
<th>D7 D6 D5</th>
<th>D4 D3</th>
<th>D2 D1 D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>! EXT ! SIZE</td>
<td>! DRIVE</td>
<td>! HEAD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D6! D5 SECTOR SIZE !</th>
<th>D4! D3! DRIVE#!</th>
<th>D2! D1! D0! HEAD# !</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 256</td>
<td>0 0 DSEL 1</td>
<td>0 0 0 HSEL 0</td>
</tr>
<tr>
<td>0 1 512</td>
<td>0 1 DSEL 2</td>
<td>0 0 1 HSEL 1</td>
</tr>
<tr>
<td>1 0 1024</td>
<td>1 0 DSEL 3</td>
<td>0 1 0 HSEL 2</td>
</tr>
<tr>
<td>1 1 128</td>
<td>1 1 DSEL 4</td>
<td>0 1 1 HSEL 3</td>
</tr>
<tr>
<td></td>
<td>1 0 0 HSEL 4</td>
<td>1 0 1 HSEL 5</td>
</tr>
<tr>
<td></td>
<td>1 1 0 HSEL 6</td>
<td>1 1 1 HSEL 7</td>
</tr>
</tbody>
</table>
Bit 7 - One selects the ECC mode for the data field. Zero selects the CRC mode for the data field.

NOTE: Drive Select decoding is by external logic. Head Select decoding is done within the Winchester drives logic.

IN 17 - STATUS REGISTER

IMPORTANT: The data read from the Status Register IS NOT valid when the 2010 is doing data transfers.

The Status Register is used to inform the Host of certain events performed by the 2010 as well as reporting status from the drive control lines. Reading the Status Register de-asserts INTR(Interrupt Request).

! D7 ! D6 ! D5 ! D4 ! D3 ! D2 ! D1 ! DO !
! BSY ! RDY ! WF ! SC ! DRO ! DWC ! CIP ! ERR !

Bit 7 - Busy

BUSY is asserted when a command is written into the Command Register and, except for the Read Command, it is de-asserted at the end of the command. When executing Read Sector Command, BUSY is de-asserted when the Sector Buffer is full. Commands should not be loaded into the Command register when this bit is set. When the BUSY bit is set, no other bits in the Status or Error Register are valid.
Bit 6 - Ready
This bit reflects the status DRDY(Data Ready). When this bit equals zero, the command is aborted and status of this bit is latched.

Bit 5 Write Fault
This bit reflects the status of WF. When this bit equals one, the command is aborted, INTRQ is asserted, and the status of this bit is latched.

Bit 4 - Seek Complete
This bit reflects the status of SC. When a seek or implied seek has been initiated by the command, it pauses until seek is complete. This bit is latched after "aborted command" error.

Bit 3 - Data Request
DRQ reflects the same status as BDRQ. It is asserted when the data Sector Buffer must be written into, or read from. DRQ and BDRQ remain asserted until BRDY indicates that the Sector Buffer has been filled or emptied, depending upon the command. DRQ is used during program Interrupt and must be interrogated by the Host to determine that the 2010 is ready.

Bit 2 - Data Was Corrected
When a one, this indicates an error has been detected during the ECC mode of operation and the data in the Sector Buffer has been corrected. This provides the user with an indication that there may be a marginal condition within the drive before the errors become incorrectable. This bit is forced to zero when not in the ECC mode of operation.
Bit 1 - Command In Progress (CIP)

When this bit is set, a command is been executed and a new command should not be loaded. Although a command is been executed the Sector Buffer is still available for access by the Host. When the 2010 is no longer busy, (bit 7=0) the Status Register can be read. Any attempt to read the other registers results reading the status.

Bit 0 - Error

This bit indicates that a non-recoverable error has occurred. When the Host reads the status and finds this bit set, it must read then the Error Register to determine what type of error it was.

OUT 17 - COMMAND REGISTER

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMAND
<table>
<thead>
<tr>
<th>COMMAND</th>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESTORE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R3</td>
<td>R2</td>
<td>R1</td>
<td>R0</td>
</tr>
<tr>
<td>SEEK</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>R3</td>
<td>R2</td>
<td>R1</td>
<td>R0</td>
</tr>
<tr>
<td>READ SECTOR</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>I</td>
<td>M</td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>WRITE SECTOR</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>M</td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>SCAN ID</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>WRITE FORMAT</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>COMPUTE CORRECTION</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SET PARAMETER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
</tr>
</tbody>
</table>

Stepping Rate Field R3-RO

For 5 MHz WCLK

R3-RO= 0000 - 35 microsec

<table>
<thead>
<tr>
<th></th>
<th>STEP PULSE WIDTH= 1.6 at 3.2 microsec rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>.5 msec</td>
</tr>
<tr>
<td>0010</td>
<td>1.0 msec</td>
</tr>
<tr>
<td>0011</td>
<td>1.5 msec</td>
</tr>
<tr>
<td>0100</td>
<td>2.0 msec</td>
</tr>
<tr>
<td>0101</td>
<td>2.5 msec</td>
</tr>
<tr>
<td>0110</td>
<td>3.0 msec</td>
</tr>
<tr>
<td>0111</td>
<td>3.5 msec</td>
</tr>
<tr>
<td>1000</td>
<td>4.0 msec</td>
</tr>
</tbody>
</table>

page 19
I - Interrupt Control

I=0 INTRQ occurs with BDRQ/DRQ indicating Sector buffer is full (valid only when M=0).
I=1 INTRQ when the command is completed and Host has read the Sector Buffer.

M - Multiple Sector Flag

M=0 Transfer one sector (the sector count is ignored).
M=1 Transfer multiple sectors.

L - Long Mode

L=0 Normal mode, normal CRC or ECC functions are performed.
L=1 Long mode, no CRC or ECC bytes are developed or error checking performed on the data field. The 2010 appends the four additional bytes supplied by the Host or disk to the data field.

T - Retry Flag

T=0 Enable Retry
T=1 Disable Retry
Disk Drive Type Switch Setting

<table>
<thead>
<tr>
<th>MSB</th>
<th>LSB</th>
<th>Disk Drive Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td></td>
<td>No Drive selected</td>
</tr>
<tr>
<td>0001</td>
<td></td>
<td>10 Mb Removable Cartridge Winchester</td>
</tr>
<tr>
<td>0010</td>
<td></td>
<td>10 Mb Winchester</td>
</tr>
<tr>
<td>0011</td>
<td></td>
<td>20 Mb Winchester</td>
</tr>
<tr>
<td>0100</td>
<td></td>
<td>32 Mb (non-Micopolis) Winchester</td>
</tr>
<tr>
<td>0101</td>
<td></td>
<td>64 Mb Winchester</td>
</tr>
<tr>
<td>0110</td>
<td></td>
<td>140 Mb Maxtor 14x10 Mb</td>
</tr>
<tr>
<td>0111</td>
<td></td>
<td>32 Mb Micopolis Winchester</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>112 Mb Maxtor 7x16 Mb</td>
</tr>
</tbody>
</table>

NOTE1: The same Maxtor drive is used for both the 140 Mb and the 112 Mb configuration.

NOTE2: Not all DIP switches have the markings shown above. Another version shows an arrow pointing to the word 'ON'. In this application ON=select=1.
FLOPPY DRIVE

The main components of the Floppy Drive logic are the NEC 765A (or equiv.) Floppy Disk Controller (FDC) chip and Floppy Interface Data Ordinator (FIDO).

FDC WCK waveform when HIGH/LOW/ is low

FDC CLK waveform when HIGH/LOW/ is low
Frequency = 4 MHZ

FDC WCK waveform when HIGH/LOW/ is high

FDC CLK waveform when HIGH/LOW/ is high
Frequency = 8 MHZ
QIC Interface Logic

The DISK CONTROLLER provides hardware logic that makes it possible to interface with any Streaming Cartridge Tape Drive (SCTD), however the present firmware is tailored specifically for the TEAC SCTD.

I/O command are used for both reading SCTD status, and for sending control command to the SCTD.

Data transfers, to and from the SCTD, are done via DMA.

The SCTD records data in 512 byte blocks, while data in the 2200 is organized in 256 byte blocks. This makes it necessary to have two separate 256 byte DMA transfers in order to meet the 512 byte block requirement of the SCTD.

The SCTD controls the bus direction.

The DISK CONTROLLER generates and sends to the SCTD an odd parity bit during both data and control transmission. The SCTD reciprocates with its own odd parity bit during its transmission cycle to the DISK CONTROLLER. The Z80 is interrupted if the DISK CONTROLLER parity checker detects a parity error during incoming data or status from the SCTD. All Z80 interrupts, except NMI, are routed to the Z80 via the two CTC chips. The SCTD generates an exception when it receives wrong parity from the DISK CONTROLLER.
The DISK CONTROLLER accepts data from the 2200 either by using Z80 I/O command or by using DMA channel 1.

Data flow is controlled by the DISK CONTROLLER generated Ready/Busy(R/B) line. This line is set to the '0' level when the DISK CONTROLLER is ready to receive data from the 2200. Output Bus Strobe (OBS) signals the DISK CONTROLLER that a byte of data (OB1–OB8) has been placed on the 2200 output bus.

OBS sets the R/B line to busy

OBS (after a 500ns delay) stores OB1–OB8 in register

OBS asserts the OBREQ (DREQ1 of the DMA chip). The DMA chip will reply only if DMA channel 0 had been initialized prior to this.

OBS asserts START/ if and AB8 are true. The 2200 uses START/ to inform the DISK CONTROLLER that the data on the bus a command byte.

OBS signals the Z80 via (CTC chip) to read the data in register. The Z80 OBS handling routine issues an IN 66 command (ZRD2200) in order to generate 2200RD/. This signal is also generated during DMA. The Z80 uses 2200RD/ to read the data in register. The Z80 processes the data, and when it is ready to accept the next byte from the 2200 it generates SETRDY/ in order to set the R/B line to ready. Note that the transfers of DMA channel 1 also sets the R/B line to ready.

It should be pointed out that the 2200 I/O bus does not support DMA transfers. It is the DISK CONTROLLER hardware and firmware that provide the handshake signals that are necessary during a DMA cycle.
DISK CONTROLLER To 2200 INTERFACE

The DISK CONTROLLER transfers data to the 2200 either by using Z80 I/O commands or DMA channel 2.

The Z80 stores data in output register by generating ZWR2200/ (OUT 56/). This signal also generates IBS (Input bus Strobe) to the 2200. IBS is terminated by 2200 generated signal CPB/ (CPU BUSY). The 2200 asserts this signal when it is not ready to accept data from the DISK CONTROLLER. IBREQ (DREQ2) is generated when the 2200 is ready to receive data (CPB/=1). The DMA chip responds to IBREQ only when it has been properly initialized. During a DMA cycle the DACK2/ OR ZWR/ is used to store data in the output register and is also used to generate IBS, and to reset IBREQ.
<table>
<thead>
<tr>
<th>ISSUE DATE</th>
<th>ISSUE</th>
<th>BOM REV.</th>
<th>OPER. NO.</th>
<th>SHT. NO.</th>
<th>ECO/MPC NO.</th>
<th>DESCRIPTION</th>
<th>WRITER</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/09/89</td>
<td>A</td>
<td>AA</td>
<td>ALL</td>
<td>ALL</td>
<td></td>
<td>PRELIMINARY-(FIRST DRAFT)</td>
<td>ROB WILSON</td>
</tr>
<tr>
<td>02/16/89</td>
<td>B</td>
<td>AA</td>
<td>ALL</td>
<td>ALL</td>
<td>PCN 1375</td>
<td>PRELIMINARY-(SECOND DRAFT)</td>
<td>ROB WILSON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td># 52509D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6-89</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>53492</td>
<td>changes Prev Inc</td>
<td>Don Deschones</td>
</tr>
<tr>
<td>5/17/89</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>53843</td>
<td>Change previously incorporated</td>
<td>S. Clark</td>
</tr>
</tbody>
</table>

DISTRIBUTION:

2200 FINAL
<table>
<thead>
<tr>
<th>OPER. NO.</th>
<th>OPERATION</th>
<th>WORK CTR.</th>
<th>STD.</th>
<th>SPECIAL TOOLS/FIXTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>INSPECTION GUIDELINES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>REMOVE PACKAGING (VENDOR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>REMOVE COVERS FROM CABINET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>MOUNT LEVELING SUPPORTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>MOUNT POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>MOUNT FAN ASSEMBLIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>MOUNT SWITCH ASSEMBLY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>SECURE MOTHER BOARD TO CHASSIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>MOUNT/SECURE CABLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>MOUNT/SECURE BLANK BRACKETS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>ASSEMBLE/MOUNT FRONT BEZEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.5</td>
<td>Q.C. INSPECTION</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
*** ATTENTION-IMPORTANT ***

THE FOLLOWING GUIDELINES ARE TO BE USED WHILE ASSEMBLING THIS PRODUCT.

1. VERIFICATION OF PCB REVISIONS (E REV'S) BEFORE ASSEMBLY INTO UNITS.
2. VERIFICATION THAT EXTERNALLY VISIBLE PARTS ARE FREE OF SCRATCHES, DISCOLORATION, IMPERFECTIONS, CORROSION OR ANY OTHER OBVIOUS COSMETIC DEFECTS.
3. VERIFICATION THAT ALL HARDWARE IS FUNCTIONAL AND WORKS FREELY.
 THIS INCLUDES KEY LOCKS, HINGES, SLIDES, LATCHES, SWITCHES, CASTERS, ETC.
4. INCLUSION OF ALL PROPER SWITCH SETTINGS.
5. INCLUSION OF PROPER ALIGNMENT AND BALANCE OF ALL VISIBLE GAPS OR SPACING BETWEEN MATING PANELS, BEZELS, DOORS, OR EXTERNAL SUB ASSEMBLIES.
6. INCLUSION OF PROPER TORQUE REQUIREMENTS FOR ALL HARDWARE FASTENERS.
7. THE INCLUSION OF QC CHECKS AS PART OF LAST OPERATION OF EACH SUB AND FINAL ASSEMBLY.
A. 1. 279-0921 CS-D/N CABINET SUB-ASS'Y (VENDOR)

a) 685-0100 EDGE PROTECTOR (4)
b) 685-0474 TAPE 2" CLEAR POLY (A/R)
c) 685-0664 STRAPPING POLY .50 (A/R)
d) 685-0665 SEAL STRAPPING FOR .50 (2)
e) 685-0723 BAG GUSSET 23 x 17 x 36
f) 685-2410 FOLHSC 27.13 x 20.00
g) 685-2411 PALLET 28.00 x 20.88
h) 685-2412 CUSHION ASSY, TOP

REMOVE THE PACKAGING FROM THE CABINET ASSEMBLY.
SAVE ALL THE RE-USEABLE ITEMS OF THE SHIPPING PACKAGE FOR THE FINAL PACKAGING OF THE COMPLETED CABINET.
REMOVE THE CABINET FROM THE CUSHIONED PALLET.
A. REMOVE THE SCREWS FROM THE TOP COVER. SLIDE THE TOP COVER BACK AND REMOVE IT FROM THE CABINET. SAVE TOP COVER AND HARDWARE FOR RE-ASSEMBLY.

a) 458-3899 CS-D/N FRAME (WELD) REF.
b) 458-5027 COVER, TOP (WELD) REF.
c) 650-4120 SCR, 8-32 x 3/8 PN HD PHL (2) REF.
B. 1. 615-4004 LABEL, SWITCH SETTING

a) 458-3899 CS-D/N FRAME (WELD) REF.
b) 458-5028 COVER, L.H. (WELD) REF.
c) 458-5029 COVER, R.H. (WELD) REF.
A. 1. 655-0072 APPLIANCE GLIDE MOUNT LEVELING SUPPORTS TO THE BOTTOM OF THE CHASSIS, AT Positions as shown.

FIG. 1

CS-D/N FRAME (458-3899 REF.)

Assembly typical 4 places
A. 1. 270-0890-1 SPS 255 ASSEMBLY
2. 458-2252 SUPPORT, POWER SPLY
3. 650-3080 SCR, 6-32 x 1/4" PN HD SEMS (2)
4. 651-0039 SCR, 8-18 1/2LG SLF TPG (2)

VERIFY TORQUE OF 6-32 HARDWARE TO 9 INCH/LBS.
VERIFY TORQUE OF 8-32 HARDWARE TO 18 INCH/LBS.
A. 1. 270-3483 DC FAN (1049) ASSEMBLY (2)
 2. 650-3524 SCR, 6-32 x 1.87LG PHL (8)
 3. 653-3000 WASH, #6 FLAT (8)
 4. 653-3003 WASH, #6 SPLIT (8)

POSITIONS FANS ON TOP OF THE CHASSIS AS SHOWN (SEE FIG.1), BE SURE THAT THE WIRES OF THE FANS ARE SHOWING ON TOP FOR CORRECT POSITIONING.
REFER TO "DETAIL" ILLUSTRATION FOR HARDWARE STACK-UP AND AIR FLOW DIRECTION. SECURE THE FANS TO THE CHASSIS, USING THE HARDWARE AS SHOWN.
VERIFY TORQUE OF 6-32 HARDWARE TO 9 INCH/LBS.
A. 1. 220-2057 CABLE, SWITCH
2. 325-0105 125VAC PNL-MNT.UL/CSA/VDE
3. 455-0104 BRACKET, SW I T C H
4. 654-1204 GROMMET 3/16 ID FOR 5/16 (2)

MOUNT THE SWITCH TO THE SWITCH BRACKET, BY PRESSING
SWITCH INTO SWITCH BRACKET, AT POSITION AS SHOWN. APPLY
THE RUBBER GROMMETS TO THE SWITCH BRACKET, AS SHOWN.
PLUG-IN THE FOUR WIRES OF THE SWITCH CABLE TO THE REAR
TERMINALS OF THE SWITCH. (SEE DETAIL FOR WIRE CONNECTIONS)

5. 650-3080 SCR, 6-32 x 1/4" SEMS (2)

USING THE HARDWARE AS SHOWN, SECURE THE SWITCH
BRACKET TO THE FRONT OF THE CHASSIS AT POSITION
AS SHOWN. (SEE FIG.2)

VERIFY TORQUE OF 6-32 HARDWARE TO 9 INCH/LBS.
A. 1. 210-9560 PCA, CS MOTHER BOARD
 2. 458-2326 SUPPORT, MEDIUM (3)
 3. 458-2327 SUPPORT, SMALL
 4. 458-2328 SUPPORT, LARGE
 5. 658-0283 SCB, 4-40 x 5/8 SECS (14)

Verifying the torque of 4-40 hardware to 5 inch/lbs. 13 places
14th place screw is to be hand tightened only.

Using the hardware as shown, secure the supports
positions as shown.

FIG. 1

COMPONENT SIDE

FIG. 2

CIRCUIT SIDE

HANDTIGHTEN ONLY

TORQUE 13 PLACES
B. 1. 650-3080 SCR, 6-32 x 1/4" SEMS (5)

POSITION CS MOTHER BOARD (210-9560 REF.) AS SHOWN AND HOOK THE SUPPORTS ON THE CIRCUIT SIDE OF THE MOTHER BOARD TO THE BRACKETS ON THE CENTER PANEL OF THE CS CHASSIS (458-3899 REF.).

USING THE HARDWARE AS SHOWN, SECURE THE MOTHER BD. ASSEMBLY TO THE CHASSIS. DO NOT TIGHTEN SCREWS AT THIS TIME.
C. 1. 220-3707 CABLE, TAPE DRIVE
2. 220-3708 CABLE, FLOPPY DRIVE
3. 220-3709 CABLE, WINCHESTER CONTROL
4. 650-2160 SCR, 4-40 x 1/2" SEAMS (6)

USING THE HARDWARE AS SHOWN, SECURE THE THREE (3) FLAT CABLES TO THE CUT-OUTS ON THE CENTER PANEL OF THE CHASSIS, HANDBITEN SCREWS ONLY.

5. 654-1286 CABLE CLAMP, FLAT (2)

DRESS FLAT CABLES AS SHOWN AND SECURE USING ADHESIVE BACKED FLAT CABLE CLAMPS AT POSITION AS SHOWN.

FIG. 1
INSIDE VIEW OF CENTER PANEL
D. USING ALIGNMENT FIXTURE PF xxxxx, ADJUST CS MOTHER BOARD
(210-9560 REF.) ON CENTER PANEL OF THE CS CHASSIS (458-3899 REF.).
SECURE THE CS MOTHER BOARD, USING HARDWARE AS SHOWN.

a) 650-3080 SCR, 6-32 x 1/4" SEAMS (5) REF.

b) 650-2203 SCR, 4-40 x 5/8" SEAMS (1) REF FROM PAGE 12.

c) 650-2160 SCR, 4-40 x 1/2" SEAMS (6) REF FROM PAGE 14.

VERIFY TORQUE OF 6-32 HARDWARE TO 9 INCH/LBS.

VERIFY TORQUE OF 4-40 HARDWARE TO 5 INCH/LBS.
A. 1. 220-2850 POWER HARNESS [1].
2. 220-2851 POWER HARNESS [2].
3. 220-2852 POWER EXTENSION CABLE
4. 654-1274 CABLE CLAMP ADH.BACK (2)

PLUG-IN THE TWO (2) POWER HARNESS CABLES AND THE POWER EXTENSION CABLE TO THE POWER SUPPLY HARNESS AT POSITIONS, AS SHOWN.

DRESS THE TWO (2) POWER HARNESS CABLES AS SHOWN AND SECURE USING ADHESIVE BACKED CABLE CLAMPS AT LOCATIONS SHOWN.

FIG. 1 INSIDE VIEW OF CHASSIS

TO SWITCH CABLE (220-2057 REF.)
B. 1. 654-127A CABLE CLAMP ADH. BACK

PLUG-IN THE 2 POSITION HOUSING CAPS FROM THE POWER HARNESS (220-2851 REF.) INTO THE CUT-OUTS ON THE TOP OF THE CHASSIS CENTER PANEL.

PLUG-IN THE TWO (2) CONNECTORS OF THE DC FAN CAPS OF THE POWER HARNESS CABLES TO THE CHASSIS CENTER PANEL USING ONE (1) ADHESIVE BACKED CABLE CLAMP.

a) 220-2851 POWER HARNESS [2] REF.

b) 270-3483 DC FAN (1049) ASS'Y (2) REF.
C. Plug-in the power harness from the power supply and the power extension cable (220-2852 REF.) to the bottom of the mother board (210-9560 REF.) at positions J22, J23, & J24 as shown on illustrations below.

a) 210-9560 PCA, Mother Board REF.
b) 220-2852 Power Extension CBL REF.
D. 1. 605-1004 CABLE TYE, PAN-TY
2. 654-1296 BASE, CABLE TYE MOUNT

Plug-in the 5 Pos. Connector of the Switch Cable (220-2057 Ref.) to the 5 Pos. Connector of the Power Supply Cable (220-2156 Ref.).

Secure the Switch Cable to the front inside panel of the Chassis, using Cable Tye and Adhesive Base, as shown.

FIG. 1
INSIDE VIEW
OF FRONT PANEL
E. 1. 220-2849 CABLE, INDICATOR

PLUG-IN THE LED END OF THE INDICATOR CABLE FROM THE INSIDE OF THE CHASSIS TO THE SWITCH BRACKET. PUSH LED’S INTO 3/16 RUBBER GROMETS (654-1204 REF.) GREEN LED ON TOP, YELLOW LED ON BOTTOM.

SECURE INDICATOR CABLE TO CABLE CLAMP, AT POSITION AS SHOWN.
F. 1. 654-1288 BUSHING, SNAP

FIG. 1
INSERT BUSHING

FIG. 2
INSERT CABLE THRU BUSHING

FIG. 3
SECURE CABLE TO MOTHERBOARD
A. 1. 455-0093 BRACKET, BLANK (7)
2. 650-4120 SCR, 8-32 x 3/8" SEMS (14)

USING THE HARDWARE AS SHOWN, SECURE THE SEVEN (7) BLANK BRACKETS TO THE REAR OF THE CHASSIS AT POSITIONS AS SHOWN.

VERIFY TORQUE OF 8-32 HARDWARE TO 18 INCH/LBS.
A. 1. 449-1577 BEZEL, FRONT
2. 458-2275 BRACKET, HOOK (2)
3. 651-0021 SCR, #8 x 1/2 SELF TAP (4)

USING THE HARDWARE AS SHOWN, SECURE THE HOOK BRACKETS TO THE INSIDE BOTTOM OF THE FRONT BEZEL.

VERIFY TORQUE OF #8 HARDWARE TO 18 INCH/LBS.
B. 1. 449-1274 PANEL, BLANK (2)

MOUNT THE PANEL BLANKS TO THE INSIDE OF THE FRONT BEZEL (449-1577 REF.) BY SNAPPING INTO POSITION AS SHOWN. MOUNT THE BOTTOM BLANK PANEL IN FIRST, WITH THE LOWER LIP OF THE BLANK PANEL TOWARDS THE BOTTOM. MOUNT THE REMAINING BLANK PANEL THE SAME AS THE FIRST.
C. 1. 451-3727 NAMEPLATE, WANG LOGO

APPLY THE ADHESIVE BACKED WANG LOGO TO THE UPPER LEFT CORNER (RECESSED AREA) OF THE FRONT BEZEL (449-1577 REF.) AS SHOWN ON ILLUSTRATION.
D. 1. 651-0329 FSNR, TREE-LK MINI (2)

Secure the two (2) tree lock fasteners to the outside front of the chassis, by pressing them in, as shown.
E. 2. 650-4120 SCR, 8-32 x 3/8" SEMS (2)

SECURE THE FRONT BEZEL (449-1577 REF.) TO THE CHASSIS BY THE BOTTOM HOOK BRACKETS (458-2275 REF.) FIRST. TILT FRONT BEZEL IN, TO MAKE CONTACT WITH THE TREE FASTENERS (651-0329 REF.) ON THE FRONT OF THE CHASSIS. SECURE THE TOP OF THE FRONT BEZEL WITH SCREWS AT LOCATION AS SHOWN.

VERIFY TORQUE OF 8-32 HARDWARE TO 18 INCH/LBS.
PART(S) AFFECTED: 210-9560
MODEL(S) AFFECTED: CS-D/CS-N Chassis

DESCRIPTION OF CHANGE:
Change L1 From 376-0224 (74LS03) to 376-0556 (74S03)
L2 From 376-0155 (74LS74) to 376-0202 (74S74)

PRELIMINARY

Note: Remove history information from 210 assembly drawing, and EREV from schematic to support OCA configuration document.

ECO TO BE SEP 1 1 1991
REVIEWED

REASON/SYMPOTOM FOR CHANGE:
This will fix a problem with the CS-D using 240VAC and a VLIS CPU board.... intermittent control memory and/or data memory errors on power up, especially with heavily loaded I/O sections.
1. WANG MODEL(s) Affected: CS-D, CS-N
2. WANG FRU(s) Affected: 210-9560

3. IS THERE AN IMPACT ON WANG INSTALLED BASE? (IF NO, GO TO 7) YES / NO

4. OF MODEL(s) IMPACTED - UNIT FAILURES EXPECTED?: ALL UNITS / SOME UNITS

5. HOW ARE THESE UNITS IMPACTED? (CHECK ANY THAT APPLY):
 - SAFETY
 - FCC COMPLIANCE
 - INTERMITTENT
 - HARD FAILURE
 - TEST/TESTING
 - CATASTROPHIC
 - ENHANCEMENT
 - RELIABILITY
 - OTHER (SEE 7)

6. PLR DATA:
 - Unit Population: 599
 - Calls: 835
 - Fails: 266
 - Failure Rate: 0.32 per Year

 - Total Failure Data
 - Total: 3
 - Reduction: 1
 - Reduced by ECO/PN
 - Part Used

7. FIELD REQUIREMENTS:
 - FCMO requirements
 - Next Call: Immediate
 - Est. installation time

8. FSC REQUIREMENTS:
 - Level A: Information only
 - Level B: Upgrade on failure only
 - Level C: Upgrade all assy's (MBM)

9. LOGISTICS REQUIREMENTS:
 - Level A: Information only
 - Level B: Future purchases
 - Level C: Purge stock (FSC rework)

ANY OTHER INFO TO CLARIFY IMPACT: (3/W range, documentation (i.e. Product Maintenance Manual, Service Handbook, etc.), configurations, repair/test process(es), tooling, etc.)

Problem only seems to affect 50 Hz 240 VAC machines. The more problem in the I/O section the worse the problem.

Reviewer's Signature: Michael Baldu Date: 9/19/91

(OVER FOR DEFINITIONS)

WRITE CLEARLY AND USE BLACK INK
WANG ECO

PART(S) AFFECTED: 210-9560
MODEL(S) AFFECTED: CS-D/CS-N Chassis

DESCRIPTION OF CHANGE:
Change L1 from 376-0224 (74LS03) to 376-0556 (74S03)
L2 from 376-0155 (74LS74) to 376-0202 (74S74)

PRELIMINARY

Note: Remove history information from 210 assembly drawing, and EREV from schematic to support PCA configuration document.

ECO TO BE SEp 11 1991 REVIEWED

REASON/SYMPOTOM FOR CHANGE:
This will fix a problem with the CS-D using 240VAC and a VLIS CPU board... intermittent contact memory and/or data memory errors on power up, especially with heavily loaded I/O sections.

APPROVALS SIGNATURE DATE

ECO CHAIRPERSON
PROGRAM MGR. Michael Riley
DESIGN ENG. Michael Riley
COMPLIANCE ENG.
SECURE SYSTEMS Michael Riley
ECO ANALYST. Edgar Alcatel

OTHER
TSO PRODUCT SUPPORT

IMPACT REVIEW CHECKLIST

WANG ECOS 59333

1. WANG MODEL(s) Affected: CS-D, CS-N

2. WANG TKU(s) Affected: 210-9560

3. IS THERE AN IMPACT ON WANG INSTALLED BASE? (IF NO, GO TO 7) YES / NO

4. OF MODEL(s) IMPACTED - UNIT FAILURES EXPECTED? ALL UNITS / SOME UNITS

5. HOW ARE THESE UNITS IMPACTED? (Check any that apply):
 SAFETY
 FCC COMPLIANCE
 INTERMITTENT
 HARD FAILURE
 TESTING INTEG.
 CATASTROPHIC
 ENHANCEMENT
 RELIABILITY

6. PLR DATA:
 Unit Population
 Last 13 mo.
 Calls 235
 Fails 266
 Failure per Year .32
 Total Fails .32
 Reduction by ECO/PN 3
 Reduced FFY

7. FIELD REQUIREMENTS:
 Level A: Information only
 Level B: TS3 required
 Level C: FCO required
 FCO requirements Next Call Immediate
 Est. installation time
 Est. # of units to FCO

8. PSC REQUIREMENTS:
 Level A: Information only
 Level B: Upgrade on failure only
 Level C: Upgrade all assy's (MS3)

9. LOGISTICS REQUIREMENTS:
 Level A: Information only
 Level B: Future purchases
 Level C: Purge stock (PSC rework)

ANY OTHER INFO TO CLARIFY IMPACT: (S/W range, documentation (i.e. Product Maintenance Manual, Service Handbook, etc.), configurations, repair/test process(es), tooling, etc.)

Problem only seems to affect 50 Hz, 240 VAC machines. The more
problems in the I/O section the WANG & problem.

Reviewer's signature: [Signature]

DATE: 9/9/91

(Over for definitions)

WRITE CLEARLY AND USE BLACK INK
DESCRIPTION OF CHANGE

ADD: Note 4. Parts shall be individually marked in designated area with Wang Part No., revision level and Vendor Identification Per Wang Spec. 10-527.

REASON/SYMPOTM FOR CHANGE

Required for proper identification of Part, Rev. Level and Vendor
NOTE:
1. DEBURR AND BREAK ALL SHARP EDGES.
2. INSIDE BEND RADI TO BE .03 MAX.
3. FINISH: BRIGHT ZINC PLATE TYPE II,
CLASS III, PER WANG SPEC SPI 10-626

ECO:
Parts should be permanently marked in
Designated Area with View Parts, Revision
Number and Date of Certification Part No.
E120 12-5-76

ECO No 56218
SHT 2 OF 2

Zone B-E, 1-5
(2PL)
0.59

Z105 0093 Rev 0/1
DESCRIPTION OF CHANGE

Change the parts list and Sample board as follows:

Change L76 from IC 27256-2 DS E PROM (379-8500-R2)
To IC 27256-2 DS E PROM (379-8500-R3)

Change BOM 210-9558-A as follows:

<table>
<thead>
<tr>
<th>WL#</th>
<th>DESCRIPTION</th>
<th>COMP</th>
<th>TYPE</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>379-8500 R2</td>
<td>IC 27256-2 DS EPROM</td>
<td>EA</td>
<td>5P</td>
</tr>
<tr>
<td>Add</td>
<td>379-8500 R3</td>
<td>IC 27256-2 DS EPROM</td>
<td>EA</td>
<td>5P</td>
</tr>
</tbody>
</table>

REWORK EXISTING REVISIONS:
100 BOARDS ARE IN PROCESS:

COMPANY CONFIDENTIAL

REASON/SYMPTOM FOR CHANGE

1. Enable the 150M Tape Drive To Work With The DS.

2. Fixes The Cache Overflow Problem.

CUSTOMER SATISFACTION ISSUE PER PP&M.
WANG EC# 55875

1. WANG Model #s Affected: CSD

2. WANG FRU(s) #s Affected: 210.9558A

3. Is there an impact on WANG installed base? (If NO, go to 7) YES √ NO

4. Of Model #s impacted - Unit Failures Expected?: ALL UNITS SOME UNITS √

5. How are these units impacted? (Check any that apply):
 - SAFETY
 - FCC COMPLIANCE
 - TEMPEST INTG.
 - INTERMITTENT
 - HARD FAILURE
 - CATASTROPHIC
 - ENHANCEMENT
 - RELIABILITY
 - OTHER (See 7) √

6. PLR DATA:
 - Unit Population
 - Last Calls: Total 12 mo. 144
 - Fails: Total 500 approx. 38
 - Fails per Year: .5
 - Parts Related to ECO/FN
 - Total Used: 2.5
 - Reduction by ECO/FN: 9
 - FFY: 2

7. FIELD REQUIREMENTS:
 - Level A: Information only
 - Level B: TSB required
 - Level C: FCO required
 - FCO requirements: Next Call Mark: Immediate

8. FSC REQUIREMENTS:
 - Level A: Information only
 - Level B: Upgrade on failure only
 - Level C: Upgrade all assy's (MDS)

9. LOGISTICS REQUIREMENTS:
 - Level A: Information only
 - Level B: Future purchases
 - Level C: Purge stock (FSC rework)

ANY OTHER INFO TO CLARIFY IMPACT: (S/M range, documentation (i.e. Product Maintenance Manual, Service Handbook, etc.), configurations, repair/test process(es), tooling, etc.)

Problem can cause cache to run slow. System may need to be rebooted to clear. All boards should be updated. Must have ROM 3 prom to use 150 MB tape drive which may already be shipping.

REVIEWER'S SIGNATURE: [Signature]

DATE: 10/25/89

(Over for Definitions)

WRITE CLEARLY AND USE BLACK INK
DESCRIPTION OF CHANGE

PRELIMINARY

Change the part list and sample board as follows:

Change L76 from IC 27256-2 DS E PROM (379-8500-R1) to IC 27256-2 DS E PROM (379-8500-R2)

Change BOM 210-9558-A as follows:

<table>
<thead>
<tr>
<th>WL#</th>
<th>DESCRIPTION</th>
<th>UM</th>
<th>COMP TYPE</th>
<th>QTY</th>
<th>QTY TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>379-8500-R1 IC 27256-2 DS PROM EA SP 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add</td>
<td>379-8500-R2 IC 27256-2 DS E PROM EA SP 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REASON/SYMPHOM FOR CHANGE

1. Allow internal disk to tape transfers greater than 256 sectors.
2. Write-protect/enable platters through software commands.
3. Added diagnostic commands to "Flush Cache" and to "re-run Power-on Diagnostics".

SEE PAGE 2
4. Corrected problem where unit would hang during tape backup.
5. Corrected problem with I90 errors when connected to a 2275MUX.
6. Corrected problem with $FORMAT not writing all sectors.
7. Added byte to status command to reflect Write Protect/Enable status of drive.
8. Improved restore time of removable Winchester.
9. Corrected tape drive reset so that drive is reset only if a command is in progress.
1. WANG MODEL #s AFFECTED: CSD
2. WANG FRU(s) #s AFFECTED: 2:0-9558A
3. IS THERE AN IMPACT ON WANG INSTALLED BASE? (IF NO, go to 7) YES ✓ NO
4. OF MODEL #s IMPACTED - UNIT FAILURES EXPECTED?: ALL UNITS ✓ SOME UNITS
5. HOW ARE THESE UNITS IMPACTED? (Check any that apply):
 - SAFETY
 - FCC COMPLIANCE
 - TEMPEST INTEG.
 - INTERMITTENT
 - HARD FAILURE
 - CATASTROPHIC
 - ENHANCEMENT ✓
 - RELIABILITY ✓
 - OTHER (See 7)
6. PLR DATA:
 Unit Population: 50
 last 12 mo. Calls Total Fails per Year
 12 mo. Fails Total Used
 Parts Related To ECO/PN
 Reduction by ECO/PN
 Reduced FFY
7. FIELD REQUIREMENTS:
 Level A: Information only
 Level B: TSB required ✓ YES
 Level C: FCO required
 FCO requirements Next Call Est. installation time
 Immediate Est. % of units to FCO
8. FSC REQUIREMENTS:
 Level A: Information only
 Level B: Upgrade on failure only
 Level C: Upgrade all assy's (MUB) ✓ YES
9. LOGISTICS REQUIREMENTS:
 Level A: Information only
 Level B: Future purchases
 Level C: Purge stock (FSC rework) ✓ YES
ANY OTHER INFO TO CLARIFY IMPACT: (S/N range, documentation (i.e. Product Maintenance Manual, Service Handbook, etc.), configurations, repair/test process(es), tooling, etc.)

Should write TSB stating to update PROM with PROM PART #.
This would eliminate N550 for FCO.

WER'S SIGNATURE: [Signature]
DATE: 5/15/89

(Over for definitions)
WRITE CLEARLY AND USE BLACK INK

0078P/7-14-88
1. REASON FOR CHANGE
 1. To allow 150M Tape Drive to function with CS-D.
 2. To correct "Cache Overflow" problem.

2. DESCRIPTION OF CHANGE
 One E-PROM is replaced on the 210-9558 Disk Processing Unit (DPU)
 Mother Board.

3. DOCUMENTATION AFFECTED
 N/A

4. PREREQUISITE (S)
 A. Hardware
 N/A
 B. Software
 N/A
5. INSTALLATION PROCEDURE

A. Power off. Remove AC power cord from source outlet. Refer to Section 4.2 of the Customer Engineer Product Maintenance Manual, "Wang Computer System" (741-1769), for power-down procedure.

B. Remove the 212-7113 DPU Board Assembly as follows: (Figure 1)

1. Loosen two captive screws securing DPU Board Assembly at left rear of CS-D Cabinet.

2. Grasp the top and bottom of DPU Board Assembly and gently slide out from rear of Cabinet.

FIGURE 1

1. LOOSEN TWO CAPTIVE SCREWS SECURING DPU BOARD ASSEMBLY AT LEFT REAR OF CS-D CABINET.

2. GRASP TOP AND BOTTOM OF DPU BOARD ASSEMBLY AND GENTLY SLIDE OUT OF CABINET.
C. Rework the 210-9558 DPU Mother board as follows: (Figure 2)

1. Remove the E-PROM from location L76 and replace with E-PROM (379-8500-R3) contained in Kit.

FIGURE 2: 210-9558 DPU MOTHER BOARD (COMPONENT SIDE)

REMOVE E-PROM FROM LOCATION L76
AND REPLACE WITH E-PROM (379-8500-R3)
CONTAINED IN KIT.
D. Reassemble unit by reversing Step B.

E. To complete installation of FCO, fill in applicable information on the Field Change History tag. (Part #615-3299). The tag should be mounted to right of fan at rear of Cabinet.

NOTE: The Field Change History tags can be obtained by placing a routine order through the Logistics Order Processing System.

F. Perform check-out procedure described in Section 6.

G. Document installation of this FCO by completing a Call Report or Activity Report.

6. CHECK-OUT PROCEDURE

Power up. Verify all disks. Run disk diagnostics. Observe normal operation.

7. FCO KIT PARTS LISTING

KIT #728-0387

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Item Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>729-1825</td>
<td>1</td>
<td>FCO Document 1376</td>
</tr>
<tr>
<td>379-8500-R3</td>
<td>1</td>
<td>E-PROM</td>
</tr>
</tbody>
</table>

8. FCO KIT AVAILABILITY DATE

NOTE:

When determining kit requirements, be aware that manufacturing has cut this change into this product as of October 31, 1989. Products shipped/installed after this date will contain this FCO.
8. FCO KIT AVAILABILITY DATE CONTINUED

FCO Kit #728-0387 will be available November 27, 1989 and can be obtained by placing a special order. Special orders for FCO kits are exempt from the established approval loop. They should be mailed directly to:

Logistics Order Processing
Wang Laboratories
836 North Street
Tewksbury, MA 01876

Att'n: Order Services
M/S 025-290

Dealers may obtain the FCO Kit by completing a Dealer Parts Sales form and sending it to:

Dealer Distribution Center
Wang Laboratories
836 North Street
Tewksbury, MA 01876

Att'n: Order Services
M/S 025-290

9. REMOVED PARTS DISPOSITION

Recycle removed E-PROM thru your FSC.

10. MISCELLANEOUS

N/A
1. REASON FOR CHANGE

1. To allow internal disk to tape transfers greater than 256 sectors.
2. To write-protect/enable platters through software commands.
3. To add diagnostic commands to "Flush Cache" and to "re-run power-on diagnostics".
4. To prevent unit "hang" problem during tape backup.
5. To correct "I90" errors when connected to 2275 MUX.
6. To correct "$FORMAT" problem of not writing all sectors.
7. To add byte to status command to reflect Write Protect/Enable status of drive.
8. To improve restore time of removable Winchester.
9. To correct tape drive reset to allow reset of drive only if a command is in progress.

2. DESCRIPTION OF CHANGE

One E-PROM is replaced on the 210-9558 Disk Processing Unit (DPU) Mother Board.

3. DOCUMENTATION AFFECTED

N/A

4. PREREQUISITE (S)

A. Hardware
 N/A
B. Software
 N/A
5. INSTALLATION PROCEDURE

A. Power off. Remove AC power cord from source outlet. Refer to Section 4.2 of the Customer Engineer Product Maintenance Manual, "Wang Computer System" (741-1769), for power-down procedure.

B. Remove the 212-7113 DPU Board Assembly as follows: (Figure 1)

1. Loosen two captive screws securing DPU Board Assembly at left rear of CS-D Cabinet.

2. Grasp the top and bottom of DPU Board Assembly and gently slide out from rear of Cabinet.

FIGURE 1
C. Rework the 210-9558 DPU Mother board as follows: (Figure 2)

1. Remove the E-PROM currently in location L76 and replace with 379-8500-R2 PROM contained in Kit.

FIGURE 2: 210-9558 DPU MOTHER BOARD (COMPONENT SIDE)
D. Reassemble unit by reversing Step B.

E. To complete installation of FCO, fill in applicable information on the Field Change History tag. (Part #615-3299). The tag should be mounted to right of fan at rear of Cabinet.

NOTE: The Field Change History tags can be obtained by placing a routine order through the Logistics Order Processing System.

F. Perform check-out procedure described in Section 6.

G. Document installation of this FCO by completing a Call Report or Activity Report.

6. CHECK-OUT PROCEDURE

Power up. Verify all disks. Run disk diagnostics. Observe normal operation.

7. FCO KIT PARTS LISTING

KIT #728-0361

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Item Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>729-1800</td>
<td>1</td>
<td>FCO Document 1351</td>
</tr>
<tr>
<td>379-8500-R2</td>
<td>1</td>
<td>E-PROM</td>
</tr>
</tbody>
</table>

8. FCO KIT AVAILABILITY DATE

NOTE:

When determining kit requirements, be aware that manufacturing has cut this change into this product as of June 13, 1989. Products shipped/installed after this date will contain this FCO.
8. **FCO KIT AVAILABILITY DATE CONTINUED)**

FCO Kit #728-0361 will be available July 14, 1989 and can be obtained by placing a special order. Special orders for FCO kits are exempt from the established approval loop. They should be mailed directly to:

Logistics Order Processing
Wang Laboratories
836 North Street
Tewksbury, MA 01876

Att’n: Order Services
M/S 025-290

Dealers may obtain the FCO Kit by completing a Dealer Parts Sales form and sending it to:

Dealer Distribution Center
Wang Laboratories
836 North Street
Tewksbury, MA 01876

Att’n: Order Services
M/S 025-290

9. **REMOVED PARTS DISPOSITION**

Recycle removed E-PROM thru your FSC.

10. **MISCELLANEOUS**

N/A
TECHNICAL SERVICE BULLETIN
SECTION: Hardware General

NUMBER: HWT 9449 REPLACES: __________ DATE: 05/22/90 PAGE 1 OF 2
MATRIX ID. 4103 PRODUCTRELEASE# 2200 CS-D/N

TITLE: DPU Disk Port & Jumper Information/Part Number Correction

PURPOSE:
To inform the field of the purpose of the disk/mux port and jumper on the
212-7113 DPU Board which is not documented and to provide the field with
the correct part numbers for the Power Supply & On/Off switch.

EXPLANATION:
Every CS-D CPU comes with a 212-7113 DPU Board used to control all
internal drives. The DPU Board consists of a 210-9558 Motherboard which
has two I/O connectors and a 210-9559 Daughter Board. The top connector
is a standard system printer port. The bottom connector is a disk/mux
port. The disk/mux port is used to allow access to the internal CS-D
drives by other CPUs. This port is activated by the MUX/Bus jumper
located on the 210-9558 motherboard up next to the rail between the 2 I/O
connectors.

Normally this jumper will be in the BUS position. This causes the
disk/mux port to be inactive allowing only the internal CPU to have access
to its drives. When the jumper is moved to the MUX position all access
must be through the disk/mux port including access by the CS-D CPU itself.

In the MUX position, the drives and DPU Board should be thought of as a
separate device much like the DS Cabinet or the 2275. The disk port on
the 212-7113 DPU Board is the I/O connector similar to the I/O connectors
on the back of the DS & 2275. Any CPU requiring access to these drives
must now have a disk controller cabled to this port. Normally when in the
MUX position a 2275MUX Master Board, 210-8824, would be installed in the
I/O section with a cable from its disk port to the disk/mux port of the
DPU Board. This connection allows the CS-D to access the internal CS-D
drives. Other CPU’s (up to 16 can be mux’d) using 210-7715 boards can be
cabled (100’ max) to the 2275MUX Master CPU ports allowing them access to
the internal CS-D drives. Of course a standard disk controller in any CPU
could be cabled directly to this port, but that would limit access to only
that CPU. When used in the MUX position, the disk controller in the CPU
accessing the drives determines the device address via the device address
switch bank on that board. This overrides the device address set on the
CS-D DPU Board. This is the same way it is done on all similar 2200 disk
connections. Switch settings are discussed on page 2.
TECHNICAL SERVICE BULLETIN
SECTION: Software General

NUMBER: HWT 9449
REPLACES: __________
DATE: 08/06/90
MATRIX ID: 4103
PRODUCT/RELEASE#: 2200 CS-D/N

TITLE: DPU Disk Port & Jumper Information/Part Number Correction

EXPLANATION (cont'):
Switch settings for the CS-D DPU Board can be found on a sticker on the right side panel of the CS-D cabinet. These switch settings are correct. Appendix A of the CS Maintenance Manual, 741-1769-2, covers the CS-D & CS-N CPU's and on page A-38 incorrectly shows the drive type switch settings. What is shown as ON should be OFF and vice versa. There is also added confusion as the sticker & manual do not agree on the switch labeling and the male connectors on the sticker do not match the board. Use the side panel for sw settings but beware, labeling may not match. To access, remove the top cover by removing the 2 screws in back. The side panel can then be removed by sliding it up. The correct sw settings are:

210-9558 Motherboard
SW 1 - Winc Drive Type - between L8 & L13 near bottom of board
 No Winc = All OFF
 10 Meg Rem Winc = 5 ON only
 10 Meg Winc = 6 ON only
 20 Meg Winc = 5,6 ON only
 32 Meg Quantum Q540 = 7 ON only
 64 Meg Winc = 5,7 ON only
 140 Meg Maxtor = 6,7 ON only
 32/42 Mq Micropolis = 5,6,7 ON
 112 Meg Maxtor = 8 ON only

SW 2 - Printer Address - next to L69 just above connector J5
 215 = 1,3,5 ON only
 216 = 2,3,5 ON only
 217 = 1,2,3,5 ON only

SW 3 - Drive/s Device Address - between L76 & L77 at top of board
 310 = 5 ON only
 320 = 6 ON only
 330 = 5&6 ON only

210-9559 Daughter Board
SW 1 - Factory Use Only - 8 bank sw at top of board ALL OFF
SW 2 - Floppy/Tape Switch - 4 bank switch at bottom of board
 1 OFF = 320 Kb Floppy
 2 OFF = No Tape
 3,4 = OFF (not used)

ADDITIONAL INFORMATION:
Also in Appendix A of the CS Manual, 741-1769-2, on pages A-54 and A-55 the AC On/Off Switch and the CS-D/N SPS-255 Power Supply have incorrect part numbers. The part numbers shown are for the CS. The On/Off switch is not physically compatible and although both CPU's use the same base Power Supply the harness is different. The correct part numbers are:

CS-D/N On/Off Sw 325-0105
CS-D/N SPS-255 Power Supply 270-0809-1

GROUP: 2200 Product Support
MAIL STOP: 001-330

COMPANY CONFIDENTIAL

WANG Laboratories, Inc.
Mike: Did you write TSB HWT 9449 about the 2200 CS-D DPU switch settings? We have some problems with the switch setting info in the TSB. SW Bank 1 and 3 seem reversed and page A-38 in 741-1769-3 appear to have the correct info. I don't have a CPU label to look at and I don't have page A-38 from 741-1769-2.
TECHNICAL SERVICE BULLETIN
SECTION: Hardware Technical

NUMBER: HWT 9192 REPLACES: _______ DATE: 06/06/89 PAGE 1 OF 1

MATRIX ID. 3107 PRODUCT/RELEASE# 2200 DS/CS-D

TITLE: New CDC (Imprimus) Magnetic Peripherals 42 MB HH Winc Disk Drive

PURPOSE:
To provide the field with the necessary information to install this drive properly in the 2200 DS Disk Cabinet or in the CS-D CPU.

EXPLANATION:
A new 42 Meg drive from CDC (Imprimus) Magnetic Peripherals (MN 94205-53) is now being shipped to the field as a replacement for the 32 Meg full height drives (Quantum Q540 and the Micropolis 1323). Although the drive has 42 Meg, it is being used as a 32 Meg (2 16 Meg addresses with 65024 sectors). The following information should allow successful installation:

Drive Type Switch Settings:

<table>
<thead>
<tr>
<th>Drive Type</th>
<th>Switch Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS 210-8826A DPU Brd, Sw Bk 1 &/or 2</td>
<td></td>
</tr>
<tr>
<td>CS-D 212-7113 DPU Brd, Sw Bk 3</td>
<td></td>
</tr>
</tbody>
</table>

- 8 Off, 7, 6, 5 On for DR1 or DR3
- 4 Off, 3, 2, 1 On for DR2 or DR4

NOTE: The 32 Meg Quantum Q540 has different switch settings which will not work with the CDC (Imprimus) Magnetic Peripherals 42 Meg drive.

Jumpers: Drive 1 Select only in all cases. A series of 7 jumpers are located behind the A & B cable connectors. The Drive Select 1 jumper is on the end, B Cable side, farthest from the power plug.

Terminator: IN for CS-D or DR1 in DS. OUT for DR2, DR3, & DR4 in DS. DR1/DR2/DR3/DR4 (Drive Select 1/2/3/4) refer to the connector position on the A cable. The Terminator is located behind A Cable Connector.

Addressing: 2 addresses, each with sectors 0-65023.

Part Numbers:

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC Magnetic Peripherals MN 94205-53 Half Height 42 Meg</td>
<td>725-3493</td>
</tr>
<tr>
<td>Micropolis 1323 Full Height 32 Meg</td>
<td>725-0254</td>
</tr>
<tr>
<td>Quantum Q540 Full Height 32 Meg</td>
<td>725-0144</td>
</tr>
</tbody>
</table>

Once installed properly, it would be transparent to the user which winchester was being used.

GROUP: VS On-Line Support MAIL STOP: 001-330
Two incorrect part #'s have been identified by the field. Addendum A to the CS Product Maintenance Manual, p/n 741-1769-2 should be corrected. On page A-54 the AC Power-On/Off Switch is listed as part # 325-0096. That # is correct for the CS but physically cannot be used in a CS-D/N. The p/n for the Power Supply is also incorrect on page A-55. From what the field has told me the harness is different. The part # given is 270-0986 which is correct for the CS Power Supply. Both the CS & CS-D/N use the SPS-255 P/S but as mentioned with different harnesses. The correct part #'s are as follows:

- item 8 AC Power-On/Off Switch 325-0105 page A-54
- item 13 SPS-255 DC Power Supply 270-0890-1 page A-55

The corrected part #'s were taken from the Assembly Procedure, p/n 279-0873, used by Mfg to build the CS-D/N Cabinet. A TSB will be written by me to inform the field. Please call me if you have any questions.

Regards,
Mike Bahia
Product Support
60256/60105
Subject: CS-N Motherboards

Mike:

Has anyone reported problems with the CS-N motherboard (210-9560) having a power on reset problem? We have run into 2 now (1 original and 1 P-1 part) that have had the same symptom, the symptom varies a little bit but it is basically the same. You can not consistently "Mount System Platter Press Reset" sometimes just a cursor, other times various PECM, PEDM, BECM errors this is just at power up, once you get the CS-N up it works fine. Problem occurs with MXE's, MXD's, single or multiple other kinds of controllers loaded multiple CPU cards multiple power supplies, The only thing that I found in common with the two motherboards is that they have a manufacturing date code of 04-89 on both, the good replacement had a date code of 08-89.

Thanks, Alex Popp (ATS Carolina's Area 919-668-3627)

Alex,

We have had some similar type symptoms reported in the past but have never been able to identify the motherboard as a problem. In the other cases, there were problems sitting the boards. If the boards were just pushed in as opposed to visually lining up the contacts there were power up problems intermittently. Questions were also brought up concerning some connectors being too loose & in fact we had a motherboard sent in. We were unable though to find any problem with the motherboard and although some connectors were a bit looser than others, they were not found to be a problem.

My suggestion would be to visually line up the contacts on the board with those in the connectors & to verify each board is fully seated. Verify the 2 adjustable voltages (+5 & +12V) are within + or - .05 volts under full load. Be aware any board & or the PS could cause these same symptoms. If the problem can be duplicated, start with a minimum hardware config, CPU brd & 1 MXE or MXD is all that is needed for initial message. If I can be of any help at all do not hesitate to call or Wang Office.

Regards,
Mike Bahia
Product Support
508-656-0256
PROBLEM SUMMARY: BAHIA MICHAEL E DATE: 11/28/89 TIME: 10:09
CS-xD intermittently failing in Europe on power up. Instead of 'Mount System Platter' message get PECM or BEDM error. This is happening at approximately 20% of sites. In Germany where the power cord can be plugged in backwards reversing polarity, polarity does not seem to matter. The motherboards are updated with the jumper from R7 to D1. A circumvention has been found. By adding a 47 uf cap on the Power On Reset signal to lengthen the Reset pulse, the problem is eliminated. The problem seems most common with the 128K & 512K boards. Believe this change should be verified & if good incorporated. Esalation C800000597 has been open since July on this problem. Hard copy of call given to Mike Riley.

RESOLUTION TEXT: RILEY J MICHAEL DATE: 10/29/91 TIME: 17:32
This problem is fixed JMR
ASSIGNED: BAHIA MICHAEL E DATE: 10/03/91 TIME: 13:59
ECO 59333 has been written and approved. It replaces LI (74LS03) & L2
(74LS74) with 74S03 & 74S74 respectively to correct this power up PECM
problem. Field has accepted flix. This call can be closed.

ASSIGNED: BAHIA MICHAEL E DATE: 06/26/91 TIME: 14:15
Field is still waiting for this ECO. Please followup.

ASSIGNED: BAHIA MICHAEL E DATE: 05/30/91 TIME: 13:33
Still waiting on ECO. When will it be written.

ASSIGNED: BAHIA MICHAEL E DATE: 04/04/91 TIME: 16:53
Still waiting for a final solution. When will ECO be written?

ASSIGNED: BAHIA MICHAEL E DATE: 03/22/91 TIME: 10:22
When will ECO be written? Field is waiting. Please followup.

ASSIGNED: BAHIA MICHAEL E DATE: 02/11/91 TIME: 16:05
Has ECO been written yet? We need to get this done.

ASSIGNED: BAHIA MICHAEL E DATE: 11/27/90 TIME: 17:26
Germany called me today on this problem. Need to know what is happening &
when we can have fix certified & an ECO written. Call is 16 months old.
Need to put this to bed.

ASSIGNED: BAHIA MICHAEL E DATE: 10/26/90 TIME: 09:35
Field has reported additional info on this problem which I brought to your
attention. There are 2 IC's on the motherbrd, a 74LS03 & a 74LS74. The CE
has found if he replaces those ICs with 74S03 & 74S74 he can eliminate the
problem. These ICs have a higher output. This problem is aggravated by heav
y I/O loading. In other words, the more I/O controllers installed the more l
likely the problem. Let's please try to get this problem resolved while we
have the Taiwan R&D here.

ASSIGNED: BAHIA MICHAEL E DATE: 08/27/90 TIME: 16:25
Need R&D to followup on this.

ASSIGNED: FINDT ERWIN DATE: 03/26/90 TIME: 08:34
Could I have a status please?

ASSIGNED: BAHIA MICHAEL E DATE: 03/13/90 TIME: 09:00
Please update.

ASSIGNED: BAHIA MICHAEL E DATE: 01/22/90 TIME: 08:35
Waiting for update.

ASSIGNED: BAHIA MICHAEL E DATE: 12/20/89 TIME: 17:01
Do not understand last update. Do you mean the problem has been forwarded to
MIS to correct the problem?

ASSIGNED: MARTIN KIMBERLEE A DATE: 12/19/89 TIME: 15:34
ASSIGNED: MARTIN KIMBERLEE A DATE: 12/19/89 TIME: 15:34
THIS PROBLEM HAS BEEN UPDATED BY MIS, TO CORRECT DATA INTEGRITY ISSUES.

ASSIGNED: BAHIA MICHAEL E DATE: 12/13/89 TIME: 14:17
Why is no one responding? What needs to be done for a response?

ASSIGNED: BAHIA MICHAEL E DATE: 12/04/89 TIME: 15:28
WHAT IS HAPPENING ON THIS CALL. WAITING FOR SOMEONE TO PICKUP.

ASSIGNED: BAHIA MICHAEL E DATE: 11/28/89 TIME: 10:09
Use CS-D w/ preferrably a 128K or 512K board on a 220vac, 50 Hz power & repeatedly power up.
PROBLEM SUMMARY: FINDT ERWIN DATE: 07/19/89 TIME: 09:58
The new CS-XD fails sporadically during power-up-sequence. Instead of MOUNT
SYSTEM PLATTER PECM or BEDM comes on the screen. But the system will start
without any problems if a 47 uf capacitor will be added to the power-on-reset
circuit on the motherboard. This modification makes the reset pulse longer.
A wire between the cathode of a diode and a resistor is already installed.
The start-up-problem occurs mostly with 128KB and 512KB Boards.

RESOLUTION TEXT: BAHIA MICHAEL E DATE: 10/03/91 TIME: 14:44
HC160. Intermittent PECM errors on power up with 220VAC CS-D resolved with
ECO 59333 signed off in September.
ASSIGNED: BAHIA MICHAEL E DATE: 10/03/91 TIME: 13:52
Unlinking call to enable closing as agreed.

ASSIGNED: FINDT ERWIN DATE: 10/02/91 TIME: 07:44
Okay, you can close this PTR now.

ASSIGNED: BAHIA MICHAEL E DATE: 09/26/91 TIME: 09:04
Please update. ECO is done. Can we close this call?

ASSIGNED: BAHIA MICHAEL E DATE: 09/16/91 TIME: 11:52
ECO59333 has been signed off & finalized to resolve this problem. Can this call be closed?

ASSIGNED: BAHIA MICHAEL E DATE: 08/22/91 TIME: 09:17
ECO 59333 has been written against this problem & is in the review stage. It calls for the following changes on the CS-D motherboard:
- change L1 (376-0224) 74LS03 to (376-0556) 74S03
- change L2 (376-0155) 74LS74 to (376-0202) 74S74
If the review goes smoothly ECO should be in place next month.

ASSIGNED: BAHIA MICHAEL E DATE: 08/07/91 TIME: 13:50
The ECO has been written up and presumably given to the ECO group. If there are no major issues we may have an actual ECO in a month or 2.

ASSIGNED: BAHIA MICHAEL E DATE: 06/26/91 TIME: 11:34
Mike Riley will be writing this ECO. Have repeatedly reminded him & will continue to do so. Might suggest someone call Mike at 508-967-0524. He has been very busy but possibly hearing this request from someone new may help. Best time to call him would be 8:15 to 8:30 AM our time, or send him a Wang Office.

ASSIGNED: FINDT ERWIN DATE: 06/26/91 TIME: 04:53
I think that now enough time was lost and we should have the ECO very soon. Please update with the really status...

ASSIGNED: CAGIRGAN TURAN DATE: 06/03/91 TIME: 13:49
we appreciate it!

ASSIGNED: BAHIA MICHAEL E DATE: 05/30/91 TIME: 13:22
Management is currently trying to clean up some of these old calls so we may have some action very shortly.

ASSIGNED: BAHIA MICHAEL E DATE: 03/11/91 TIME: 16:57
ECO still has not been written. Reminded MR field is waiting.

ASSIGNED: BAHIA MICHAEL E DATE: 02/11/91 TIME: 16:55
ASSIGNED: BAHIA MICHAEL E DATE: 02/11/91 TIME: 16:55
Readdressed this issue w/ M Riley on 2/8 again emphasizing need to follow thru so we can get this call closed.

ASSIGNED: BAHIA MICHAEL E DATE: 01/22/91 TIME: 16:37
Waiting on M Riley to write ECO. He has copy of call & is aware of all your concerns.

ASSIGNED: BAHIA MICHAEL E DATE: 12/21/90 TIME: 18:28
Have made all your comments known to R&D.

ASSIGNED: BAHIA MICHAEL E DATE: 12/17/90 TIME: 11:56
Will forward your comments to Mike Riley who will be writing the ECO.

ASSIGNED: FINDT ERWIN DATE: 12/17/90 TIME: 07:17
I think this problem must be traced to find out what the really technical solution is and we should implement this solution to all boards on stock and on 'problem only' base in the field.

ASSIGNED: BAHIA MICHAEL E DATE: 12/14/90 TIME: 15:25
The reasoning right now is there is a good chance the existing motherboard in the CS-D will become obsolete, replaced by the motherboard for the 2200 Turbo assuming the Turbo becomes reality. New chips are being used on this motherboard to prevent this type problem. Where the old motherboard should become obsolete, does it make sense to go to the added expense of the chips which in most cases will need to be done in the repair cycle or replace the capacitor which allows an FCO to be written & an easy field fix.
Do you have specific reasons for not using the capacitor?

ASSIGNED: FINDT ERWIN DATE: 12/13/90 TIME: 09:16
I spoke to John Baxi. He thinks that replacing the IC's would be the right step.

ASSIGNED: BAHIA MICHAEL E DATE: 12/07/90 TIME: 19:01
Mike Riley has told me he will test the 47 ufd cap on 110VAC unit & if no problems will write the ECO.

ASSIGNED: BAHIA MICHAEL E DATE: 12/06/90 TIME: 12:49
Update acknowledged. Will get back to you as soon as possible with the decision.

ASSIGNED: FINDT ERWIN DATE: 12/06/90 TIME: 09:07
Because I don't have a schematic of the reset circuits I cannot say what's the really technical solution. I feel that the chips will have more advantage because the problem is related to the number of I/Os but I'm agree that the exchange of the capacitor is more easier. For the right decision
ASSIGNED: FINDT ERWIN DATE: 12/06/90 TIME: 09:07
I think it's necessary to monitor the reset pulse with an oscilloscope.

ASSIGNED: BAHIA MICHAEL E DATE: 12/05/90 TIME: 11:36
Pressing very hard to get an answer on this as to which way we will go. New motherboard for the 386 Turbo will have slower chips to prevent this problem, but not the same ones that were suggested in this call. We are leaning to the capacitor in theory as this would be easier to implement in the field. Is there any reason to replace the chips instead of the capacitor, or will the capacitor fix be just as reliable? Have been demanding we decide & test the fix to be used this week so that we can start the ECO. Again please let me know if you feel there is an advantage with either of the 2 fixes, the cap or the 2 chips.

We are expecting an answer on this shortly. We want to have this fix implemented on a new motherboard needed with the new 386 Turbo now being readied for beta testing. We have to have an answer to complete documentation needed to build the board. Sorry for the delay but I expect to see approval in the next few days which will then allow us to write the ECO.

ASSIGNED: CAGIRGAN TURAN DATE: 11/28/90 TIME: 05:23
Waiting for resolution since over 1 1/2 year.

ASSIGNED: BAHIA MICHAEL E DATE: 11/27/90 TIME: 18:06
Have asked for updated status on this call. MR to talk with Taiwan R&D to find out exactly where we stand.

ASSIGNED: BAHIA MICHAEL E DATE: 11/21/90 TIME: 15:46
Awaiting feedback on current status.

ASSIGNED: BAHIA MICHAEL E DATE: 11/13/90 TIME: 18:32
Taiwan R&D has copy of call & should be looking into this problem now. Will keep you posted.

ASSIGNED: BAHIA MICHAEL E DATE: 10/31/90 TIME: 13:51
Hardware R&D from Taiwan is now temporarily here in Lowell & we should be able to get this problem resolved. Will keep after it.

ASSIGNED: BAHIA MICHAEL E DATE: 10/26/90 TIME: 10:14
Taiwan currently here in Lowell. Will get new status if any & if not try to get this thing going.

ASSIGNED: BAHIA MICHAEL E DATE: 10/08/90 TIME: 10:11
Thanks for this new info. Will update Taiwan on this & ask for a status.
ASSIGNED: FINDT ERWIN DATE: 10/05/90 TIME: 10:55
On the motherboard there are two IC's: 74LS03 and 74LS74. The CE found out
that he can fix this problem if he will replace the 'LS' chips by 'S' chips.
The 'S' chips do have a higher fan out so the 74S03 can drive more I/O
boards than a 74LS03. The problem is related to the number of I/O's installed
so the failure rate is higher if more I/O's are installed. Maybe this fix
is a real fix for that RESET problem.

ASSIGNED: BAHIA MICHAEL E DATE: 10/05/90 TIME: 08:44
Still waiting for feedback from Taiwan.

ASSIGNED: BAHIA MICHAEL E DATE: 09/10/90 TIME: 15:30
Mike Riley has asked Taiwan to look into this matter. Expect feedback from
Taiwan on this problem in near future.

ASSIGNED: BAHIA MICHAEL E DATE: 08/27/90 TIME: 17:01
still waiting on R&D to test.

ASSIGNED: BAHIA MICHAEL E DATE: 07/13/90 TIME: 11:28
Have again reminded R&D this needs to be addressed.

ASSIGNED: BAHIA MICHAEL E DATE: 06/22/90 TIME: 12:22
thing new to report here.

ASSIGNED: BAHIA MICHAEL E DATE: 06/07/90 TIME: 15:44
Still waiting for R&D to test out fix.

ASSIGNED: BAHIA MICHAEL E DATE: 05/25/90 TIME: 10:17
Still waiting on R&D. On vacation next week.

ASSIGNED: BAHIA MICHAEL E DATE: 05/16/90 TIME: 11:03
Unable to update priority as requested by field. Can only update status
comments. May be because call is linked. Have call into PTR group on this.

ASSIGNED: BAHIA MICHAEL E DATE: 05/10/90 TIME: 09:22
No change. Currently on back burner because of more critical issues & lack
of manpower but will again remind R&D we are waiting for follow-up.

ASSIGNED: BAHIA MICHAEL E DATE: 04/18/90 TIME: 11:32
No change.

ASSIGNED: BAHIA MICHAEL E DATE: 04/11/90 TIME: 15:04
Waiting on R&D.

ASSIGNED: BAHIA MICHAEL E DATE: 03/27/90 TIME: 12:31
Call was linked back on 1/4.
ASSIGNED: BAHIA MICHAEL E DATE: 03/27/90 TIME: 12:25
Have reminded R&D this needs to be addressed in the lab.

ASSIGNED: BAHIA MICHAEL E DATE: 03/13/90 TIME: 10:01
Waiting on R&D.

ASSIGNED: FINDT ERWIN DATE: 03/12/90 TIME: 08:57
Please update that call and link it to PTR P200012877. Thanks!

ASSIGNED: BAHIA MICHAEL E DATE: 02/20/90 TIME: 16:42

ASSIGNED: BAHIA MICHAEL E DATE: 02/07/90 TIME: 18:07
Readdressed this problem last Fri w/ R&D. Still waiting for followup.

ASSIGNED: BAHIA MICHAEL E DATE: 01/24/90. TIME: 17:11
Nothing new here. Still waiting for R&D to follow up.

ASSIGNED: BAHIA MICHAEL E DATE: 01/04/90 TIME: 17:45
PTR people have resolved problem preventing this call from being linked.
Linked call to P200012877. Have requested update from R&D.

ASSIGNED: BAHIA MICHAEL E DATE: 12/15/89 TIME: 09:31
PTR group thinks the inability to LINK is a s/w bug w/ the s/w being used
back when this call was open. They will fix it which should allow me to do t
he linking.

ASSIGNED: BAHIA MICHAEL E DATE: 12/14/89 TIME: 17:56
Joe is no longer with the company. I will talk w/ the PTR people & try to
get it straightened out.

ASSIGNED: FINDT ERWIN DATE: 12/13/89 TIME: 10:32
I'm unable to do anything. The person assigned is Joseph Scaglione in your
RDB 8760. Please talk to Joseph for sending back!

ASSIGNED: BAHIA MICHAEL E DATE: 12/08/89 TIME: 17:18
Unable to send or de-escalate as I am not the current owner. Please try to
link on your own.

ASSIGNED: BAHIA MICHAEL E DATE: 12/08/89 TIME: 17:15
Unable to link as I am not shown as the current owner. Sending back to field
per field request for linking.

ASSIGNED: FINDT ERWIN DATE: 12/07/89 TIME: 03:51
Please link that call to the product problem or send it back to me for
linking.
ASSIGNED: BAHIA MICHAEL E DATE: 11/28/89 TIME: 11:42
Product Problem call P200012877 opened & sent to R&D on this problem
requesting 47 uF Cap be tested & verified as good fix & if so incorporated.

ASSIGNED: FINDT ERWIN DATE: 11/27/89 TIME: 10:20
The power on reset problem appears on about 20% of CS-D installations.
It doesn't seem to be related to the polarity of the 220 VAC power.

ASSIGNED: BAHIA MICHAEL E DATE: 11/20/89 TIME: 11:56
STILL WAITING FEEDBACK FROM MY 9/21 UPDATE. PLEASE FOLLOWUP. JOE S IS
SHOWN AS ASSIGNED ALTHOUGH I AM ACTUALLY ASSIGNED. MY PTR GURU TOLD ME THE
CALL APPEARED TO BE TIED UP ON YOUR END, HENCE MY MESSAGE.

ASSIGNED: FINDT ERWIN DATE: 11/20/89 TIME: 04:49
To: Michael Bahia (RDB 8759).
As you can see in the first screen the owner is Joseph Scaglione in RDB 8760
of TSO. G2130 is the customer RDB.

ASSIGNED: BAHIA MICHAEL E DATE: 11/16/89 TIME: 10:31
PTR IS PREVENTING ME FROM SENDING THIS CALL TO R&D AS I AM NOT THE OWNER.
CALL APPEARS TO BE SITTING IN RDB G2130. RDB G2130, PLEASE ACCEPT CALL &
ESCALATE OR SEND TO MY RDB, 8759, SO IT CAN BE FORWARDED TO R&D.

ASSIGNED: BAHIA MICHAEL E DATE: 11/16/89 TIME: 09:36
SENDING CALL TO R&D FOR GREATER EXPOSURE.

ASSIGNED: BAHIA MICHAEL E DATE: 10/23/89 TIME: 09:22
talked w/ wh. MR at HO to look into prob.

ASSIGNED: BAHIA MICHAEL E DATE: 10/16/89 TIME: 11:06
UPDATE ACKNOWLEDGED. SENT FAX TO WH FOR UPDATE FROM R&D.

ASSIGNED: FINDT ERWIN DATE: 10/10/89 TIME: 03:40
Still no feedback from the field engineer. Will update asap.

ASSIGNED: BAHIA MICHAEL E DATE: 10/06/89 TIME: 08:35
HAVE YOU RECEIVED ANY FEEDBACK FROM THE SITE CE YET. PLEASE UPDATE.

ASSIGNED: BAHIA MICHAEL E DATE: 09/29/89 TIME: 16:27
UPDATE ACKNOWLEDGED.

ASSIGNED: FINDT ERWIN DATE: 09/26/89 TIME: 04:25
About your requested Info I'm waiting for response from the service office.

ASSIGNED: BAHIA MICHAEL E DATE: 09/25/89 TIME: 10:40
SENT COPY OF CALL TO R&D (SC) TO EVALUATE FOR POSSIBLE ECO. MIKEB
ASSIGNED: BAHIA MICHAEL E DATE: 09/21/89 TIME: 16:46
LAST YEAR A PROBLEM WAS IDENTIFIED IN GERMANY W/ THEIR ELECTRIC POWER OUTLETS
WHERE THE POWER PLUG COULD BE PLUGGED IN 2 DIFFERENT WAYS. THE SWITCHER P/S
HAS A PROBLEM W/ THIS BECAUSE IT REVERSES POLARITY & THE POWER SUPPLY CAN
ONLY HANDLE POLARITY IN 1 DIRECTION. WHICH WAY IT MUST BE I'M UNSURE OF. IN
SOME AREAS NEUTRAL IS TIED TO GROUND & IF SO REVERSING THE POWER CORD COULD
CAUSE DAMAGE. ARE YOU AWARE OF THIS PROBLEM & COULD THIS BE A FACTOR W/ THIS
PROBLEM. IT IS VERY DIFFICULT TO DUPLICATE & AS OF NOW R&D HAS BEEN UNABLE T
O REPRODUCE YOUR PROB. WHAT PERCENTAGE OF THESE CPU'S HAVE THIS SPECIFIC
PROB & HOW OFTEN DO MACHINES THAT ARE FAILING FAIL. MIKE B

ASSIGNED: SCAGLIONE JOSEPH R DATE: 09/19/89 TIME: 10:33
called mike riley for an update joe

ASSIGNED: SCAGLIONE JOSEPH R DATE: 09/06/89 TIME: 10:32
talked w/ mike riley.
he has tried to duplicate the prob. but can't.
R & D will set up a 220v system and then try and dupe. the prob.
 joe

ASSIGNED: FINDT ERWIN DATE: 08/28/89 TIME: 08:40
As I sad in my last update the motherboard is already updated with a jumper
but it doesn't solve the problem in all cases and the problem is still there.

ASSIGNED: BAHIA MICHAEL E DATE: 08/17/89 TIME: 16:01
Did not get your complete update from 7/31. This customer, ALEC GMBH does
have the motherboard update. Does this customer still have the power up prob.
Have not heard back from R&D. MikeB

ASSIGNED: SCAGLIONE JOSEPH R DATE: 08/01/89 TIME: 10:38
THIS CALL WAS PRINTED OUT ON 7-31-89: MIKE RILEY FROM R & D TOOK IT
BACK TO R AND D ENGINEERING FOR REVIEW. JOE S

ASSIGNED: FINDT ERWIN DATE: 07/31/89 TIME: 03:38
Hi Joe. This jumper is a known modification for a power on reset problem.
It's already installed on that motherboard. But it seems to be it will not
solve all problems because we have the problem still by other customers. efi

ASSIGNED: SCAGLIONE JOSEPH R DATE: 07/24/89 TIME: 11:33
HI! THIS IS JOE SCAGLIONE ON LINE PROD. SUPPORT/ 2200/ MIKE WILL BE ON
VACATION FOR THE NEXT 3 WEEKS. HERE IS SOME INFO. PLEASE CHECK THIS CUST
MOTHER BOARD FOR THE FOLLOWING JUMPER AND KEEP ME INFORMED.
SOME EARLY MOTHER BOARDS HAD A RUN MISSING FROM THE ART WORK
THERE SHOULD BE A SHORT BETWEEN RESISTOR R7 (END CLOSEST TO J21) TO D1
(END CLOSEST TO J21).
IF YOU DO NOT MEASURE A SHORT BETWEEN THESE TWO POINTS ADD A JUMPER.

ASSIGNED: SCAGLIONE JOSEPH R DATE: 07/24/89 TIME: 11:33
THANK YOU JOE

ASSIGNED: BAHIA MICHAEL E DATE: 07/20/89 TIME: 11:00
WILL PASS INFO ONTO R&D & GET BACK TO YOU AS SOON AS POSSIBLE. THANKS. HAVE
NOT SEEN PROBLEM PERSONALLY BUT THIS LOOKS LIKE IT COULD BE VERY HELPFUL.
MIKEB

ASSIGNED: DATE: 07/20/89 TIME: 03:36
To RDB 8753....Looks as if Germany have found a possible hardware bug. Should
R&D look at this one.
CUSTOMER ENGINEERING

PUBLICATION UPDATE BULLETIN

DATE: 3/26/85
This PUB: 729-0584-A1
Class Code: 4103
Base Document: 729-0584-A
Previous Notice(s):

REASON FOR CHANGE:

This PUB is being written to describe the 2200 MVP-128 and 512 Systems.

INSTRUCTIONS:

Remove pages and insert attached pages as follows:

<table>
<thead>
<tr>
<th>REMOVE</th>
<th>INSERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Title Page/Preface</td>
<td>Title Page/Preface</td>
</tr>
<tr>
<td>2. ix/x</td>
<td>ix/x</td>
</tr>
<tr>
<td>3. Nothing</td>
<td>Appendix G</td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>

This page is to be used as a permanent record of revisions; place it directly following the title page.
COMPANY PROPRIETARY STATEMENT

This document is the property of Wang Laboratories, Inc. All information contained herein is considered Company Proprietary, and its use is restricted solely to assisting you in servicing Wang products. Neither this document nor its contents may be disclosed, copied, revealed, or used in whole or in part for any other purpose without the prior written permission of Wang Laboratories, Inc. This document must be returned upon request of Wang Laboratories, Inc.
2200 Computer System

Models:
MVP
MVP-128
MVP-512

COMPANY PROPRIETARY STATEMENT

This document is the property of Wang Laboratories, Inc. All information contained herein is considered Company Proprietary, and its use is restricted solely to assisting you in servicing Wang products. Neither this document nor its contents may be disclosed, copied, revealed, or used in whole or in part for any other purpose without the prior written permission of Wang Laboratories, Inc. This document must be returned upon request of Wang Laboratories, Inc.

Customer Engineering
Product Maintenance Manual 741-0584-A1
PREFACE

This document is the Product Maintenance Manual (PMM) for the 2200 MVP, MVP-128, and MVP-512. The scope of this manual reflects the type of maintenance philosophy selected for this product (swap unit, printed circuit assembly, chip level or any combination thereof).

The purpose of this manual is to provide the Wang-trained Customer Engineer (CE) with instructions to operate, troubleshoot and repair the 2200 MVP, MVP-128, and MVP-512. It will be updated on a regular schedule.

Edition (Third)

This edition of the 2200 MVP-128 and MVP-512 Product Maintenance Manual (PMM) obsoletes document no. 729-0584-A. The material in this document may only be used for the purpose stated in the Preface. Updates and/or changes to this document will be published as Publications Update Bulletins (PUB's) or subsequent editions.

Copyright WANG Labs., Inc. 1984, 1985

G-11
5.6 ASSIGNMENT, ATTACHMENT, AND FOREGROUND/BACKGROUND PROCESSING ... 5-9
 5.6.1 ASSIGNMENT ... 5-9
 5.6.2 ATTACHMENT ... 5-10
5.7 "RELEASING" A TERMINAL 5-11
5.8 "RELEASING" A PARTITION 5-13
5.9 "GLOBAL PARTITIONS 5-15
5.10 "UNIVERSAL GLOBAL" PARTITIONS 5-15
5.11 USER PROGRAM EXECUTION 5-16
 5.11.1 GENERAL .. 5-16
 5.11.2 SUBROUTINES .. 5-16
 5.11.3 THE TEXT POINTER, THE POINTER TABLE,
 AND INTERNAL STACKS 5-17
5.12 ALLOCATION AND HANDLING OF PERIPHERALS 5-20
 5.12.1 GENERAL .. 5-20
 5.12.2 BACKGROUND PRINTING 5-23

SECTION 6 DIAGNOSTICS

6.1 GENERAL INTRODUCTION 6-1
6.2 MICROCODE DIAGNOSTICS 6-1
 6.2.1 LOADING SYSTEM FILES 6-1
 6.2.1.1 BOOTSTRAP SPECIAL FUNCTION KEYS 6-2
 6.2.2 MICROCODE DIAGNOSTICS DESCRIPTION 6-5
 6.2.3 USER DIAGNOSTICS 6-6
 6.2.4 FIELD SERVICE DIAGNOSTICS 6-6
 6.2.5 SPECIAL-FUNCTION KEY DEFINITIONS FOR BOOTSTRAP MENUS . 6-7
6.3 SYSTEM DIAGNOSTIC DISPLAYS 6-9
 6.3.1 CPU DIAGNOSTIC 6-9
 6.3.2 CONTROL MEMORY DIAGNOSTICS 6-11
 6.3.2.1 ADDRESSING 6-11
 6.3.2.2 MAT C&S .. 6-11
 6.3.2.3 ROWPAT ... 6-12
 6.3.3 DATA MEMORY (USER MEMORY) DIAGNOSTICS 6-13
 6.3.3.1 ADDRESSING 6-13
 6.3.3.2 MAT C&S .. 6-14
 6.3.3.3 ROWPAT ... 6-15
 6.3.4 DIAGNOSTIC ERROR MESSAGE INFORMATION & IDENTIFICATION
 OF FAULTY RAMS 6-16
 6.3.4.1 ERROR MESSAGE INFORMATION FOR CONTROL MEMORY
 TESTS .. 6-16
 6.3.4.2 ERROR MESSAGE INFORMATION FOR DATA MEMORY TESTS .. 6-18
 6.3.4.3 MEMORY DIAGNOSTIC INTERPRETATION USING THE
 MEMORY ERROR CHIP IDENTIFICATION (MECI) PROGRAM .. 6-22
 6.3.4.4 MEMORY DIAGNOSTIC INTERPRETATIONS BY DIAGRAM 6-22
6.3.5 REGISTER DIAGNOSTICS 6-26
 6.3.5.1 GENERAL PURPOSE REGISTERS 6-26
 6.3.5.2 GENERAL REGISTERS ERROR DISPLAYS 6-27
 6.3.5.3 AUXILIARY/STACK 6-28
 6.3.5.4 AUXILIARY/STACK ERROR DISPLAYS 6-29
 6.3.5.5 STACK/AUXILIARY 6-30
 6.3.5.6 STACK/AUXILIARY ERROR DISPLAYS 6-31
6.4 BASIC-2 LANGUAGE DIAGNOSTIC DISPLAYS 6-32
6.5 2236D AND 2236MXD DIAGNOSTIC PROCEDURES 6-34
SECTION 7 SYSTEM-LEVEL MAINTENANCE, ADJUSTMENTS, AND TROUBLESHOOTING

7.1 PREVENTIVE MAINTENANCE ... 7-1
 7.1.1 CENTRAL PROCESSING UNIT ... 7-1
 7.1.2 2236D INTERACTIVE TERMINALS 7-2
 7.1.3 PREVENTIVE MAINTENANCE FOR SYSTEM PERIPHERALS 7-3

7.2 SYSTEM LEVEL PREVENTIVE MAINTENANCE 7-3
 7.2.1 LUBRICATION ... 7-3
 7.2.2 SYSTEM ECN'S ... 7-3

7.3 ADJUSTMENTS ... 7-3
 7.3.1 RECOMMENDED TEST EQUIPMENT/TOOL LIST 7-4
 7.3.2 CPU VOLTAGE ADJUSTMENT PROCEDURE 7-5
 7.3.3 2236D ADJUSTMENTS .. 7-7
 7.3.3.1 2236D VOLTAGE ADJUSTMENT PROCEDURE 7-7
 7.3.3.2 VIDEO DISPLAY UNIT ADJUSTMENTS 7-8
 7.3.3.2.1 SAFETY WARNING ... 7-8
 7.3.3.2.2 MOTOROLA DISPLAY CHASSIS 7-9
 7.3.3.2.3 WANG DISPLAY CHASSIS 7-12

7.4 TROUBLESHOOTING THE 2200MVP ... 7-15
 7.4.1 THE CENTRAL PROCESSING UNIT 7-15
 7.4.2 THE SYSTEM PERIPHERALS .. 7-16
 7.4.3 2200MVP TROUBLESHOOTING FLOWCHART 7-16

SECTION 8 UPGRADES/CONVERSIONS

8.1 VP TO MVP CONVERSIONS .. 8-1
 8.1.1 CENTRAL PROCESSING UNIT .. 8-1
 8.1.2 2270 TO 2270A-D CONVERSION 8-1
 8.1.3 2270A TO 2270A-D CONVERSION 8-1
 8.1.4 2236 TO 2236D CONVERSION .. 8-1
 8.1.5 2236MXC TO 2236MXD CONVERSION 8-1

8.2 MVP TO MVP-A CONVERSION .. 8-2

8.3 2200MVP EXPANDED MEMORY ... 8-2
 8.3.1 BOOTSTRAP PROMS .. 8-2
 8.3.2 OPERATING SYSTEM .. 8-3
 8.3.3 DIAGNOSTICS ... 8-3
 8.3.4 HARDWARE CHANGE .. 8-3
 8.3.5 CONVERSION KITS ... 8-6

APPENDIX A 2236D CHARACTER SET .. A-1

APPENDIX B 2200MVP ERROR CODES ... B-1

APPENDIX C CPU MOTHERBOARD (6798) MNEMONICS C-1

APPENDIX D 2200MVP SIGNAL RUN LIST D-1

APPENDIX E BILL OF MATERIALS ... E-1

APPENDIX F ELECTRICAL SCHEMATICS AND ASSEMBLY DRAWINGS F-1

APPENDIX G 2200MVP-128/512 ... G-1
2200 COMPUTER SYSTEM

APPENDIX G
TO
CUSTOMER ENGINEERING
PRODUCT MAINTENANCE MANUAL 729-0584-A1
TABLE OF CONTENTS

Chapter 1 Introduction
- G1.1 Scope and Purpose ... G1-1
- G1.2 Related Documentation ... G1-1
- G1.3 System Description .. G1-1
- G1.4 Specifications ... G1-1
- G1.5 System Configurations .. G1-2

Chapter 2 Theory of Operation
- G2.1 Introduction .. G2-1
- G2.2 Functional Theory Of Operation G2-1
 - G2.2.1 Control Memory ... G2-1
 - G2.2.2 Bootstrap Proms .. G2-1
 - G2.2.3 128K Data Memory .. G2-1
 - G2.2.4 512K Data Memory .. G2-3

Chapter 3 Operation
- G3.1 Scope .. G3-1

Chapter 4 Installation and Checkout
- G4.1 Scope .. G4-1
- G4.2 Pre-Installation Site Check G4-1
- G4.3 Special Tools and Test Equipment G4-1
- G4.4 Unpacking Procedures .. G4-1
- G4.5 Inspection .. G4-1
- G4.6 System Configuration .. G4-1

Chapter 5 Preventive and Corrective Maintenance
- G5.1 Scope .. G5-1

Chapter 6 Illustrated Parts Breakdown
- G6.1 Scope .. G6-1

Chapter 7 Troubleshooting Procedures
- G7.1 Scope .. G7-1

Chapter 8 Schematics
- G8.1 Scope .. G8-1
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2-1</td>
<td>CPU/MEMORY BOARD</td>
<td>G1-2</td>
</tr>
<tr>
<td>G4-1</td>
<td>PC BOARD LOCATIONS</td>
<td>G4-2</td>
</tr>
</tbody>
</table>

G-iv
CHAPTER 1
INTRODUCTION

G1.1 SCOPE AND PURPOSE

This Addendum provides maintenance information for WANG 2200 MVP-128 and 2200 MVP-512 Computer Systems. The material is designed to supplement the standard Product Maintenance Manual (729-0584-A1) for the 2200. The information in the Addendum is presented in the form "system differences" and should be used in conjunction with standard manual 729-0584-A1 to install and maintain the 2200 Computer System in the field. The information describing the system differences should be cross referenced to the full maintenance manual whenever using the Addendum.

--------------------NOTE--------------------
Throughout the remainder of this document, statements applicable to both the 2200 MVP-128 and MVP-512 systems will be identified as such by references to the '2200 MVP-128/512 System'. In cases where the two systems differ, the references will be qualified to explicitly indicate one system apart from the other.

G1.2 RELATED DOCUMENTATION

Related Documentation for the 2200 Computer System is outlined on pages 1 through 5 of the Product Maintenance Manual.

G1.3 SYSTEM DESCRIPTION

The 2200 MVP-128/512 System is a single-board version of the existing 2200 MVP System. The new system utilizes VLSI (Very Large Scale Integration) technology to incorporate the 2200 discrete processor design into single chip form. This allows the 2200 CPU, control memory, and user memory to reside on one PC board. This new 2200 System uses Operating System 2.6, and is compatible with existing 2200 MVP software, diagnostics, and I/O options without modifications.

Two memory configurations are possible with the 2200 CPU/Memory Board; 32K Control/128K Data Memory with the MVP-128, and 32K Control/512K Data Memory with the MVP-512.

G1.4 SPECIFICATIONS

The CPU/Memory board (210-8034) is the only processor board required for operation of the 2200 MVP-128/512 system.
G1.5 SYSTEM CONFIGURATIONS

The CPU/Memory board (210-8034) duplicates all the functions of the old 2200's five board processor. As such, it is the only processor board required for operation of the system. Two versions of this board are available, depending on the Customers' needs. One version (210-8034-1A), contains 128K of Data Memory, and together with a new Motherboard (210-7498-1) and associated I/O Boards, become the 2200 MVP-128 Computer System. The other version of the board (210-8034-2A), contains 512K of Data Memory, and with the same motherboard and I/O boards as above, makes up the 2200 MVP-512 System.

--NOTE--
REGARDLESS OF WHICH VERSION CPU/MEMORY BOARD IS BEING USED, IT MUST BE INSERTED IN THE MOTHERBOARD SLOT PREVIOUSLY ALLOTTED FOR THE REGISTERS AND I/O BOARD (REF. FIG. G4-1).
--
CHAPTER 2
THEORY OF OPERATION

G2.1 INTRODUCTION

This chapter provides a brief discussion of the electrical differences between the 2200 MVP and 2200 MVP-128/512 Systems. As mentioned in Chapter 1, the MVP-128/512 system requires only one PC board for processor operation. The MVP-128/512 uses Operating System 2.6 and is compatible with existing 2200 software, diagnostics, and I/O options, so that the VLSI configuration is completely transparent to the user.

G2.2 FUNCTIONAL THEORY OF OPERATION

The MVP-128/512 CPU/Memory board contains a Micro 2200 chip. This chip is a 121 pin gate-array which duplicates all the functions of the entire 2200 processor, which, in the past, was comprised of five boards. The chip requires +5 volts at VDD1-2 (pins B7 and M7) and ground at VSS1-2 (pins G2 and G12). A 5 MHZ square wave at pin F1 provides the system clock.

G2.2.1 Control Memory

The CPU/Memory Board contains 32K of Control Memory. This is accomplished by loading 12 memory chips in board locations L13 through L18 and L20 through L25 (ref. Fig. G2-1).

Locations L1 through L12 of the CPU/Memory board are not loaded with memory chips. These locations are for possible future expansion.

The Control Memory is made up of 8K x 8 Static RAM configured in groups of three so that each group forms 8K of 24 bit words (one bank). Four of these groups (banks) produce 32K of control memory.

G2.2.2 Bootstrap Proms

Three 8K x 8 proms, configured to form 24 bit words, comprise the bootstrap prom. If the address decoded on the system busses is between 8000 and 83FF the bootstrap proms are enabled and chip select for the control memory store is inhibited.

G2.2.3 Data Memory

G2.2.3.1 128K Data Memory
With a 128K Data Memory configuration there are 2 banks, with 9 chips in each bank, for a total of 18 chips. Each chip contains 64K x 1 bit which produces 64K x 9 bits (8 bits data plus 1 bit parity) in each bank. Together the two banks produce 128K 8 bit bytes plus parity.
Figure G2-1 CPU/MEMORY BOARD
G2.2.3.2 512K Data Memory

With a 512K memory configuration, there are 2 banks, with 9 chips in each bank, for a total of 18 chips. Each chip contains 256K x 1 bit which produces 256K x 9 bits (8 bits data plus 1 bit parity) in each bank. Together the two banks produce 512K 8 bit bytes plus parity.
CHAPTER 3
OPERATION

G3.1 SCOPE

The operating instructions for the 2200 MVP-128/512 system are identical to the MVP operating instructions outlined in chapter 4 of the maintenance manual 729-0584-A1. Refer to chapter 4 for a description of system initialization and operational procedures.
CHAPTER 4
INSTALLATION AND CHECKOUT

G4.1 SCOPE
The majority of the information necessary to unpack, inspect, install, and verify correct operation of the 2200 MVP-128/512 system is contained in chapter 3 of the maintenance manual 729-0584-A1. This chapter of the Addendum provides the installation data which is unique to the 2200 MVP-128/512 system and depicts an internal view of the unit to highlight system differences. Refer to chapter 3 of the maintenance manual 729-0584-A1 as well as the following material for complete information to install and checkout the 2200 MVP-128/512.

G4.2 PRE-INSTALLATION SITE CHECK
Same as section 2 of the maintenance manual 729-0584-A1.

G4.3 SPECIAL TOOLS AND TEST EQUIPMENT
Same as section 7.3.1 of the maintenance manual 729-0584-A1.

G4.4 UNPACKING PROCEDURES
Same as section 3 of the maintenance manual 729-0584-A1.

G4.5 INSPECTION
Same as section 3 of the maintenance manual 729-0584-A1.

G4.6 SYSTEM CONFIGURATION
1. Note that the proper motherboard (210-7498-1) is being used in the system.

2. Ensure that the CPU/Memory Board (210-8034-1A or 210-8034-2A) is placed into the proper motherboard slot. (Ref. Fig. G4-1.)

3. Install the applicable I/O boards as required by the customers' system configuration.

All other installation instructions and checkout procedures are identical to those outlined in section 3 of the maintenance manual 729-0584-A1.
FIGURE G4-1 PC BOARD LOCATION
CHAPTER 5
MAINTENANCE

The maintenance instructions for the 2200 MVP-128/512 are identical to the instructions outlined in section 7.1, 7.2, and 7.3 of the maintenance manual 729-0584-A1. Refer to these sections for a description of adjustments and procedures required for the 2200 computer system.
CHAPTER 6

ILLUSTRATED PARTS BREAKDOWN

G6.1 SCOPE

The only new field-replaceable items in the 2200 MVP-128/512 are the 128K CPU/Memory Board (210-8034-1A), the 512K CPU/Memory Board (210-8034-2A), and the Motherboard (210-7498-1). All other system components are identical to the 2200 MVP components outlined in the Product Maintenance Manual 741-0584-A1.
CHAPTER 7
TROUBLESHOOTING

G7.1 SCOPE

The troubleshooting instructions for the 2200 MVP-128/512 system are identical to the instructions given in section 7.4 of the maintenance manual 729-0584-A1 with the following exceptions:

WHEN FOLLOWING THE TROUBLESHOOTING INSTRUCTIONS CONTAINED IN THE MAINTENANCE MANUAL 729-0584-A1, DISREGARD REFERENCES TO INDIVIDUAL CPU AND MEMORY BOARDS WHICH ARE NO LONGER IN THE SYSTEM. THESE BOARDS ARE:

<table>
<thead>
<tr>
<th>Board Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>210-6789</td>
<td>Memory Controller</td>
</tr>
<tr>
<td>210-6790</td>
<td>Instruction Counter</td>
</tr>
<tr>
<td>210-6791</td>
<td>Stack</td>
</tr>
<tr>
<td>210-6792</td>
<td>ALU</td>
</tr>
<tr>
<td>210-6793</td>
<td>Register I/O</td>
</tr>
<tr>
<td>210-6787</td>
<td>Data Memory</td>
</tr>
<tr>
<td>210-6786</td>
<td>Control Memory</td>
</tr>
<tr>
<td>210-7587</td>
<td>Data Memory</td>
</tr>
<tr>
<td>210-7588</td>
<td>Control Memory</td>
</tr>
</tbody>
</table>

WHEREVER INSTRUCTED TO REPLACE THESE BOARDS, REPLACE THE NEW CPU/MEMORY BOARD (210-8034), IN ITS PLACE.

WHEN A MEMORY ERROR HAS BEEN DIAGNOSED, DO NOT ATTEMPT TO REPLACE THE FAILED MEMORY CHIP. THESE ARE NOT FIELD-REPLACEABLE ITEMS. REPLACE THE ENTIRE CPU/MEMORY BOARD.
CHAPTER 8
SCHEMATICS

G8.1 SCOPE

This chapter contains the schematics for the CPU/Memory Board (210-8034).
Customer Engineering Maintenance Plan

VS/2200/PC New Products

February 15, 1985

2200 MVP-128 AND 2200 MVP-512

Halton Woods Ibrahim Azar
New Products Engineer New Products Manager

Henry A. Schinnagel
Product Line Director
TABLE OF CONTENTS

I. PRODUCT OVERVIEW
- 1.1 GENERAL DESCRIPTION ... 1
- 1.2 MARKET FORECAST ... 1
- 1.3 FIRST CUSTOMER SHIPMENTS 1

II. PRODUCT SPECIFICATIONS
- 2.1 FIELD REPLACEABLE ELECTRONIC ASSEMBLIES 1
- 2.2 FIELD REPLACEABLE MECHANICAL ASSEMBLIES 1
- 2.3 MEDIA ... 1
- 2.4 OPERATING SYSTEM ... 1
- 2.5 CONFIGURATION .. 1

III. DESIGN SPECIFICATIONS
- 3.1 SPECIFICATIONS .. 2
- 3.2 PHYSICAL DIMENSIONS ... 2
- 3.3 POWER AND ENVIRONMENTAL REQUIREMENTS 2
- 3.4 GOVERNMENT AND INDUSTRY STANDARDS AND APPROVALS 2
- 3.5 SERVICING SPACE REQUIREMENTS 2
- 3.6 SPECIAL SPECIFICATIONS ... 2

IV. MAINTENANCE
- 4.1 MAINTENANCE OBJECTIVES 3
- 4.2 CALLS PER MONTH .. 3
- 4.3 MEAN TIME TO REPAIR .. 3
- 4.4 PREVENTIVE MAINTENANCE 3
- 4.5 SPECIAL TOOLS AND TEST EQUIPMENT 3

V. SUPPORT
- 5.1 TECHNICAL DOCUMENTATION 3
- 5.2 TRAINING .. 3
- 5.3 LOGISTICS .. 3
- 5.4 REPAIR ... 3
- 5.5 DIAGNOSTICS .. 3
- 5.6 ALPHA AND BETA SITE TEST PLAN 3
I Product Overview

1.1 General Description:
The 2200 MVP-128/512 System will be a single board version of the existing 2200 MVP System. The new system will utilize VLSI technology to incorporate the 2200 discrete processor design into single chip form. This will allow the 2200 CPU, control memory and user memory to reside on one PC board. This single CPU/MEM board will be incorporated into a modified version of the 2200 MVP package. Work is in progress on a new package for the VLSI system. The VLSI system the new package will be dealt with in a future maintenance plan.

The 2200 MVP-128/512 Systems will run existing 2200 MVP software, diagnostics and I/O options without modification (Operating System Rev. 2.6 or later).

There will be two versions of this system:
2200 MVP-128 with 32k Control, 128k Data Memory.
2200 MVP-512 with 32k Control, 512k Data Memory.

1.2 Market Forecast:

<table>
<thead>
<tr>
<th></th>
<th>Q4</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2200 MVP-128</td>
<td>315</td>
<td>230</td>
<td>245</td>
<td>210</td>
</tr>
<tr>
<td>2200 MVP-512</td>
<td>135</td>
<td>100</td>
<td>105</td>
<td>90</td>
</tr>
<tr>
<td>Total</td>
<td>450</td>
<td>330</td>
<td>350</td>
<td>300</td>
</tr>
</tbody>
</table>

1.3 First Customer Shipments:
Domestic FCS: April 1, 1985
International FCS: April 1, 1985

II. Product Specifications

2.1 Field Replaceable Electronic Assemblies:
CPU/Memory Board
Power supply regulator board
Mother board

2.2 Field replaceable Mechanical Assemblies:
None

2.3 Media:
Not applicable

2.4 Operating System:
The 2200 MVP-128/512 systems require 2200 operating system rev. 2.6.

2.5 Configuration:
There will be two memory configurations available for the 2200 VLSI CPU/MEM board; 32k Control-512k Data Memory and 32k Control-128k Data Memory. System and hardware configuration will follow the same guidelines as the 2200 MVP.
III. Design Specifications

3.1 Specifications:
 CPU: 2200VLSI processor chip (121 pin gate-array)
 Memory: Control = 32K, Data = 128K or 512K

3.2 Physical Dimensions:
 Width 14.5 in (36.8 cm) Height 12.1 in (30.7 cm)
 Depth 21 in (53.3 cm) Weight 47 lb (21 kg)

3.3 Power and Environmental Requirements:
 Input Circuit: Dedicated 20A circuit
 Voltage: 115/230 VAC ± 10%
 Frequency: 50/60 Hz

 Running Current:
 2200 CPU 2.0 amps @115 vac
 1.0 amps @230 vac

 Operating Environment:
 Ambient Temperature 60 to 80 degrees Fahrenheit (15 to 28 deg C)
 Relative Humidity 35% to 65% (non-condensing)

3.4 Government and Industry Standards and Approvals:
 Domestic:
 UL Standard 114
 FCC Class A
 Wang Standards; SPI 10-623 and SPI 10-708

 International:
 CSA Standard C22.2 NO 154
 IEC 435
 VDE Standard for Germany

3.5 Service Space Required
 Allow 30" between wall and each unit in system.

3.6 Special Specifications
 None
IV. Maintenance

4.1 Maintenance Objectives:
The maintenance objective will be to troubleshoot failures to the optimum field replaceable unit.

The 2200 VLSI system will be supported by standard on-site service methods using existing 2200 system diagnostics.

4.2 Calls Per Month:
CPM = .08 For 2200 MVP-128
CPM = .12 For 2200 MVP-512

4.3 Mean Time To Repair:
MTTR = 1.0 hrs

4.4 Preventative Maintenance:
The CPU requires periodic cleaning, inspection and power supply voltage checks. This should be done in conjunction with preventative maintenance on disk drive attached to the system. The CPU PM will add .5 hrs to the scheduled disk drive PM.

4.5 Special Tools and Test Equipment:
Standard Customer Engineering Tool Kit and 2200 MVP Diagnostic programs will be used for field service.

V. Support

5.1 Technical Documentation:
Publication Update Bulletin (PUB) for the 2200 MVP manual.

5.2 Training:
The 2200 MVP-128/512 System will be included in the 2200 On-Line training. Previously trained 2200 Customer Engineers will be brought up to date with Technical Service Bulletin (TSB) and Publication update Bulletin (PUB).

5.3 Logistics:
Unique FRU spares to be stocked at Branch level.

5.4 Repair:
The CPU/Memory board will be repaired at all FSC'S.

5.5 Diagnostics:
Existing 2200 Diagnostics will be used.

5.6 Alpha and Beta Site Plan:
No formal Alpha test is planned, feedback from internal users will be considered alpha testing.

Beta testing will be done at Redshaw R&D LAB in Hartford Conn.
MEMORANDUM

TO: Mike Thompson
 Gerry Crawford

From: Hal Woods

Date: September 26, 1985

Subject: 2200MVP-128 and 2200MVP-512 Production Information

The 2200MVP-128 and 2200MVP-512 CPU's were produced in Q4 FY85 as a replacement for the MVP in the 2200 product line. These two models were then replaced by the MicroVP-1 and MicroVP-2 in Q1 FY86.

The following information may be useful in the future if a problem should arise with these models.

<table>
<thead>
<tr>
<th>Shipments/ Model/ Frequency</th>
<th>Q4 FY85</th>
<th>Q1 FY86</th>
</tr>
</thead>
<tbody>
<tr>
<td>2200MVP-128 (50HZ)</td>
<td>139</td>
<td>9</td>
</tr>
<tr>
<td>2200MVP-128 (60HZ)</td>
<td>173</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL 2200MVP-128 CPU's Q4FY85</td>
<td>312</td>
<td>Q1FY86= 14</td>
</tr>
<tr>
<td>2200MVP-512 (50HZ)</td>
<td>36</td>
<td>7</td>
</tr>
<tr>
<td>2200MVP-512 (60HZ)</td>
<td>82</td>
<td>18</td>
</tr>
<tr>
<td>TOTAL 2200MVP-512 CPU's Q4FY85</td>
<td>118</td>
<td>Q1FY86= 25</td>
</tr>
<tr>
<td>TOTAL 2200MVP-128/512 in Q4FY85</td>
<td>430</td>
<td>Q1FY86= 39</td>
</tr>
</tbody>
</table>

TOTAL 2200MVP-128 and 2200MVP-512 CPU's shipped 469

Regards,

Halton Woods,

VS/2200 New Products
656-0307 M/S Q122

cc: I. Azar
For Immediate Release

FOR FURTHER INFORMATION CONTACT

Ed Clough, (617) 967-2917
Hanne Herwick, (617) 967-6405

WANG ROLLS OUT VLSI-TYPE VERSIONS OF 2200MVP COMPUTER,
ANNOUNCES NEW 2200 OPERATING SYSTEM

Lowell, MA (April 18, 1985)--Wang Laboratories, Inc., today unveiled two
VLSI-type versions of the company's 2200 MVP small business computer. Wang
also introduced a new multi-user operating system for the entire 2200 product
line.

Available in two styles—the 2200MVP and the MicroVP—, the new versions
will be especially attractive to systems houses and small businesses because
they offer powerful performance, enhanced reliability, and greater ease of
maintenance at an extremely competitive price, while maintaining full
compatibility with existing 2200 hardware and software.

The new central processing units (CPUs) employ VLSI (very large scale
integration) technology, replacing from seven to nine 8"x11" printed circuit
boards with a single board that includes 32 kilobytes (KB) of control memory.
The VLSI chip on which they are based is produced by VLSI Technology, Inc.
(VTI) of San Jose, CA, of which Wang owns a 15-percent interest.

The VLSI-type 2200MVP combines the new CPU board with the current
packaging, while the MicroVP features smaller, more streamlined packaging.
The new CPUs accept nine optional peripheral controller boards and can
communicate with existing 2200 option boards and peripherals, including all
communication controllers. Both the 2200MVP and the MicroVP support up to 13
users.
The VLSI-type 2200MVP is available immediately. MicroVP shipments will begin in July. Both systems come with 32KB of control memory and can be ordered with either 128KB or 512KB of user memory. Four packaged configurations are available for either system. Individual CPUs are priced at $4,950 for 128KB, an $850 saving over previous 128KB MVP CPUs, and at $7,300 for 512KB, a $3,000 saving over previous 512KB MVP CPUs. "P" package configurations start at $8,000 for a system with 128KB of memory and one terminal. Monthly maintenance for VLSI-type CPUs is 60% to 70% less than for previous non-VLSI 2200MVP CPUs.

Release 2.6 of the BASIC-2 multi-user operating system is required for VLSI-type CPUs. The new operating system is also available for all currently installed 220C systems. The operating system features a new generalized printer driver, which allows 2200 CPUs to use the Wang Professional Computer (PC) printers model PC-PM010 and PCPM016.

With an estimated 65,000 installations worldwide and millions of lines of application code on the market, the 2200 line has demonstrated its popularity among systems houses and end users. Highly competitive selling prices resulting from the use of micro-chip technology and the ability to include low-cost Wang PC printers in configurations will now make the 2200 an even better solution-oriented product for systems houses and software vendors selling turnkey vertical solutions to small and medium-sized businesses.

-end-
Micro VP Power Up FCN's

8034 Bad
37410 1K S R L67 pin 11 to 5V
36813 Remove
36833 Connect L69 pin 44 to pin 40 & R0

220-0365 for 2275 intermittent risk errors in 1 direction
DESCRIPTION OF CHANGE

Change assembly drawing, schematic and sample board per attached prints and as follows:

Change 210-7498 and 210-7498-1 schematic parts list as follows:

Delete @2 Wire 18 Ga Green/Yellow (600-0054)
Delete @3 #8 Ground Lug (654-1008)
Add W+Lug 18 Ga Gr/Y #8 rng-S+T (220-2349) QTY 1

Change BOM 210-7498 and 210-7498-1 as follows:

<table>
<thead>
<tr>
<th>WLI#</th>
<th>DESCRIPTION</th>
<th>UM</th>
<th>TYPE</th>
<th>QTY</th>
<th>QTY TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE</td>
<td>600-0054 Wire 18 Ga Green/Yellow</td>
<td>FT</td>
<td>5P</td>
<td>.7500</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>654-1008 #8 Ground Lug</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD</td>
<td>220-2349 W+Lug 18 Ga Gr/Y #8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note to EDD: Correct 210 History Sheet per attached print.

REASON/SYMPTOM FOR CHANGE

To eliminate building cable at the pcb sub-assy area. This change will allow the cable to be built at the cable assembly area.
ENGINEERING CHANGE ORDER
MANUFACTURING EFFECTIVITY AND DISPOSITION

ECO #: 74828

Sheet: 2 of 6

MATERIAL DISPOSITION

<table>
<thead>
<tr>
<th>IN STOCK</th>
<th>VENDOR</th>
<th>SPECIAL INSTRUCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WIP = (4) ; (4) C .57 A .50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q4 BUILD = 7493 (9); (82) IN SST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q4 " = 7498-1 (55); (64) BDS IN WIP; (50) C .57 A (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) C " (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) C " (32)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) C " (50)</td>
</tr>
</tbody>
</table>

DOCUMENTATION ONLY

☑

EFFECTIVITY: MATERIAL AVAILABILITY: [Date]

IMPLEMENTATION: [Date]

DISTRIBUTION

- ALL UNITS
- ON OR BEFORE

RETURN TO MFG. PRODUCT LINE FOR REWORK: ☐

NO IMPACT: ☐

APPROVALS

COMMITTEE CHAIRPERSON

DISTRIBUTION

<table>
<thead>
<tr>
<th>SITE MFG ENGINEERING</th>
<th>RE-MANUFACTURING</th>
</tr>
</thead>
<tbody>
<tr>
<td>John J. Smith</td>
<td>[Signature]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CENTRAL QUALITY ENGRC</th>
<th>COMPONENT ENGINEER</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Signature]</td>
<td>[Signature]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SITE MATERIALS</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Signature]</td>
<td>[Signature]</td>
</tr>
</tbody>
</table>

SPECIAL INSTRUCTIONS

- [Signatures]
- [Signatures]
Engineering Change Order

Customer Engineering Effectivity and Disposition

<table>
<thead>
<tr>
<th>All Units</th>
<th>Prob. Only</th>
<th>Info</th>
<th>Effectivity Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No field impact</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FCO Required</th>
<th>Exp.</th>
<th>Domestic</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FSC Rework</th>
<th>Exp.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approvals</th>
<th>Date</th>
<th>Projected Cost Impact</th>
<th>Projected Part Requirement</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tech Ops</th>
<th>Material</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logistics</th>
<th>Labor</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final</th>
<th>Total</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
<th>Total</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Comments:

Manufacturing.
ECO NO. 36828

SHT. 5 OF 6

7498

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>ML. PART NO.</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 PIN CONN.</td>
<td>350-0011</td>
<td>29</td>
</tr>
<tr>
<td>44 PIN CONN.</td>
<td>350-0021</td>
<td>2</td>
</tr>
<tr>
<td>44 PIN JUMPER</td>
<td>350-0039</td>
<td>2</td>
</tr>
<tr>
<td>GND X 15</td>
<td>654-1154</td>
<td>1</td>
</tr>
<tr>
<td>1 PIN 7498 ASSY</td>
<td>654-1194</td>
<td>1</td>
</tr>
</tbody>
</table>

7498-1

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>W. L. PART NO.</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 PIN CONN.</td>
<td>350-0011</td>
<td>21</td>
</tr>
<tr>
<td>44 PIN CONN.</td>
<td>350-0021</td>
<td>1</td>
</tr>
<tr>
<td>44 PIN CONN.</td>
<td>350-0039</td>
<td>1</td>
</tr>
</tbody>
</table>

WANG MICROSYSTEMS

MOTHER BOARD

DATE: 2/10/74

APPROVED BY:

DATE: 7/4/74

DESIGNED BY:

DATE:

ENGINEERED BY:

DATE:

** inversion E-REV**
DESCRIPTION OF CHANGE

Change assembly drawing, schematic and sample boards as follows:

Delete (1) 2N3904 Transistor 375-1080 at location Q1.
(1) 4.7K Resistor 330-3048 at location R7.

REASON/SYMPTOM FOR CHANGE

The intermittent power up failure of the 8034 is the result of the timing of the 100 pulse generated by the 7397 power card. The manufacturer's spec. for the 4501 DMAM Controller states that the RESET input may be left open due to an internal pull up. Removing the transistor and resistor allows the 4501 to power up correctly without failure.
DESCRIPTION OF CHANGE

Change assembly drawing and schematic per attached prints and as follows:

Create 210-7498-1 sample board per attached prints and as follows:

- Add a wire from 6793 location, connector 1 pin N to the 6792 location connector 1 pin 12. (Zone 1J13)
- Add a wire from 6793 slot location, connector 2 pin 19 to the closest I/O slot location connector 3 pin 3. (Zone 1G13)

Create BOM# 210-7498-1 per attached sheet.

Delete Part Number 210-6798-1 from Corporate Database.

REASON/SYMPOTOM FOR CHANGE

To allow 2200 VLSI compatibility utilizing existing MVP Motherboard. To delete part no. 210-6798-1 that was structured in error with ECO #35387. The correct part no. should have been 210-7498-1.
Change schematic and sample board per attached print and as follows:

Tie a wire from 6793 location connector 1 pin N to closest I/O slot connector 3 pin L. (Zone 1F13/J13)

NOTE TO EDD: Create a 210 History sheet

REASON/SYMPTOM FOR CHANGE

To allow 2200 VLSI CPU Board complete compatibility with all existing 2200 MVP configurations.
MUX of 2200 MVP VLSI CPU's presently incompatible.

APPROVALS

ECO MGR.
DES. ENGRS.
CUST. ENGRS.
MFG. ENGRS.
ORIGINATOR
F.C.C.

13-8644C Printed in USA 3-84
ECO

MAR 23 1988

ECO NO. 48782

SHEET 1 OF 25

DESCRIPTION OF CHANGE

Change BUMs, Part List 209-8937 as follows:

<table>
<thead>
<tr>
<th>WL#</th>
<th>Description</th>
<th>UM</th>
<th>TYPE</th>
<th>QTY</th>
<th>WIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>330-1010 Res 10 OHM 1/4W 5%</td>
<td>EA</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Add</td>
<td>330-1011 Res 10 OHM 1/4W 5%</td>
<td>EA</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Change</td>
<td>376-9092 IC Socket 3U-3UP</td>
<td>EA</td>
<td>1</td>
<td>FROM 8</td>
<td>1</td>
</tr>
</tbody>
</table>

MAY 31 1988

APPROVALS

- **ECO CHAIRPERSON:** [Signature]
 DATE: 5/25/88
- **DES. ENGRG:** [Signature]
 DATE: 4-14-88
- **CUST. ENGRG:** [Signature]
 DATE: 7/25
- **MFG:** [Signature]
- **MTO:** [Signature]
 DATE: 5/25
- **PP&M:** [Signature]
- **F.C.C.:** [Signature]
 DATE: [Signature]
- **PROD. SAFETY:** [Signature]
 DATE: [Signature]
- **SECURE SYS.:** [Signature]
- **ORIGINATOR:** [Signature]
 DATE: 3/3/88
- **OTHER:** [Signature]
 DATE: [Signature]

REASON/SYMPOTOM FOR CHANGE

To Conform to Actual Build

Final Parts List

Board No. & Title: C8937
Assembly Level & Title: 209
Parts List Revision (P): 0
Date Created: 12/22/86 08:27
Date Last Modified: 11/13/87 11:10
Editing Revision: 17

<table>
<thead>
<tr>
<th>Ref. Des.</th>
<th>Wang Part No.</th>
<th>Value/Type</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7 - C8</td>
<td>300-1833-</td>
<td>100N</td>
<td>CAP .1 UF 50V +80-20% Z5UCER MONO AXL</td>
<td>9</td>
</tr>
<tr>
<td>C10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21 - C22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C38 - C39</td>
<td>300-1929-</td>
<td>1000N</td>
<td>CAP 1UF 50V +80-20% Z5U CER AXIAL</td>
<td>1</td>
</tr>
<tr>
<td>C41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>300-2620-</td>
<td>10000P</td>
<td>CAP .01 UF 100V 10% Z5R CER MONO RDL</td>
<td>34</td>
</tr>
<tr>
<td>C6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17 - C20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28 - C34</td>
<td>300-4022-</td>
<td>15000N</td>
<td>CAP 15 UF 20V 10% TANTALUM AXIAL</td>
<td>14</td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12 - C13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15 - C16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25 - C27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>321-1082-</td>
<td>10.0000</td>
<td>CLK OSC 10.0 MHZ .01% T-STTL</td>
<td>1</td>
</tr>
<tr>
<td>R1 - R14</td>
<td>330-1010-</td>
<td>10</td>
<td>RES 10 OHM 1/4W 5% CARBON COMPOSITION</td>
<td>4</td>
</tr>
<tr>
<td>R1 - R7</td>
<td>330-1040-</td>
<td>39</td>
<td>RES 39 OHM 1/4W 5% METAL FILM 200 PPM</td>
<td>14</td>
</tr>
<tr>
<td>R15 - R21</td>
<td>330-2011-</td>
<td>100</td>
<td>RES 100 OHM 1/4W 5% METAL FILM 200 PPM</td>
<td>3</td>
</tr>
<tr>
<td>R10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add.</td>
<td>330-1011</td>
<td>10</td>
<td>Res 100 OHM 1/4W 5%</td>
<td>4</td>
</tr>
<tr>
<td>REF. DES.</td>
<td>HANG PART NO.</td>
<td>VALUE/TYPE</td>
<td>DESCRIPTION</td>
<td>DRAWING NO.</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>L38</td>
<td>376-9020-</td>
<td>SKT 20</td>
<td>IC 20PIN SOCKET DIL LOW PROFILE</td>
<td>4</td>
</tr>
<tr>
<td>L42 - L44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>376-9070-</td>
<td>SKT 68</td>
<td>SOCKET IC CHIP CARRIER 68 POS</td>
<td>1</td>
</tr>
<tr>
<td>L2</td>
<td>376-9080-</td>
<td>SKT 24</td>
<td>IC SCKT 24 PIN DIP .300C PCB MNT</td>
<td>1</td>
</tr>
<tr>
<td>L1</td>
<td>376-9092-</td>
<td>SKT 60</td>
<td>SCKT SIMM 30/30P .1C PCLP</td>
<td>4 - 8</td>
</tr>
<tr>
<td>L9 - L10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L13 - L15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L23 - L24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L32</td>
<td>376-9098-</td>
<td>SKT 121</td>
<td>IC SKT 121P .1C PGA LIF</td>
<td>1</td>
</tr>
<tr>
<td>@1</td>
<td>510-8937-</td>
<td></td>
<td>PCB 2200 MICRO VP CPU BD</td>
<td>1</td>
</tr>
<tr>
<td>G7</td>
<td>615-2318-</td>
<td></td>
<td>LABEL, BAR CODE</td>
<td>1</td>
</tr>
<tr>
<td>J2</td>
<td>654-0104-</td>
<td>3 CONT</td>
<td>CONN HEADER. 3 .100 1ROW STR PIN</td>
<td>1</td>
</tr>
</tbody>
</table>

8.5”
11”
17”

48782
3 5
Engineering Change Order

Manufacturing Impact Sheet

<table>
<thead>
<tr>
<th>PART NO./ASSY NO.</th>
<th>MATERIAL DISPOSITION</th>
<th>QUANTITY</th>
<th>DISP</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISPOSITION</th>
<th>AFFECTED SITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. USE AS IS</td>
<td>TEWKGS ☐ BOS ☐ HONG ☐</td>
</tr>
<tr>
<td>2. REWORK</td>
<td>PKWD ☐ IR ☐ MEX ☐</td>
</tr>
<tr>
<td>3. SCRAP/SALVAGE</td>
<td>METH ☐ PR ☐</td>
</tr>
<tr>
<td>4. NEXT ORDER</td>
<td>LOW ☐ SCOT ☐</td>
</tr>
<tr>
<td>5. SEE REMARKS</td>
<td>HLOK ☐ AUST ☐</td>
</tr>
<tr>
<td></td>
<td>PT BLVD ☐ TW ☐</td>
</tr>
</tbody>
</table>

Cost of Incorporation

- **Product Cost Change Per Unit**:
- **Production Quantity From MPP in WKS**: __________ WKS
- **Product Cost Change (Extended)**:
- **Total Cost (or Cost Savings) of ECO**:

Remarks

> WPR's response 5/24 - mfg 6-5-88

Approvals

ECO ADMIN: D. J. Caprio

MFG ENG:

QUALITY:

MATERIALS:

PROD. CONTROL:

FINANCE:

RE-MFG:

OTHER:

SMS Effectivity Date

6-3-88
getAllUnits					
probability					
revised					
required					
immed					
next call					
is a multicompartmental notification					
est unit pop					
est spare pop					
total					
domestic					
international					
est. cost impact					
material					
labor					
total					
implementation					
period					
annual cost					
approvals					
tech ops					
logistics					
esc support					
final					
other					
general comments					
TECHNICAL SERVICE BULLETIN
SECTION: Hardware Technical

NUMBER: HWT 5318 REPLACES: ______ DATE: 12/10/85 PAGE 1 OF 1
MATRIX ID. 4103 PRODUCT/RELEASE# MicroVP and 2200MVP-128/512

TITLE: MicroVP and 2200MVP-128/512 CPU ID Number Problem

PURPOSE:
To inform the field of a potential problem with the CPU ID Number in the bootstrap PROM used in the MicroVP and 2200MVP-128/512 CPU's.

EXPLANATION:
The CPU Identification Number feature allows software to distinguish one CPU from another. The ability to tell one CPU from another is useful in restricting software to a specific installation and in distinguishing one CPU from another when CPU's are multiplexed. The CPU ID number should be a random number between 1 and 65535. This ID number is in the code on the bootstrap PROM, part number 377-3139, location L39 on the 210-8034-1A and 210-8034-2A boards.

Reports received from the field indicate that a conflict may exist in 2200 systems using multiplexed CPU's when the CPU's have the same ID number.

If this problem is encountered the solution is to replace the bootstrap PROM's on the 210-8034 board. To insure that all three PROM's are at the same revision level, replace all three PROM's. Following are the part numbers and locations for the PROM's:
- 377-3139 at location L39 on 210-8034 board
- L35 on 210-8937 CPU BBD
- 377-3138 at location L50 on 210-8034 board
- 377-3137 at location L58 on 210-8034 board

These PROM's can be ordered through the normal channels using the part numbers listed above.

The following models may be effected: MicroVP-1, MicroVP-2, 2200MVP-128 and 2200MVP-512. Note that this information applies only to the models that use the single board (VLSI) CPU part number 210-8034-1A or 210-0834-2A.

THE R1 REVISION OF THE PROMS FIXES THE PROBLEM OF HAVING THE SAME CPU ID #.

GROUP: VS/2200/PC Hardware Support Group
MAIL STOP: 0122

COMPANY CONFIDENTIAL
WANG Laboratories, Inc.
Part numbers 377-313A, 177-3313, and 374-1109 are the correct part numbers for the new 32 × 128 PROM's on the single board CEU/CM used in the 2200MUP-128, 2200MUP-512, MiniPU, and the MicroPU-2.
PURPOSE:
Provide information to the field about a potential problem on some of the new CPU/MEMORY boards used in the 2200MVP-128 and 512.

EXPLANATION:
Intermittent Memory Errors during power up of the CPU may occur in a few of the early 2200MVP-128 and 2200MVP-512 systems. These random errors may be caused by POR/RESET timing problem on the CPU/MEM boards (210-8034-1A and 210-8034-2A) used in these early production units.

The symptom for this problem is random data memory errors during power up. These errors are detected by the power up diagnostics.

If this symptom is noted:
1. Use the memory diagnostic to check the integrity of the data memory.
2. If the symptom persists, contact the diacnostic group to replace the CPU/MEM board.
3. If the intermittent memory errors are caused by the CPU/MEM boards, follow instruction in the Field Repair Instructions (FRI) 210-8034-1A and 210-8034-2A.

PURPOSE:
Provide information to the field about the memory upgrade for the new 2200 MVP and MicroVPE Models.

EXPLANATION:
The April 30, 1985 FOCUS contained an article that described the new 2200 CPU's. Information about this new product can also be found in FRI 210-8038-5081. The following information pertains to the field memory upgrades for these new models only:

<table>
<thead>
<tr>
<th>Model</th>
<th>Upgrade to Model</th>
<th>Upgrade Kit #</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVP-128</td>
<td>MVP-512</td>
<td>107-5058</td>
</tr>
<tr>
<td>2200MVP-128</td>
<td>2200MVP-512</td>
<td>107-5058</td>
</tr>
</tbody>
</table>

The upgrade kit will include the new CPU/MEM (210-8038-2A) and new label.

To install the upgrade to the 2200MVP-128 or 2200MVP-512, remove the CPU/MEM board (210-8034-1A) and Install the CPU/MEM board (210-8038-2A) utilizing the PCA removal and replacement instructions in the Product Maintenance Manual, 741-958a-A1 for the 2200MVP-128 or 741-156a for the MicroVPE. Then install the appropriate new label (2200MVP-512 or MicroVPE-2).

The old 2200 models (C-board CPU) are not field upgradable and either of the new models (C-board CPU). The old memory upgrades are still available for the old 2200 models.
TECHNICAL SERVICE BULLETIN
SECTION: Hardware Technical

NUMBER: HWT 5081 REPLACES: ______ DATE: 04/16/85 PAGE 1 OF 2
MATRIX ID. 4103 PRODUCT/RELEASE# 2200 MVP-128/512

TITLE: NEW 2200 MVP-128 and 2200 MVP-512 INFORMATION

PURPOSE:
Provide information to the field about the NEW 2200 MVP MODELS.

EXPLANATION:
The 2200 MVP-128/512 System will be a single board version of the existing
2200 MVP System. The new system will utilize VLSI (Very Large Scale
Integration) technology to incorporate the 2200 discrete processor design
into single chip form. This will allow the 2200 CPU, control memory and
user memory to reside on one circuit board. This single CPU/MEM board will
be incorporated into a modified version of the 2200 MVP package.
The 2200 MVP-128/512 Systems will run existing 2200 MVP software,
diagnostics and I/O options without modification (Operating System Rev.
2.6 recommended).

There will be two versions of the CPU/MEMORY board; 32k Control-128K Data
Memory and 32k Control-512K Data Memory. The difference between these two
boards is the type of memory chip loaded in the data memory section. There
are no field replaceable components on the CPU/MEM board.

Regardless of which version of the CPU/MEM board is being used, it must be
inserted in the motherboard slot previously allotted for the REGISTER and
I/O board (the old 210-6793 slot). This is the slot closest to the I/O
slots.

There will be two new 2200 MVP models using the new CPU/MEMORY board
they are: 2200 MVP-128 (128K data memory) and 2200 MVP-512 (512K data
memory). The difference between the NEW MVP and the OLD MVP is the
motherboard and the CPU/MEM board. The other parts are the same (power
supply, etc.).
NEW 2200 MVP-128 and 2200 MVP-512 INFORMATION

EXPLANATION (cont''): Note that the old CPU and Memory boards will not work in the new models and the new CPU/MEM board will not work in the old models. Part number information for the new 2200 MVP-128 and 2200 MVP-512:

CPU/MEM board 128K version: 210-8034-1A
CPU/MEM board 512K version: 210-8034-2A
MOTHERBOARD for both versions: 210-7498-1
POWER SUPPLY MANUAL 270-0996 741-1498

The troubleshooting instructions for the 2200 MVP-128/512 system are identical to the instructions given in section 7.4 of the maintenance manual for the 2200 MVP (729-0584-A) with the following exceptions:

1) When following the troubleshooting instructions in the maintenance manual 729-0584-A, disregard references to the individual CPU and Memory boards which are no longer in the system. These boards are:

210-6789 Memory Controller
210-6790 Instruction Counter
210-6791 Stack
210-6792 ALU
210-6793 Register I/O
210-6788 Control Memory
210-7588 Control Memory
210-6787 Data Memory
210-7587 Data Memory

2) Wherever instructed to replace these boards, replace the new CPU/MEMORY board (210-8034), in it's place.

3) When a memory error has been diagnosed, do not attempt to replace the failed memory chip. These are not field-replaceable items. Replace the entire board.
Randy,
I don't know if it is worth pursuing with H/O, but perhaps we should tell the other Branches to be aware when installing MicroVPs of the possibility of screws just floating loose in the CPUs. In 2 of our installations in recent months (W0# S03B5 in 7/86 and W0# AK4DW in 3/87) we found this to be the case. In both instances, by luck, the CE heard them rattling around. If they are lodged somewhere and not rattling they could cause some damage on Power Up.

Tom Powell
The customer changed the MKE0 file and have not experienced any problem after that. So we can close this case.

Thanks for your help and concern in solving this problem.

Can not beat you in snowdepth since it is raining here.
But i have seen on TV that you on the Eastcoast have got enough snow.

Reagards

Anders

Till: Anders Backner
Ärende: P46 and DS hangs

Från: Mike Bahia
Avsänd: 96-01-11

Anders,
We have now set a record for most snow for the entire month of January with 39 inches & we still have 3 weeks left. Just wondering if you have heard anything on the PC2200 File Transfer problem with the P46 error.

Regards, Mike

Reply

CC: Mike Bahia
Subject: P46 and DS hangs

From: Mike Bahia
Date Sent: 12/13/95

Thanks for the update. Incidentally, we are up on you in snow depth w/ 2" on the ground & more snow due tomorrow. It has also been very cold for this time of year.

Mike

Original Memo

To: Mike Bahia
Subject: P46 and DS hangs

From: Anders Backner
Date Sent: 12/13/95

Mike,

I have been in contact with the customer PROFA about the P46 error and he will try to copy EMKE0 file from 2.7. But the customer was not sure if he had any time before X-MAS to test this, so we have to wait a couples of weeks before we have a update on this problem. I found out today that there have been an some misunderstanding about the OS version they are running at the
correct version should be 3.3. I am sorry that you have tested with another
version, but we will follow the corrections you have suggested anyway.

Now to something completely different the TEAC drives.
The serial number of the drives I have received are 713298 and 713397.
The U3 chip is revision "D" on both drives.
I have sent a wang office to Jean-Marie Coppens Wang European Logistics
and asked him to check other drives they have in stock.
I will keep you updated as soon as I hear any thing from Jean-Marie Coppens.

Regards, Anders

Great. Glad we could help.

Mike

Item Title: P46 error

Anders,

Not aware of this P46 error. According to my documentation, P46 is an
illegal or unknown microcommand in a GIO, or an illegal escape sequence sent
to a Printer Driver. What version of PC2200 do you have? I believe 2.0 is
the latest.

On the O/S for the Turbo, it can be ordered through SDC, Software
Distribution Control. Send an office memo to "SDC Customer Services".
Include your RDB & address. They can get it out to you within a couple of
days. I’ve attached the CSRN for Turbo Rel 1.30.01.

Friday, I received an office memo from Bjorn Franalund for a Turbo
Upgrade for Wang Sweden so we have got a go-ahead on that.

Best regards,

Mike

-------------------------------------- Original Memo --------------------------------------

To: Mike Bahia
From: Anders Backner
Subject: P46 error
Date Sent: 10/23/95

Hello Mike!

We have a customer in Sweden that are running WANG 2200 terminal-
emulation from Computer Concepts Corp..
They have upgraded their operating system from 2.7 to 3.5.
Since the upgrade they some times get P46 error when transferring
files from 2200 to PC.
They have tested to run on 2.7 again and did not experience any problems.
The program stops on the same program line which are a GIO command.
So my question is if you have heard of any similar problem on version 3.5.
WORKS ON V1.12S OR 50 SECTORS OR LESS.
Could you also please send me the Turbo software release 1.30.01.

Thanks in advance.

Anders Backner
PROBLEM STATEMENT : DU MONGH MICHEL DATE: 11/18/91 TIME: 07:28

Intermittent characters are changed during printout on a PM060.

 e.g. TOTAL becomes TOAl
 CONFIRMATION becomes CONFIRMATION
 COMMAND becomes COIMAND
 INTERNATIONAL becomes INTERNATIONAL

We have the impression that the problem occurs after an expanded print (using the escape codes of O.S. Release 2.6.2).

What we also noticed is that it is always the character following the "O" that drops the third bit in low order.

RESOLUTION TEXT : BAHIA MICHAEL E DATE: 06/21/93 TIME: 12:28

NC634. Customer has circumvented the problem using a PM017 printer. Call

 n be closed. Problem does not occur with the 386 or Turbo.
ASSIGNED: VAN MAELE VINCENT DATE: 06/21/93 TIME: 07:23
Customer is currently working with a PM017 which is working fine.
I already sent you a WO to tell this call could be closed.
Sorry for this delay but as Michel is not working with WANG anymore I did not
know his password. I just received an Office...
So this call can be closed finally. regards

Christian Cautaerts.

ASSIGNED: BAHIA MICHAEL E DATE: 06/02/93 TIME: 15:52
Please update!!

ASSIGNED: BAHIA MICHAEL E DATE: 05/14/93 TIME: 17:02
Will somebody in the field please update this call!!

ASSIGNED: BAHIA MICHAEL E DATE: 04/27/93 TIME: 10:38
Please update this call. Is this still an issue?

ASSIGNED: BAHIA MICHAEL E DATE: 03/26/93 TIME: 08:55
Please update. Can someone look into this call please. We need to find out
from the customer where this issue stands.

ASSIGNED: BAHIA MICHAEL E DATE: 03/12/93 TIME: 16:52
Please update. Respond to comment of 1/12. Is this still an issue?

ASSIGNED: BAHIA MICHAEL E DATE: 02/12/93 TIME: 08:47
Please update. See previous comment.

ASSIGNED: BAHIA MICHAEL E DATE: 01/12/93 TIME: 10:04
Please update. Workaround was being tested. Did it resolve the problem? If
so what was the workaround? Please respond.

ASSIGNED: BAHIA MICHAEL E DATE: 11/12/92 TIME: 16:00
Please update. See previous comment.

ASSIGNED: BAHIA MICHAEL E DATE: 10/30/92 TIME: 16:18
What is status at this account? Please update. A workaround was to be
tested. Did it resolve the issue? What was the workaround?

ASSIGNED: BAHIA MICHAEL E DATE: 07/10/92 TIME: 13:33
How is workaround working? On vacation for 2 weeks. Back 7/27. If need
assistance in meantime please send Wang Office to Michael Riley.

ASSIGNED: BAHIA MICHAEL E DATE: 06/03/92 TIME: 11:34
Update acknowledged.

ASSIGNED: DU MONGH MICHEL DATE: 06/03/92 TIME: 01:57
WANG LABORATORIES INC.

ASSIGNED: DU MONGH MICHEL DATE: 06/03/92 TIME: 01:57
Sorry for delay but I had to wait for commercial response.
At the moment we are trying a workaround with the FM017 printer, only using
the printer driver when printing french characters. Otherwise we use the print
ers hardware LF+CR capabilities to print w/o driver. Hope to have an answer fr
om the customer within 2 weeks.

ASSIGNED: BAHIA MICHAEL E DATE: 05/01/92 TIME: 08:14
Any news?

ASSIGNED: BAHIA MICHAEL E DATE: 04/08/92 TIME: 09:07
Received Wang Office from Raoul K. Software house is looking at situation
to determine if upgrade is workable solution for all concerned.

ASSIGNED: BAHIA MICHAEL E DATE: 04/02/92 TIME: 15:52
Please update call. Best solution for all concerned is to upgrade customer
to a CS/386 or Turbo. Has this been discussed with the customer?

ASSIGNED: BAHIA MICHAEL E DATE: 02/13/92 TIME: 15:44
John Marten came by today. Explained current status of problem as well as
suggested solution: upgrade to CS/386 or CS/386 Turbo. John has a handle on
the situation and will follow through with customer on the available options.
On vacation for 2 week starting 2/17. If need assistance please send Wang
Office to Mike Riley.

ASSIGNED: BAHIA MICHAEL E DATE: 02/05/92 TIME: 18:32
Tested against CS/2200 3.5 and same problem. Could not reproduce the problem
with the CS/386. Our best chance for resolving this would be to offer the
customer a CS/386 CPU brd. As mentioned there is a command to convert
programs from 'old' to 'new' format but some manual line splitting is likely
to be required. There may also be other changes required if any of
their programs reference status bytes in the O/S, make calculations based on
partition size or the 10th through 13th numbers to the left of the decimal po
int in a mathematical calculation. See TSB SWT 9225 from 12/26/89 for
additional information on software idiosyncrasies with the CS/386.
There are no resources currently available to fix bugs on the CS/2200 O/S.
It will be very difficult to justify getting resources to fix a problem with
the standard CS/2200 O/S unless the problem was affecting multiple users or
was a P1 Critical problem.
Also tested this problem on the new Turbo & it does not fail there either.
The additional speed of the Turbo makes the need to convert programs to 'new'

ASSIGNED: BAHIA MICHAEL E DATE: 02/05/92 TIME: 18:32
Comment For Last Lines Of Earlier Comment Of Old Format
format less critical. Disk I/O would probably be similar to the current
performance. 'New' format is recommended though. The Turbo would require
ASSIGNED: BAHIA MICHAEL E DATE: 02/05/92 TIME: 18:32
similar s/w changes to what may be needed on the CS/386. Please address the
possibility of upgrading to a 386 or Turbo. Will wait response on this.

ASSIGNED: DU MONGH MICHEL DATE: 02/04/92 TIME: 07:36
I did some more testing locally, and I found that the problem seems to be
related to the 'RELEASE TERMINAL TO ' command in conjunction with the
printer driver.
I followed the same sequence as mentioned on the copy sent with the diskette
but I did send a normal print statement in stead of the escape sequences.
This resulted in the same strange printout.

ASSIGNED: BAHIA MICHAEL E DATE: 02/03/92 TIME: 17:48
Have duplicated problem with software sent. Trying to narrow down problem.
Will test against CS/2200 3.5 & also against a 386 CPU & update you hopefully
tomorrow. Sorry for delay.

ASSIGNED: BAHIA MICHAEL E DATE: 01/24/92 TIME: 12:22
Software received. Will try to test out Monday.

ASSIGNED: BAHIA MICHAEL E DATE: 01/24/92 TIME: 11:43
Sorry for delay. Address is:
Wang Laboratories
1 Industrial Ave
Lowell, Ma 01851
Attn: Mike Bahia
M/S 019-690

ASSIGNED: DU MONGH MICHEL DATE: 01/20/92 TIME: 09:25
Will send you a copy of partitioning and appropriate program to regenerate the
problem. Please communicate your exact address.

ASSIGNED: BAHIA MICHAEL E DATE: 01/13/92 TIME: 15:54
CONTINUED FROM PREVIOUS UPDATE. Autoloaded following program to terminal 1,
partition 1:
10 SELECT PRINT 215 (132)
10 PRINT HEX(07 02 0C 02 0C 0F)
20 PRINT HEX(07 02 02 0F)
30 PRINT HEX(07 02 09 01 02 0C 00 0F)
35 A=0
40 PRINT HEX(07 02 0D 01 01 0E:PRINT"CONFIRMATION TOTALS"
50 PRINT HEX(0F)
60 PRINT "CONFIRMATION COMMAND INTERNATIONAL TOTALS OD";
70 A=A+1: IF A=60THEN35
80 GOTO 60
On terminals 2, 3, & 5 with the same partition # autoloaded a program
ASSIGNED: BAHIA MICHAEL E DATE: 01/13/92 TIME: 15:54
consisting of only lines 10 thru 30. Warm-booted the system 10 times with
both 3.4 & 3.5 O/S and never saw a problem. Only printed 20 lines or so each

ASSIGNED: BAHIA MICHAEL E DATE: 01/13/92 TIME: 15:54
Comment for Last Lines Of Earlier Comment Of Old Format
boot. Need exact information to duplicate problem. Suggest put O/S on disk
with exact configuration gen'ed which you had used to recreate problem along
with program to run. The sooner I can duplicate the problem the sooner we
can come up with a fix. Again the fastest alternative will probably be a 386

ASSIGNED: BAHIA MICHAEL E DATE: 01/13/92 TIME: 15:06
Unable to duplicate your problem with O/S 3.4 or 3.5. Brought system up
assigning 8 terminal & 16 partitions, each partition a full size bank. On
partition 1 autoloaded the following program:
10 SELECT PRINT 215(132)

ASSIGNED: BAHIA MICHAEL E DATE: 01/10/92 TIME: 17:53
Finally have a copy of 3.5 to try and dupe prob. All set to test Monday.
Information to duplicate is very sketchy. Most likely this O/S will not fix

ASSIGNED: BAHIA MICHAEL E DATE: 01/07/92 TIME: 17:44
Turbo but is not on any of the current '386' O/S's. We do have it on a test
release of the O/S which could be used to do the conversion. You can also
convert from 'NEW' to 'OLD'. The new command is $MOVE! which is explained
in simple detail in TSB HWT 9640 from 11/5/91. See page 5, item 14. I am
currently in the process of getting a copy of CS/2200 O/S 3.5 to test here &
to send you a copy. We have just moved within the Towers & are in the proces
s of getting everything setup & running again. Was hoping to get this done
today but should have this week.

ASSIGNED: BAHIA MICHAEL E DATE: 01/07/92 TIME: 17:34
There is now a command to simplify the conversion of programs from OLD or
existing VLSI and older format to 'NEW' or '386' format. The command is
operational on the

ASSIGNED: DU MONGH MICHEL DATE: 01/06/92 TIME: 04:13
Please send us the OS 3.5 so we can try out at customer site. Send it to the attention of Daniel Koot, please.

About the conversion to a CS/386 CPU this could give serious problems with the conversion of the programs.

Possibly there is an O/S bug. We are in the process of moving and with the holidays it may take a few days to try to duplicate the problem. If there is an O/S problem with 3.4 or 3.5 it may be difficult to get corrected. If the problem is non-existent with the 386 CPU board, would the customer be agreeable to upgrade to a 386 CPU board. If the old O/S is the problem, I think we should upgrade the customer free of charge. We have fixed some problems with drivers on the 386 that the customer here indicated had also occurred on the VLSI CPU although we never saw it occur on the VLSI.

I did get the problem after 2 days even with the escape code for the density change removed.

Now I removed all the escape sequences from the driver and using the same setup program from the 4 different partitions the printer started to print very strange characters. I thought the escape sequences should be ignored by the system.

Finally I installed a CS/386 CPU board using the driver from rel.3.4. So far everything worked fine. Maybe the problem is in the OS and not with the driver.

I hope we can have this resolved. The customer is not happy at all for the moment.

Are you saying you are unable to duplicate the problem with the hex code to change the density removed from the driver? Have not had chance to test yet. Will wait for your response on whether removing the density hex sequence from the driver affected your ability to reproduce the problem.

I am sorry but I forgot to tell you that to reproduce the symptom with the escape sequences the first hex code that is sent is ahex(?F). Secondly the character density selection seems to give the problem at the first printout after power up. When I removed the 10 pitch selection via @TBLEDIT the printer stayed at his initial setting.

So far for these testings.

Received diskettes today. I will try out things now. Thanks a lot.
ASSIGNED: BAHIA MICHAEL E DATE: 12/06/91 TIME: 15:56
Will try to reproduce problem with info provided.

ASSIGNED: DU MONGH MICHEL DATE: 12/06/91 TIME: 10:10
I don't think that the 12" page length is a problem because I've had the
problem with 11" page length too.
I was able to regenerate problem several times (but not always) in the follow-
ing way. 1. generate 16 partitions dedicated to 8 terminals.
2. after power up send the following escape sequences from at least
four different partitions. HEX(020C020C0F)
 HEX(020C0200F)
 HEX(020D0100C00F)
3. now start a normal printout starting with an expanded print comma-
dand HEX(020D01010E). The following lines in normal print mode.
This is a sequence the customer follows to prevent the printer from changing
to the default 'd1' printmode when starting a listing from any screen.

ASSIGNED: BAHIA MICHAEL E DATE: 12/05/91 TIME: 17:26
O/S 3.4 is on the way via DHL Express with the printer driver editor,
@TBLEDIT. Should be there by early next week. Give me exact details on how
you duplicated the problem with the Expanded Print & I will try it here.
as the 12" form feed appear to be a factor?

ASSIGNED: DU MONGH MICHEL DATE: 12/05/91 TIME: 08:53
Please do send us the copy of both the O.S and the DRIVER EDITOR.(asap)
The address
Wang Belgium
ATT. Daniel Koot
Zweefvliegtuigstraat 10,
1130 Brussels
BELGIUM

Thanks.
The printer has been changed already by a PM017 which was giving the same pro-
blem.
Another problem that appears now is that when a new page starts with an expan-
ded print command, the printer starts to print in overstrike combined with und-
erscore. The following lines are printed on top of each other. We were able to re-
generate this by sending the escape sequences for a 12pitch, 12 inch page le-
gth, double-strike mode several times from different partitions and then star-
ting a normal printout, like a listing.

ASSIGNED: BAHIA MICHAEL E DATE: 12/02/91 TIME: 16:53
If the printer fails at the site and not in the office then something is diff-
rent between the 2 sites. Has this printer been replaced? Has a 2nd printe-
ner given the same problem?
Can send you a new copy of 3.4 via mail. Please provide me with an address.
The printer driver editor is needed to change the hex sequence in the driver.
ASSIGNED: BAHIA MICHAEL E DATE: 12/02/91 TIME: 16:53
That could be sent also. William Sloep may have the editor.
Actually it is unlikely to be the driver itself. More likely to be some type
of hardware problem with the printer or possibly some strange O/S bug.
Possibly there could be a problem related to special charaters or language
differences with the US. Where a specific character seems to change, the
indications become strongly that a printer hardware problem may exist. Don't
think the driver is the problem but again an O/S can be sent with the driver
by express mail if you would like. Possibly the change to the O/S that does
not appear correct may be the problem.

ASSIGNED: DU MONGH MICHEL DATE: 11/29/91 TIME: 07:49
I assure you that no other equipment than that listed in above comments is
used. All terminals are 2236DE or 2536DW types.
All our copies of OS3.4 have the same strange foreast sector.
I found that in hexdump mode the first sequence that is printed after system
initialisation is the following hexstring:
0D 1B 40 1B 50 1B 33 1E 1B 43 42
I would like to know how the 1B401B50 part of this string can be removed
please. Or tell me who can help us with these printer drivers.
To end it is of no use to replace the printer. Because WANG cannot provide us
with a printer that does not require a 2200 driver.
The problem can be regenerated as told before.

Are there any other printers on the system besides the 2235 and the 1 PM060?
These could be terminal printers including any printers connected to PC's
used as terminals at times on the system. Is there any non-Wang 2200 H/W?
I'm sure if you have copies of O/S 3.4 the PM060 driver is good. Bring the
system on site up on a virgin Wang O/S 3.4 using the @PM060V0 that comes
with it and try to duplicate problem.
If no new information can be found, I suggest the printer be replaced.

ASSIGNED: DU MONGH MICHEL DATE: 11/25/91 TIME: 03:56
This printer never worked normally in the past. A PTR-call has been made in t
the past ref nbr. C800012421.
We also suspected the driver and therefore we already did install a new OS.
rel 3.4 (w/ new driver) but with the same results as before.
So if you think we might have a corrupted driver please send us a good one.
(maybe a hardcopy 'hexdump' of what should be in the driver).

ASSIGNED: BAHIA MICHAEL E DATE: 11/22/91 TIME: 09:04
Has this printer worked normally in the past?
Please test this printer with a new copy of O/S 3.4 using the PM060 driver
that comes with it. It sounds like the driver used on site has been altered
or somehow damaged. It is probably normal for the driver to default the
ASSIGNED: BAHIA MICHAEL E DATE: 11/22/91 TIME: 09:04
printer to the d1 font though the h/w is set for d2. The print driver would
probably need to be modified to change this.

ASSIGNED: DU MONGH MICHEL DATE: 11/21/91 TIME: 05:23
1. The system is setup with 8 terminals divided over 16 partitions, all of them
connected on MKE-controllers. There is 2235 printer on address 215, a PM060
on address 216 and a DS on address 310. Both the DS and PM060 are connected to
a Dual controller (210-7342 board).
2. All printer HW has been changed including I/O-cable.
3. The driver we use is the Wang driver purchased by OS.3.4. (see former commen-
ts)
4. The CPU-board and all controllers are also changed already. And the complete
system including terminals and printers are checked for grounding.
5. We also saw that in the file '@PM060V0' the sector before the last one con-
tains strange info. This sector looks like an indexsector.

ASSIGNED: DU MONGH MICHEL DATE: 11/21/91 TIME: 04:55
1. We also noticed that when the PM060 driver is selected off the printer is
printing correctly except that we have no LineFeed.
 eg.a: "SELECT DRIVER 216 OFF" outputs "total " no LF
 b: "SELECT DRIVER 216 " outputs " topal".
2. A second problem is that after system initialization the first printcommand
forces the PM060 printer to reset to a default font.
 eg. Printer is hardware set for font d2. After the printcommand the printer
starts printing in 'd1'-mode. This can be solved by sending the appropriate
escape sequence to set the printer into 'd2' mode. This can be very easy regen-
erated by simply rebooting the system and then sending a printcommand.

ASSIGNED: BAHIA MICHAEL E DATE: 11/20/91 TIME: 16:28
How many PM060 printers on this site?
Is this a system printer or is it connected to a terminal?
My 1st inclination based on the limited information you have supplied is
there is a hardware problem with the printer, printer cable, or printer
controller whether in the CPU or a terminal. Another area of concern would
be the printer driver. If the problem can be duplicated on site, load a
virgin Wang O/S, preferably 3.4 and set up the @PM060V0 print driver and try
to duplicate the problem. Is the Wang printer driver being used? Was this
printer working up until a certain time or was it just purchased? If it was
working, what has been changed that may have coincided with the problem.
Need more information.

ASSIGNED: DU MONGH MICHEL DATE: 11/18/91 TIME: 07:28
We were not able to duplicate the problem in shop, we saw only the problem at
customer site.
PROBLEM STATEMENT: GRANT ALBERT E J DATE: 02/08/91 TIME: 13:25
RE: Cust PTR C800000492 - A background program printing to a terminal printer with printer driver installed bypasses the printer driver. Character translation is not performed and LF is not transmitted. Problem exists with all O.S. Versions supporting a printer driver - ONLY in background printing mode to a terminal printer. There are no problems regarding the system printer at /215 and in foreground printing mode. (Orig Erwin Findt)

RESOLUTION TEXT: BAHIA MICHAEL E DATE: 04/02/93 TIME: 15:19
SC595. The printer driver being ignored in the background is fixed with rel 3.5 now being beta tested. Closing call.
ASSIGNED: BAHIA MICHAEL E DATE: 01/12/93 TIME: 10:08
This problem is resolved with O/S 3.5. If you would like a copy please let me
know via Wang office.

ASSIGNED: BAHIA MICHAEL E DATE: 10/06/92 TIME: 16:18
This problem is resolved with CS/2200 Rel 3.5. We are now sending out for
beta testing.

ASSIGNED: BAHIA MICHAEL E DATE: 09/10/92 TIME: 09:59
Q/A person no longer with us. Will need to test & release as time becomes
available and set up beta sites.

ASSIGNED: BAHIA MICHAEL E DATE: 04/03/92 TIME: 15:49
When will this release be available for distribution?

ASSIGNED: BAHIA MICHAEL E DATE: 03/11/92 TIME: 18:39
Tested problem against release 3.5 of the CS O/S. Problem is resolved.
Printer Driver works in background with release 3.5.

ASSIGNED: BAHIA MICHAEL E DATE: 01/31/92 TIME: 11:44
Have copy of 3.5. Will test.

ASSIGNED: BAHIA MICHAEL E DATE: 10/29/91 TIME: 10:05
Is this problem fixed in the new release from India?

ASSIGNED: BAHIA MICHAEL E DATE: 10/16/91 TIME: 08:45
Has this problem been fixed with the release from India?

ASSIGNED: BAHIA MICHAEL E DATE: 08/15/91 TIME: 10:11
Release will be 3.5.

ASSIGNED: RILEY J MICHAEL DATE: 08/09/91 TIME: 09:32
VLSI BASIC-2 Rev. 2.5 is in for finial testing... Release soon...

ASSIGNED: BAHIA MICHAEL E DATE: 08/07/91 TIME: 14:15
When is fix from India expected?

ASSIGNED: BAHIA MICHAEL E DATE: 07/12/91 TIME: 16:59
When will we have a fix for this problem?

ASSIGNED: GRANT ALBERT E JR DATE: 02/08/91 TIME: 13:25
Print a report in background mode using the printer driver to a terminal
printer requiring the LF character (PM016, etc). Line feeds will not be sent
to the printer.
May 1990
Wang Laboratories, Inc.
One Industrial Avenue
Lowell, MA 01851

Dear Wang CS/2200/386 user,

The enclosed two diskettes represent the latest release 3.4 of the CS/2200 MVP (VLSI) operating system software. This software will shortly be sent out with every CS/2200/VLSI system replacing all CS/2200 Operating System diskettes which have previously been available. System Utilities have been modified in release 3.4 in a number of modules.

The O.S. software represents improvement over release 3.3 which has been available.

Enhancements - Enhancements to the software are in:

. $PACK/$UNPACK -- several new formats have been added,
 7d0y packed decimal with binary overflow format.
 8d0y signed binary format.
 9d0y unsigned binary format.
 A1xx compressed alphanumeric format.

. $FORMAT -- several new field formats have been added,
 O+xxx .dd packed decimal with binary overflow format.
 B+xxx .dd signed binary format.
 Bxxx .dd unsigned binary format.
 Cxxx compressed alphanumeric format.

. BIN and VAL statements -- where the length may be specified by a numeric variable or the digits 1,2,3 or 4.

. $PSTAT in the I/O in use column will in addition return the address of a device requested which may be hogged by another partition.

Known problems with this release are currently undetermined. We will try to notify you if we find there are any other problems. Please notify me if you have any problems.

Known problems within the support utilities. None.

Subsequent operating system updates will be available through the Wang Regional offices.

Sincerely,

Tyler B. Olsen.
CS/2200/386 Support
MS 014-890
Tel. 508/967-0339 Fax. 508/458-0620.
Diskette label: CS/2200 Multi-User BASIC-2 Release 3.4
Diskette label: CS/2200 Multi-User BASIC-2 Release 3.4

Diskette 1 of 2:
Index = 7 Current End = 1208 End.Cat area = 1231
AP = 19

<table>
<thead>
<tr>
<th>File</th>
<th>Date</th>
<th>AP</th>
<th>Used</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKUP</td>
<td>01/09/89</td>
<td>55</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>01/09/89</td>
<td>55</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BOOT</td>
<td>03/27/90</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CLOQ</td>
<td>05/09/86</td>
<td>24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>03/20/90</td>
<td>53</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>04/12/90</td>
<td>90</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>03/21/90</td>
<td>27</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MENU</td>
<td>02/01/85</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>07/17/89</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>02/02/90</td>
<td>39</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>02/02/90</td>
<td>29</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>02/12/90</td>
<td>13</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>01/09/89</td>
<td>54</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>01/25/90</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>04/13/90</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>04/13/90</td>
<td>54</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>04/09/90</td>
<td>22</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>04/09/90</td>
<td>41</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>04/09/90</td>
<td>24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>START</td>
<td></td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AD = 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.STARTD</td>
<td></td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@</td>
<td></td>
<td>56</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@DATE</td>
<td></td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@DM50/V0</td>
<td></td>
<td>11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@LSRV1</td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>MVP</td>
<td>349</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>MINXEO</td>
<td>75</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@PMO10V2</td>
<td></td>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@PMO16V3</td>
<td></td>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@PMO17V3</td>
<td></td>
<td>12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@PMO18V3</td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@PMO0VO</td>
<td></td>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>SYSFILE</td>
<td>35</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Multi-User BASIC-2 Release 3.4
(c) Copyright Wang Laboratories, Inc. 1990
All rights reserved.

2236MXE DEV RLS 3.10 (BASIC II)

Diskette 2 of 2:
Index = 7 Current End = 430 End.Cat area = 1231
AP = 3

<table>
<thead>
<tr>
<th>File</th>
<th>Date</th>
<th>AP</th>
<th>Used</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAVFU</td>
<td>05/09/86</td>
<td>55</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>05/09/86</td>
<td>55</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DG</td>
<td>02/01/85</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MRTIAN</td>
<td>08/15/89</td>
<td>70</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AD = 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>@A</td>
<td></td>
<td>107</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@B</td>
<td></td>
<td>55</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@C</td>
<td></td>
<td>56</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@D</td>
<td></td>
<td>55</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@E</td>
<td></td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@P</td>
<td></td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>@backslash</td>
<td></td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
PROBLEM NUMBER: C800000891
PRIORITY: P3

CUS NAME: WANG DEUTSCHLAND , PRODUCT SUPP
CUS NUMBER: G1 00015956025

PROBLEM TYPE: ESC
PRK TO PROB NO: P210001581

CUS CONTACT: ERWIN FINDT
CUS CONT PHONE: 06-9/6-675- 295
CUS ADDRESS 1: LYONER STR. 26
CUS ADDRESS 2:
CUS ADDRESS 3:
CUS CITY: FRANKFURT/ M.
CUS ST/PROV:
CUS ZIP: 6000 - CUST RDB: G2100
CUS COUNTRY:

RDB ASSIGNED: 8760
PERSON ASSIGNED:

PART NUMBER:
PART NUM REV:
SERIAL NUMBER:

CALL TRKG DATE: 06/14/89 11:00
CALL TRKG NO: EFI0000002

NETWORKED: N
RES DEPLOYED:

ORG ACT/SYM/ACN:
DATE ENTER PTR: 06/14/89
DATE TO R&D: 0198900115
WKDAYS IN R&D: 210.81
TOT WKDAYS OPEN: 368.41

STATUSE CODE: S 0 637
STATUSE ABBREV: REPEAT PRB
STATUSE DESC: REPEAT PROBLEM

PROBLEM SUMMARY: FINDT ERWIN
DATE: 06/14/89 TIME: 06:41
The system generation program @GENPART of basic-2 vers. 3.3 has problems
to display the correct number of sectors available for ramdisk and to show
the whole memory banks.
Detailed description and solution:
1. In some circumstances where the program jumps from line 2630 to 2640 and
2635 will be skipped the value of available sectors for ramdisk is wrong
and must be decremented by one. The following changes will remove the
problem: Delete ' N8=N8-1 ' in line 2635.
Change ' PRINT N8 ' to ' PRINT N8-1 ' in line 2640.
2. To support 8MB CPU change ' M2=16*64*4 ' to ' M2=128*16*4 ' in line 2620.
3. If /340 is not in the device table the SF'00 function ' CLEAR PARTITIONS '
displays only the available memory banks which are used by the loaded
configuration.

RESOLUTION TEXT: BAHIA MICHAEL E DATE: 11/12/90 TIME: 17:24
This problem has been fixed in Rev. 3.4 of BASIC-2 O.S. JMR
3C410. Problems 1 & 2 referring to # of sectors available in RAM Disk & 8 Mb
of memory corrected with 3.4 O/S.
Problem displaying correct amount of memory when running @GENPART while sys
is up when all memory is partitioned and address 340 is in Device Table is
anomaly. Problem will be looked at if & when a release 3.5 or equivalent is
necessary. Sending call back to field to be closed as agreed.
ASSIGNED: BAHIA MICHAEL E DATE: 11/12/90 TIME: 17:25
Transferring calling back to field to be closed as agreed.

ASSIGNED: FINDT ERWIN DATE: 11/01/90 TIME: 09:18
Because it happens only if the system is already configured and not during
the configuration after booting the system I'm agree to close this problem.

ASSIGNED: BAHIA MICHAEL E DATE: 10/31/90 TIME: 11:51
Have duplicated your problem both on an LVP & a VLSI. Apparently this
problem shows up anytime you have a non-386 CPU and all memory is partitioned
ed to terminals and address 340 is in the device table. Then if the system
is up & @GENPART is loaded and you key SF'00 to Clear Partitions an extra ban
k is shown. This will probably happen on any memory size up to 1 Meg. As
this is a somewhat insignificant problem there are no plans to fix it unless
a new non-386 O/S comes out. The fix you offered would have to be fully test
ed before they can implement it. The job is a bit complicated now where
@GENPART must now work with both the VLSI & 386 CPU's. Can we close this
call?

ASSIGNED: BAHIA MICHAEL E DATE: 10/04/90 TIME: 08:04
Have not been able to reproduce this problem with any of the single brd CPU's.
This appears to only be a problem with the old multi-board MVPs & LVPs.
Trying to locate hardware to test the 192K configuration.

ASSIGNED: BAHIA MICHAEL E DATE: 10/01/90 TIME: 16:18
Update acknowledged. Will test out.

ASSIGNED: FINDT ERWIN DATE: 10/01/90 TIME: 11:20
I found this problem on my LVP with 192K. The number of terminals is three.
The number of partitions is also three. Each partition is using the whole
bank because all memory is divided by using SF'2. Ram disk address /340 is
in the device table.
I boot the cpu with this configuration and and run @GENPART. If I press SF'0
for Clear Partitions I get four memory banks displayed but there are only
three. This happens only if /340 is configured. If /340 is not there the
defined three banks will be listed.

ASSIGNED: BAHIA MICHAEL E DATE: 09/28/90 TIME: 08:27
Tried to duplicate the memory problem you listed as number 3 in your last upd
ate & could not. Could you provide me with details, memory size & how system
is partition so that I can duplicate the problem.

ASSIGNED: BAHIA MICHAEL E DATE: 09/26/90 TIME: 09:04
Update acknowledged.

ASSIGNED: FINDT ERWIN DATE: 09/25/90 TIME: 07:53
Problem 1: has been fixed in O/S 3.4
Problem 2: has been fixed in O/S 3.4
Problem 3: SF'O00 displays only the available memory used by the loaded configuration. This is correct, because SPACEK can find the whole system memory only if the system is still not configured. But if all banks of system memory have been configured for partitions and /340 is defined SF'O00 shows you one additional bank. That's wrong and can be solved by deleting 'IF N9/256 >81' in line 2450 of @GENPART.
Problem 4: has been fixed.
The solution for problem 3 should be included in the next version of @GENPART and this PTR should be closed.

ASSIGNED: BAHIA MICHAEL E DATE: 09/18/90 TIME: 14:02

ASSIGNED: BAHIA MICHAEL E DATE: 09/17/90 TIME: 16:37
Mailed O/S 3.4 to you with the R1.K prom for PTR C8/2347. Please update as soon as received.

ASSIGNED: BAHIA MICHAEL E DATE: 09/17/90 TIME: 14:18
Will have O/S 3.4 sent again to you.

ASSIGNED: FINDT ERWIN DATE: 09/17/90 TIME: 02:28
Not received until now.

ASSIGNED: BAHIA MICHAEL E DATE: 09/14/90 TIME: 13:03
3.4 O/S was resent to you. Have you received it?

ASSIGNED: BAHIA MICHAEL E DATE: 09/12/90 TIME: 11:18
Update acknowledged. Will verify correct O/S is sent out.

ASSIGNED: FINDT ERWIN DATE: 09/11/90 TIME: 06:44
Received WO data for O/S 3.4 from Mike Riley today but in fact it was CS/386 vers. 0.16. Did send memo to mike to get the corrected data.

ASSIGNED: BAHIA MICHAEL E DATE: 09/10/90 TIME: 14:26
Sorry for delay. Between moving to new building, short holiday week, & inaccessibility of PTR due to software upgrade, just getting to this. Will either Wang Office you 3.4 or mail it to you this week. Please provide mailing address in case unable to Wang Office promptly.

ASSIGNED: BAHIA MICHAEL E DATE: 08/28/90 TIME: 15:34
Do not have the facilities to send 3.4 via Wang Office myself. May be able to have it sent to you next week via Wang Office. This O/S should have already been distributed thru to all normal channels just as VS S/W would. Please try these channels or Willem Stoep from the PRC in the Netherlands may be able to help. Otherwise will not be able to send out to you until at least next week.
ASSIGNED: FINDT ERWIN DATE: 08/28/90 TIME: 09:14
Please send me O/S 3.4 by WO. Thanks!

ASSIGNED: BAHIA MICHAEL E DATE: 08/27/90 TIME: 16:00
Please test with 3.4 for these problems & let me know your findings. These
problems should be fixed.

ASSIGNED: BAHIA MICHAEL E DATE: 07/31/90 TIME: 12:28
These problems have been corrected or made moot with O/S 3.4. The RAM Disk
sector count has been corrected. The other 2 problems should no longer be
valid. Please test against 3.4 & let me know your findings.

ASSIGNED: FINDT ERWIN DATE: 07/13/90 TIME: 02:14
Now this PTR is there again. The problem was that I had linked that PTR and
after that it had the status 'owner ship tranfered YES' but I was still
assigned. Please link it for me to P210001581.

ASSIGNED: COLLETTE RICHARD L DATE: 12/15/89 TIME: 15:54
update acknowledged. ptr will be transfered to you for linking.

ASSIGNED: FINDT ERWIN DATE: 12/13/89 TIME: 10:20
Please respond to my update of the 1th of december and send the call back
for linking now. Thank you!

ASSIGNED: FINDT ERWIN DATE: 12/01/89 TIME: 06:14
Please transfer the call back for linking now. Thank you.

ASSIGNED: BLAISE RUTH ANN DATE: 11/20/89 TIME: 13:15
Per J. Buci's memo of July 1989, the responsibility of linking is done by
the field, district,region etc when product ptr has been generated. If you
do not have access to do the linking then please contact your ptr
administrator.

ASSIGNED: FINDT ERWIN DATE: 11/20/89 TIME: 05:03
Because I'm unauhorized for Customer Link I send this call to you again so
you are able to do the link.

ASSIGNED: FRUNZ DUANE F DATE: 11/07/89 TIME: 11:08
Erwin: see Status comment dated 11/03.

ASSIGNED: BAXI KIRIT DATE: 11/07/89 TIME: 08:35
Germany deals directly with TSO

ASSIGNED: FRUNZ DUANE F DATE: 11/03/89 TIME: 08:57
Our link product PTR number is: P210001581
Our new PTR policy says that after we create the product problem that we
transfer the call back for the RSC/field to link to Product problem.

ASSIGNED: STETSON DONALD P DATE: 06/27/89 TIME: 09:53
No Customer problems to R&D please.

ASSIGNED: DATE: 06/14/89 TIME: 08:28
To USA....Please action this PTR on behalf of Hang Germany.

ASSIGNED: FINDT ERWIN DATE: 06/14/89 TIME: 06:41
4. If you change a old configuration under certain circumstances 'save con-
figurations' creates ERR S17 in line 928 because the value of Q2$(I) is
HEX(000000). The problem depends of the prefilled printer driver area.
Sometimes Q2$(I) is Hex(202020) or HEX(000000). The solution is:
Replace "IF Q2$(I) = ' ' THEN 930" by "IF Q2$(I)=HEX(000000) OR Q2$(I) =
HEX(202020) THEN 930":

Wang Laboratories, as part of our continuing commitment to the new CS product line, announces another CS-S packaged system and enhancements to Release 3.1 of the Operating System. The new "S" package, designated the CS-S12, contains a 1MB CPU, a 2275MUX disk multiplexer, a 22CC80 disk multiplexing controller, a 2236MXE terminal controller, and two workstations.

The Generalized Printer Driver (GPD), contained within release 3.1 of the Operating System (OS), now supports the LCS15-DSK laser printer and the new DM50/300 dot-matrix printer.

HIGHLIGHTS

- Encourages existing MICROVP and CS users to order a second CPU by providing a system package (CS-S12) that contains all the necessary components to multiplex a second CPU to their existing disk storage system.

- Increases the price/performance ratio of the CS by adding a multiplexed CPU.

- The GPD now supports laser printers which expect ASCII escape sequences instead of hexadecimal.

PRODUCT DESCRIPTION

CS-S12

The new "S" package, designated the CS-S12, contains a 1MB CPU, a 2275MUX, a 22CC80, a 2236MXE, and two workstations. In order for a MICROVP or CS user to add a second CPU that can be multiplexed to their data storage cabinet, a series of components (which the user may or may not be familiar with) have to be ordered in addition to a CPU. The CS-S12 is so configured that upon receipt of the CS-S12, the 2275MUX is inserted in CPU one and cable-connected to the 22CC80 in CPU two. By connecting the DS (Data Storage Cabinet) to the disk controller port on the 2275MUX (if using a 2280 Phoenix, connect the 22CC14 CPU to the 2275MUX disk port), both CPUs can now share common disk files.

Operating System

Release 3.1 of the OS provides support for up to 8MB of main memory, four enhancements over release 3.0 and correcting six known anomalies in release 3.0. When FCS commences (1/15/88), release 3.1 will contain the following additional enhancements.

Printer Drivers: The Generalized Printer Driver (GPD) has the following enhancements:

- Supports laser printers which expect ASCII escape sequences instead of hexadecimal. @LASRJVO is a new printer driver table supporting the LCS15-DSK printer.
@DM50/VO is a new printer driver table that supports the new DM50/300 dot-matrix printer.

Further optimization of the driver logic has improved output performance for printers not directed through a printer driver.

Anomalies: The following are additional known anomalies in 3.0, corrected in release 3.1:

- Entering a program line that is too long is now flagged with the appropriate error.
- A partition put to sleep with $BREAK can now be wakened by an $ALERT from another partition.
- Certain $GIO sequences now release the hogged disk at the end of a sequence.
- Output to the null device, /000 is now faster.
- The @MXEO microcode has been modified to correct two problems:
 - In TC mode, when sending 6-bit or 5-bit data, if a character was shifted relative to the previous character sent to the MXE, the shift code was transmitted but the character itself waited until another character was sent to the MXE. Now all characters are transmitted as sent to the MXE.
 - When using a 2436WP terminal, under certain conditions the print stream to the local printer (device 204) would stop and not resume until the 2200/CS was re-booted. This has been fixed.

PRODUCT STRATEGY
Wang has an answer for the CS/MICROVP user with the need for more workstations, partitions, etc., than a single CPU can support - multiplexing. Two or more CS CPUs multiplexing a DS can be an effective answer, and in some cases, more effective than a non-Wang CPU that supports more than 16 workstations. Disk multiplexing allows two to 16 MICROVPs/CSs to share a disk drive or combinations of disk drives (up to three). The multiplexer enables all systems to have concurrent access to the disk(s). Multiplexing of a disk or disks provides the following benefits:

- By distributing the workload to multiple processors, users increase their total system's program and user capacity and individual CPU throughput.
- Multiple systems can share a common disk drive or drives to reduce total systems costs.
- Multiple systems have access to common disk files, eliminating the need for redundant files.
F.Y.I.

When you load a program and enlarge it (without free space) and then try to resave it, the resave will first scratch the program and then in trying to save it, you will get a D81 (file full). At this point, if you clear memory and try to reload it, you will get a D82 (file not found) since in the catalog, it is scratched. This is an odd. The problem in OS 3.0 was that you were getting the D81 but the program appeared to be ok in the catalog when internally, it was scratched. This was corrected in OS 3.1.
Wang Laboratories, Inc.
1 Industrial Ave.
Lowell, Mass. 01851.

Wang Multi-user BASIC-2 for beta site testing resides on two diskettes. (1 if red label DSDD).

Diskette 1. Labelled Wang Multi-user BASIC-2 1 of 2 Rel. 3.0.13.
Diskette 2. Labelled Wang Multi-user BASIC-2 2 of 2 2/12/87.

As a result of beta tests reported thus far, 4/30/87, several problems have been addressed in the Wang Multi-user BASIC-2 beta site release diskettes.

. @BACKUP — Disk address callout and $CLOSE to free hogged devices.

. @GENPART — Improved code, removed bell on device address entry
 Added display of ""F"" (function keyed) and improved exit to main menu.

. @INSTALL — fixed names of printer driver modules; see @MOVE1.

. @MOVE1 — improved disk address callout.

. @MOVEFIL — default of Move all prompt changed to "N"; see @MOVE1.

. @RECOVER — improved disk address callout.

. @MVP — Microcode file
 1 A problem with $ RELEASE TERMINAL caused a hangup. This problem
 occurred most often when using system with MXD controllers.
 2. $ RELEASE TERMINAL TO "name"
 ERROR X77: Invalid Partition Reference
 3. $OPEN 100, /340
 4. VERIFY of a 2275 diskette was slow.
 5. Halt/step TRACE into another partition showed ERR A06 protected program.
 6. (.07) Loading a protected program gave a D88 error, if copied via ISS.
 7. (.08) $OPEN addr, /ddd now will test disk for 16 ms.
 8. (.09) $FORMAT DISK T /340 allowed.
 9. (.09) $PSTAT = ALL(00), was cleared to spaces.
 10. (.09) LIST DT added /Axx-xxx items.
 11. (.10) A$ = SELECT TC / TERMINAL
 12. (.11) Print driver
 13. (.12) LOAD ! unprotected sectors. Load of a program using the old
 scramble technique will now allow mix of scrambled and unscrambled code.
 14. (.13) reassembly of @MVP ucode to incorporate new printer driver files.

. @PM010V2, @PM016V2, @PM017V2, @PM018V2, and @LCS15V0 modified in 3.13.

Tyler B. Olsen
Beta site coordinator 617-967-0339.
FAILURE USING MVP3.0 w/ 1 MEG OR HIGHER BOARDS

Fails before GENPART screen w/ error PS6 on line 165.

165 IF J <= Ø THEN RETURN: B = B + 1: A(B) = MIN(J,56): J = J - 56: GOTO 165

FIX - EDIT/RECALL 165 & CHANGE AS FOLLOWS:
165 IF J <= Ø THEN RETURN: B = B + 1: B = MIN(B,8): A(B) = MIN(J,56): J = J - 56: GOTO 165

★★★ ATTEMPTING TO USE ANY MEMORY BEYOND 512K COULD CAUSE A FATAL SYSTEM ERROR, PEDM OR PECM.

This is a temporary fix which will allow a 1 MEG OR GREATER BRD TO WORK WITH 3.0 UNTIL 3.1 IS AVAILABLE TO THE CUSTOMER. MUST HAVE 3.1 TO ACCESS MEMORY BEYOND 512K.
MVP 3.0 Operating System

Requires 28K Control Memory

Has RAM Disk - Address 340 (must be in CENPAR1)

Gets all Data Memory not gen'd to Terminals

Works out to 56K / Bank = 224 sectors
Release 3.0 for Multiuser BASIC-2 Available; Answers to Data Storage
by Tyler Olsen
Wang Labs, Inc.

The latest version (Release 3.0) of the Wang Multiuser BASIC-2 Operating System is now available. Release 3.0 OS will operate on any CS or any 2200 CPU with 28K of control memory. The software is shipped with the new CS units; it is available as a WSS automatic update; or may be ordered individually by calling WangDirect. The release contains the software on diskette, and four documents: "2200 Programming in BASIC," "BASIC-2 Utilities Reference Manual," "Customer Service Release Notice for 3.0," and "Multiuser BASIC-2 Reference Manual."

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Media Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>195-0049U-X</td>
<td>3, 5, 9</td>
</tr>
</tbody>
</table>

Product Name
Wang Multiuser BASIC-2 Operating System 3.0

There have been many questions about the Wang Data Storage (DS) cabinet for the Wang CS or 2200 system. The DS can be cabled to either a disk, disk/printer, or triple (disk/printer/terminal) controller in an I/O slot of the CPU. If a DS is multiplexed with other CS or 2200 CPUs, it can plug into the 2275MUX controller board.

The DS cabinet contains four compartments, each designed to hold two half-height or one full-height devices. The upper two visible compartments are accessible from openings in the front panel; the lower two interior compartments are covered by the front panel. (Figure 1.)

The DS cabinet contains cables for a streaming tape cassette drive (STCD), a floppy drive, a Winchester removable, and a daisy chain cable to handle up to four Winchester drives (four fixed or three fixed and one removable). Two eight position switches are used for assignment of

![Figure 1. The Data Storage Cabinet for the CS/2200](image-url)
addresses to the fixed disks. SW.1 is used for drives 1 and 2; SW.2 for drives 3 and 4. The maximum number of logical disk surfaces for SW.1 and SW.2 is 14 each. Table 1 shows how device addressing on the CS works.

The fixed drive in the data storage cabinet uses one address per logical disk surface; e.g., four surfaces would use four addresses. Table 2 shows the amount of storage available for the fixed Winchester disks for the Data Storage Cabinet.

Table 1. DS Addressing on the CS

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>UNIT 10</th>
<th>UNIT 20</th>
<th>UNIT 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Devices - 40 bit off</td>
<td>/D10</td>
<td>/D20</td>
<td>/D30</td>
</tr>
<tr>
<td>Diskette</td>
<td>/D11</td>
<td>/D21</td>
<td>/D31</td>
</tr>
<tr>
<td>SW.1</td>
<td>thru</td>
<td>thru</td>
<td>thru</td>
</tr>
<tr>
<td>Hard Disk</td>
<td>/D1E</td>
<td>/D2E</td>
<td>/D3E</td>
</tr>
<tr>
<td>Removable</td>
<td>/D1F</td>
<td>/D2F</td>
<td>/D3F</td>
</tr>
<tr>
<td>Slave Addresses - 40 bit on</td>
<td>/D50</td>
<td>/D60</td>
<td>/D70</td>
</tr>
<tr>
<td>DPU RAM Disk</td>
<td>/D51</td>
<td>/D61</td>
<td>/D71</td>
</tr>
<tr>
<td>SW.2</td>
<td>thru</td>
<td>thru</td>
<td>thru</td>
</tr>
<tr>
<td>Hard Disk</td>
<td>/D5E</td>
<td>/D6E</td>
<td>/D7E</td>
</tr>
<tr>
<td>Streaming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tape</td>
<td>(STCD)</td>
<td>/D5F</td>
<td>/D7F</td>
</tr>
<tr>
<td>Cassette</td>
<td>Disk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Table of fixed Winchester storage capacities

<table>
<thead>
<tr>
<th>Data Storage Type</th>
<th>#Available Logical Disk Surfaces</th>
<th>Amount of Available Storage Per Surface</th>
<th>Total Available Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-20</td>
<td>2</td>
<td>10 mg</td>
<td>20 mg</td>
</tr>
<tr>
<td>DS-32</td>
<td>2</td>
<td>16 mg</td>
<td>32 mg</td>
</tr>
<tr>
<td>DS-64</td>
<td>4</td>
<td>16 mg</td>
<td>64 mg</td>
</tr>
<tr>
<td>DS-112*</td>
<td>7</td>
<td>16 mg</td>
<td>112 mg</td>
</tr>
<tr>
<td>DS-140</td>
<td>14</td>
<td>10 mg</td>
<td>140 mg</td>
</tr>
</tbody>
</table>

DS-112 is a DS-140 with SW.1 or SW.2 switches set by installing CE for DS-112 operation.
Summary of BASIC-2 enhancements

PROGRAM ENTRY AND DEBUGGING

Upper/lower case program entry

Programs can be entered using either upper or lower case characters. BASIC-2 words are automatically translated to uppercase when the line is entered.

Descriptive error messages

Descriptive error messages are displayed whenever the system detects a program error during entry or execution.

STOP

Immediate mode STOP sets a program breakpoint so that execution will stop just before the specified line is to be executed.

TRACE

TRACE output has been enhanced to show line numbers and statement separators for statements traced. Also, alphanumeric values are displayed in hex, as well as in ASCII.

LIST DT

The information displayed by LIST DT is now in a readable format.

LIST ERROR - LISTS ALL ERRORS WITH MESSAGES
LIST hex literals

The listing of hex literals has been improved by separating pairs of hex digits by spaces.

LIST COM/DIM

LIST COM/DIM statement lists the currently defined variables and their current values.

LIST S

The LIST S option is assumed for list output to the CRT.

LIST V - LISTS ALL VARIABLES IN PROGRAM

PROGRAM STATEMENTS AND FUNCTIONS

BIN and VAL functions

The BIN and VAL functions have been enhanced to handle larger binary values. Now these functions can deal with 3 and 4 byte binary values.

DO groups

A group of statements can be specified for conditional execution in IF, ELSE, or ERROR statements.

IF THEN DO: IF TRUE DO'S FOLLOWING STATEMENTS TILL COMES TO AN 'END' THEN RETURNS TO 'IF THEN DO': IF NOT TRUE WILL GO TO 'ELSE DO' STATEMENT.
SELECT function

The SELECT function allows the current device selections to be assigned to alpha variables.

ERR$ function

The ERR$ function returns the descriptive error message for a specified error code.

DISK OPERATIONS

RAMdisk

The unused portion of data memory can be allocated for use as a high-speed logical disk device.

LIST DC

LIST DC has been enhanced to optionally only list a specified subset of files. The subset to be listed is specified by file type or file name mask.

SAVE

Programs saved with SAVE <W> are saved more efficiently and typically occupy less disk space than those saved in the old SAVE format. Programs saved with SAVE <W> can only be loaded by Multiuser BASIC-2 Release 3.0, or later.

Scrambled programs saved with SAVE <W> can only be loaded by Multiuser BASIC-2 Release 3.0, or later.

LIST of a protected program will now list REM! statements. REM! statements can be used for essential program documentation, such as, titles, instructions, and copyright messages.

RESAVE

RESAVE facilitates updating program files by combining the SCRATCH and SAVE statements.

RENAME

RENAME changes the name of a file.

DATLOAD/SAVE BM

DATLOAD BM and DATASAVE BM allow for reading or writing more than one sector in Absolute Sector Address mode. According to size of variable.

MOVE

The MOVE statement has been enhanced to allow one to specify the size of the index and catalog area to be created on the destination platter.

PRINTER DRIVER

The printer driver has been improved to use less CPU time and enhanced to support other print options.
Corrected Anomalies

- Partitions put to sleep by $BREAK$ would sometimes be awoken if the $BREAK$ statement were located soon after a KEYIN statement with two line numbers or the beginning of a program.

- If an error occurred during the execution of a MOVE platter statement between two different disk units, one of the disk units could remain hogged.

- Download of the MIE code during Master Initialization could fail if the MIE file contained data beyond the trailer record in the $MIEO$ file.

- The underlines in a LINPUT field wrapping from one screen line to the next would sometimes not be erased when the LINPUT was completed.

- $OPEN$ use with multiplexed disk units has been improved. $OPEN$ with the line number option will now branch to the specified line if the multiplexed disk to be opened is in use by another CPU. Previously, the $OPEN$ statement would wait until the disk became available, even though the line number option had been specified.
Wang Multi-user BASIC-2 for beta site testing resides on two diskettes. (1 if red label DSDD).

Diskette 1. Labelled Wang Multi-user BASIC-2 1 of 2 Rel. 3.0.05.
Diskette 2. Labelled Wang Multi-user BASIC-2 2 of 2 2/12/87.

As a result of beta tests reported thus far, 3/12/87, several problems have been addressed in the Wang Multi-user BASIC-2 beta site release diskettes.

The following problems were addressed and fixed in 3.0.02:

1. File "@INSTALL" line 810 update of file names for printer drivers.

2. File "@MVP". A problem with $ RELEASE TERMINAL caused a hangup. This problem occurred most often when using systems with MXD controllers.

3. $IF ON 100, /340

4. VERIFY of a 2275 diskette was slow.

5. Halt/step TRACE into another partition showed ERR A06 protected program.

Tyler B. Olsen
Beta site coordinator 617-967-0339.
TABLE OF CONTENTS

Section

1.0 Release Abstract ... 1

2.0 Pre-Requisites
 A. Hardware .. 1
 B. Software .. 1

3.0 Restrictions and Special Considerations 1

4.0 Enhancements ... 1

5.0 Problems Corrected ... 2

6.0 Known Anomalies ... 3

7.0 Media Contents ... 3
1.0 RELEASE ABSTRACT

Customer release 2.7 corrects known anomalies with the 2200 MVP.BASIC-2 Operating System and system utilities. The functionality and user interface of the @FORMAT utility were enhanced to provide support for the new generation of disk drives. Support was added to the operating system for the 2258 (2200/VS 928 Data Link) and to support the PM017 and PM018 printers.

2.0 PRE-REQUISITES

A. Hardware

A 2200 LVP, SVP, or MVP with at least 28Kb of control memory.

B. Software

None.

3.0 RESTRICTIONS & SPECIAL CONSIDERATIONS

None.

4.0 ENHANCEMENTS

file @MVP
The disk operations have been enhanced to support the 2258 (2200/VS 928 Data Link).

file @FORMAT
The format utility has been rewritten to provide additional functionality and a better user interface.

file @PM017V1
This file has been added so that the PM017 (400 CPS Epson Matrix) printer may be supported by the Generalized Printer Driver.

file @PM018V1
This file has been added so that the PM018 (60 CPS Juki Daisy Wheel) printer may be supported by the Generalized Printer Driver.
<table>
<thead>
<tr>
<th>PROBE</th>
<th>PROBLEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>#008620</td>
<td>@MOVEFIL does not span files correctly.</td>
</tr>
<tr>
<td>#008843</td>
<td>Restricting disks to single partitions did not work.</td>
</tr>
<tr>
<td>#008844</td>
<td>INPUT statement errors 'eating' user memory.</td>
</tr>
<tr>
<td>#008852</td>
<td>$BREAK! does not work.</td>
</tr>
<tr>
<td>#009320</td>
<td>@GENPART error when deleting 15th printer driver table entry.</td>
</tr>
<tr>
<td>#009363</td>
<td>$INIT command errors with 6 printer driver tables entries specified.</td>
</tr>
<tr>
<td>#009401</td>
<td>@MOVEFIL gets I98 error with green table diskettes.</td>
</tr>
<tr>
<td>#009496</td>
<td>$RELEASE TERMINAL TO #,STOP does not halt destination partition.</td>
</tr>
<tr>
<td>#010815</td>
<td>The LIST' command does not report all DEFFN' subroutines.</td>
</tr>
<tr>
<td>#010820</td>
<td>Operations involving globally defined matrix statements cause unexpected errors and hangs.</td>
</tr>
<tr>
<td>#010827</td>
<td>@INSTALL does not install file @DG.</td>
</tr>
<tr>
<td>#011037</td>
<td>MXE port #16 was not usable as a TC port</td>
</tr>
<tr>
<td>#011039</td>
<td>SELECT TC statement generated P48 errors</td>
</tr>
<tr>
<td>#224306</td>
<td>Specifying 0 partitions in bank 1 caused @GENPART to fail.</td>
</tr>
<tr>
<td>#224307</td>
<td>@GENPART allowed devices to be specified more than once.</td>
</tr>
<tr>
<td>#224308</td>
<td>The diagnostics menu was moved to the second diskette.</td>
</tr>
<tr>
<td>#224325</td>
<td>@GENPART allowed illegal printer addresses to be specified.</td>
</tr>
<tr>
<td>#224403</td>
<td>@FORMAT had P48 errors when disks were in use.</td>
</tr>
<tr>
<td>#224407</td>
<td>@FORMAT had P34 errors when illegal index sizes were used.</td>
</tr>
<tr>
<td>#224417</td>
<td>The GPD did not support underscored lower case 'z'.</td>
</tr>
<tr>
<td>#224419</td>
<td>@FORMAT has P34 errors if the index size was larger than the catalog size.</td>
</tr>
<tr>
<td>#224433</td>
<td>@FORMAT had X75 errors.</td>
</tr>
<tr>
<td>#224479</td>
<td>@BACKUP could fail to verify good diskettes.</td>
</tr>
<tr>
<td>#224496</td>
<td>@MOVEFIL wrote trailers incorrectly when recombining @SPAN files.</td>
</tr>
<tr>
<td>#300593</td>
<td>@MOVEFIL did not move files that were after the first @SPAN file in the catalog index.</td>
</tr>
<tr>
<td>#400067</td>
<td>The MXE deleted all null characters during TC communications.</td>
</tr>
<tr>
<td>#400162</td>
<td>LIST DC wildcards not functioning properly.</td>
</tr>
<tr>
<td>#500301</td>
<td>When listing the catalog to a terminal printer from the 16th partition, only every 16th entry is printed.</td>
</tr>
</tbody>
</table>
6.0 KNOWN ANOMALIES

file @MXEO PROBE

PROBLEM

.......... Hitting HALT while in a LINPUT statement where the receiver variable is prefilled with more than 80 underscored characters may result in underscore of characters beyond the 80th position not to be erased.

F009073 When exiting MXE command mode on a terminal whose baud rate was set under software control the first line of console input is lost.

F010244 When using the extended 29 byte CCV, and setting XON/XOFF as the flow control mode, the whole MXE can hang.

F300319 When exiting MXE command mode on a terminal whose baud rate is less than 19.2, the first line of console input is lost. This is released to PROBE F009073.

7.0 MEDIA CONTENTS

The 2200 MVP BASIC-2 system software is available on three types of media: 8" double sided double density diskette (one diskette), 8" single sided single density (two diskettes), 5 1/4" double sided double density diskette (two diskettes). One sample of each kind of media has been provided.

8" double sided double density diskette:

Part Number: 195-0049-5
Diskette Number: 731-0058-E

8" single sided single density diskettes:

Part Number: 195-0049-3
Diskette Numbers: 701-2294-V (Diskette 1 of 2) 701-2767-B (Diskette 2 of 2)

5 1/4" double sided double density diskettes:

Part Number: 195-0049-9
Diskette Numbers: 731-8009-B (Diskette 1 of 2) 731-8010-B (Diskette 2 of 2)
Diagnostic Functional Specification

Documentation Release: xxxx Software Release: xxxx
Documentation Part No: 760-xxxx Software Part Number: 7xx-xxxx
PROM Part Number: 379-xxxx

Product Name: CS-D Disk Controller
Originator: W.J Lo
Date: March 16 1988

Tables of Contents

1.0 Reference Documentation
2.0 Configuration Requirements
3.0 Program Description
4.0 Load Procedure
5.0 Operating Instruction
6.0 Miscellaneous
7.0 Program Revision History
 Appendix A - Test and error table
1.0 Reference Documentation

2275F/R Disk Unit for the 2200
Software functional specification
Author: Dave Barrett
CS-D/CS-N Hardware Specification. Rev. A

2.0 Configuration Requirements

2.1 Hardware

Minimum required configuration for the BIT portion of the diagnostic consists of a 2200 CS-D Disk Controller (210-XXXX), chassis and a PROM containing the latest version of firmware linked along with the latest version of the diagnostic BIT. The minimum required configuration for the Burn-In portion of the diagnostic consists of a 2200 CS-D disk controller(210-XXXX), chassis, a PROM containing the latest version of firmware linked along with the latest version of the diagnostic BIT, and a chip with a LED on it that gets attached to the chip at location LXXX (for Mfg. only). The minimum required configuration for the repair aids portion of the diagnostic consists of a 2200 CS-D Disk Controller (210-XXXX), chassis, a PROM containing the latest version of firmware linked along with the latest version of the diagnostic BIT, a 5 1/4" floppy drive, a 20 Mf g winchester disk drive, a TEAC cassette tape drive and a Z-BUG Emulator. In addition, a diskette with the file "DATTEST" on it and a 2200 system is needed in order to be able to on the optional interface test.

2.2 Software

A 32k PROM loaded with the latest revision of diagnostic and operating system code located at LXXX of the (210-XXXX) board. Also a 5 1/4" diskette with a basic program on it called "DATTEST" is needed to run the optional interface test.

3.0 Program Description

3.1 Applications

To test hardware locate on the 2200 CS-D Disk Controller (210-XXXX) and clear a path for the 2200 operating System. There is also a board repair diagnostic included in the PROM code, as well as, an optional interface test. These additional tests are designed to provide Manufacturing with a more complete diagnosis of the hardware and give them Burn-In capabilities.
3.3 Hardware Tested

The hardware on the board consists of a 32K PROM, 16K of RAM, 256K of bank selectable RAM (16K banks), Z80 CPU chip, CTC, 765 Floppy Disk Controller chip, 2010 Winchester Controller chip and a QIC-02 Interface.

3.4 Tests in the Program

<table>
<thead>
<tr>
<th>Name of Test</th>
<th>Hardware Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cache Data Lines Shorts Test</td>
<td>Data lines of all Cache banks</td>
</tr>
<tr>
<td>2. Data Line Stuck Test</td>
<td>Data lines of RAM</td>
</tr>
<tr>
<td>3. Address Lines Test</td>
<td>RAM address lines</td>
</tr>
<tr>
<td>4. Address Line Test</td>
<td>Cache address lines</td>
</tr>
<tr>
<td>5. Bank Select Test</td>
<td>Cache bank select hardware</td>
</tr>
<tr>
<td>6. Push/Pop Memory Test</td>
<td>RAM & Cache</td>
</tr>
<tr>
<td>7. Reverse Parity & Parity GEN. Test</td>
<td>Parity circuitry</td>
</tr>
<tr>
<td>8. CTC Control, Data, & Addr. Test</td>
<td>CTC</td>
</tr>
<tr>
<td>9. CTC Downcounter & Timer Mode Test</td>
<td>CTC</td>
</tr>
<tr>
<td>A. CTC Interrupt Test</td>
<td>CTC</td>
</tr>
<tr>
<td>B. DMA Clear Test</td>
<td>DMA, temporary register</td>
</tr>
<tr>
<td>C. DMA Channel Addressing Test</td>
<td>DMA</td>
</tr>
<tr>
<td>D. DMA Current Address Reg. Test</td>
<td>DMA, current address register</td>
</tr>
<tr>
<td>E. DMA Verify Transfer Test</td>
<td>DMA, EOF</td>
</tr>
<tr>
<td>F. 765 FDD Chip Test</td>
<td>UPD765 FDC chip</td>
</tr>
<tr>
<td>10. 2010 Wini Controller Chip Test</td>
<td>WD2010 chip</td>
</tr>
<tr>
<td>11. QIC-02 Interface Test</td>
<td>QIC-02 Interface</td>
</tr>
</tbody>
</table>

3.4.1 Program Jump Table

A program jump table at the beginning of the program gives user the ability to go directly to a test routine and execute from that point on. The procedure for doing this is as follows. Using the Z-Bug emulator set the Program Counter (PC) to X'6050' and load the accumulator with the test routine desired using the hex value of the test routine that precedes each test in the table of tests above. This is a function of the Board Repair portion of the diagnostic.

4.0 Load Procedures

Refer to the 2200 DS Disk Processing Unit (DPU) BIT, June 24, 1987

5.0 operating instructions

Refer to the 2200 DS Disk Processing Unit (DPU) BIT, June 24, 1987

6.0 Miscellaneous

None
Appendix A

TEST AND ERROR TABLE

As described earlier in section 3.2 of this document the Z-Bug emulator may be halted on an error and viewing of the Z80 prime registers will contain specific fault isolation information. This means that without a Z-bug emulator error information cannot be retrieved from the diagnostic. Error codes are left in the 'B' register for all tests except test 6. For test 6 the error code will be left in 'A' the address at fault will be in register 'BC'. Depending on what test is running determined what the other prime registers are holding for information. The following is a listing of tests with the error codes associated with it. Further information may be found in the listing test headers.

<table>
<thead>
<tr>
<th>TEST ROUTINES</th>
<th>ERROR CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cache Data Lines Shorts Test</td>
<td>01</td>
</tr>
<tr>
<td>2. Data Line Stuck Test</td>
<td>02</td>
</tr>
<tr>
<td>3. Address Lines Test</td>
<td>03</td>
</tr>
<tr>
<td>4. Address Line Test</td>
<td>04</td>
</tr>
<tr>
<td>5. Bank Select Test</td>
<td>05</td>
</tr>
<tr>
<td>6. Push/Pop Memory Test</td>
<td>06</td>
</tr>
<tr>
<td>7. Reverse Parity & Parity GEN. Test</td>
<td>07</td>
</tr>
<tr>
<td>8. CTC Control, Data, & Addr. Test</td>
<td>08</td>
</tr>
<tr>
<td>9. CTC Downcounter & Timer Mode Test</td>
<td>09</td>
</tr>
<tr>
<td>A. CTC Interrupt Test</td>
<td>0A</td>
</tr>
<tr>
<td>B. DMA Clear Test</td>
<td>0B</td>
</tr>
<tr>
<td>C. DMA Channel Addressing Test</td>
<td>0C</td>
</tr>
<tr>
<td>D. DMA Current Address Reg. Test</td>
<td>0D</td>
</tr>
<tr>
<td>E. DMA Verify Transfer Test</td>
<td>0E</td>
</tr>
<tr>
<td>F. 765 FDD Chip Test</td>
<td>OF Thru 15</td>
</tr>
<tr>
<td>10. 2010 Wini Controller Chip Test</td>
<td>16 Thru 19</td>
</tr>
<tr>
<td>11. QIC-02 Interface Test</td>
<td>IA Thru 23</td>
</tr>
<tr>
<td>Component Item/ Description</td>
<td>Item Status</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>3001968 CAP 0.047uF 50V 0.025% ZSU</td>
<td>2</td>
</tr>
<tr>
<td>3004634 CAP 0.047 UF 20V 10% TANTAL</td>
<td>2</td>
</tr>
<tr>
<td>330223 RES 120 OHM 1/4W 5% METAL</td>
<td>2</td>
</tr>
<tr>
<td>330311 RES 1.0 K OHM 1/4W 5% METAL</td>
<td>2</td>
</tr>
<tr>
<td>330323 RES 2.2K OHM 1/4W 5% METAL</td>
<td>2</td>
</tr>
<tr>
<td>3339912 RES NET 2.2K OHM TYPE</td>
<td>2</td>
</tr>
<tr>
<td>3500011 CON EG CD 15-15P 156X14</td>
<td>2</td>
</tr>
<tr>
<td>3500021 CON EG CD 22-22P 156X14</td>
<td>2</td>
</tr>
<tr>
<td>3500039 CON EG CD 22-22P 156X14</td>
<td>2</td>
</tr>
<tr>
<td>3500216 CON UNIV PWR RCPT 2P 25C</td>
<td>2</td>
</tr>
<tr>
<td>3500217 CON PWR UNIV RCPT 3P</td>
<td>2</td>
</tr>
<tr>
<td>3500238 CON UNIV PWR RCPT 5P 25C</td>
<td>2</td>
</tr>
<tr>
<td>3500310 CON HDR 4P 100C R/A PCB</td>
<td>2</td>
</tr>
<tr>
<td>3260324-376-05562 IC 74LS03 QUAD 2-INP NAND</td>
<td>2</td>
</tr>
</tbody>
</table>

Date: Wednesday August 14, 1991
Time: 11:43 AM
Page: 1

Wang Laboratories, Inc.
Corporate BMD Workbench
5 Levels BOM Report
Requestor: EJD

Assy Level: 1
Last Modified: 00/00/0000
By:
Assy Level: 00/00/0000

EC0 NO 57323

SHT 3 OF
<table>
<thead>
<tr>
<th>Component/Description</th>
<th>Component/Status</th>
<th>Qty Per Assy</th>
<th>U M</th>
<th>Qty Comp</th>
<th>Type</th>
<th>ECO Number</th>
<th>CQVL Ind</th>
<th>Value Type</th>
<th>Ref Desg From</th>
<th>Ref Desg To</th>
</tr>
</thead>
<tbody>
<tr>
<td>2760737-376D0202</td>
<td>2</td>
<td>1.0000</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>RA</td>
<td>0</td>
<td>3</td>
<td>74ALS74</td>
<td>L2</td>
</tr>
<tr>
<td>IC 74ALS74 DL DFF POS-</td>
<td></td>
</tr>
<tr>
<td>3884000</td>
<td></td>
<td>1.0000</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>RA</td>
<td>0</td>
<td>1</td>
<td>1N4004</td>
<td>D1</td>
</tr>
<tr>
<td>DIO RECT 400V 1A 1D041</td>
<td></td>
</tr>
<tr>
<td>5109560</td>
<td></td>
<td>1.0000</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>RA</td>
<td>0</td>
<td>3</td>
<td>@0000001</td>
<td></td>
</tr>
<tr>
<td>PCB CSD MOTHER BOARD</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6152318</td>
<td></td>
<td>1.0000</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>RA</td>
<td>0</td>
<td>3</td>
<td>@0000002</td>
<td></td>
</tr>
<tr>
<td>LABEL, BARCODE</td>
<td></td>
</tr>
<tr>
<td>6541192</td>
<td></td>
<td>5.0000</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>RA</td>
<td>0</td>
<td>3</td>
<td>TERMINAL TP1</td>
<td>TP5</td>
</tr>
<tr>
<td>TERMINAL TURRET SOLDER</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COO No: 59333

Shift: 4 of...
To: Mike Bahia
From: Marshall Barnes
Subject: 2200
Date: 02/21/90

Distribution:
Not Requested

THANKS VERY MUCH !!!!!
MARSHALL

To: Marshall Barnes
From: Mike Bahia
Date Sent: 02/21/90

 Marshall,
 Talked with Tyler & he did not know of the strap but both he & I also
 heard something like this from another field source. Called Manufacturing in
 Puerto Rico & now have the answer. There is a new Rear Panel Assembly for the
 CS for use with the 386 for FCC purposes. The part # is 458-5026. There are
 also 2 gaskets used on the side panels part # 656-0145. Talked with Sue & will
 be sending her 9 keyboard foils via Fed Xpress tonite.
 Regards,
 Mike

To: Mike Bahia
From: Marshall Barnes
Date Sent: 02/21/90

The customer tells us that they are talking to a Tyler Olsen in HO. He is
the one telling the customer about this strap. He has also told the customer
that they need certain Revs of boards for there 386 upgrade that we cannot
find. Do you know who Tyler is and maybe he can let us know.

Original Memo

To: Marshall Barnes
From: Mike Bahia
Date Sent: 02/20/90

Marshall,
 Have checked FCO listing for the CPU strap & there is no such FCO.
 Also checked ECO's & could not find anything & R&D was unaware of any ECO's.
 Made arrangements for the keyboard foils & expect to pick them up tomorrow.
 Regards,
 Mike
PROBLEM SUMMARY: BAHIA MICHAEL E DATE: 02/03/89 TIME: 11:49

Concerning intermittent I91 errors using Red shaw software. Specifically regarding the chip at location at L2 and the manufacturer of that chip.

ASSIGNED: BAHIA MICHAEL E DATE: 02/03/89 TIME: 08:44
LEFT MESSAGE AT OFFICE TO CALL. (5MIN) MIKEB

ASSIGNED: BAHIA MICHAEL E DATE: 02/03/89 TIME: 17:21
CE HAS REDSHAW CUST GETTING AN I91 ERROR DURING A SORT PROGRAM. REDSHAW SAYS PROBLEM IS CHIP 'L2 IF IT IS TEXAS INS MANUFACTURE. DID HAVE 1 SITE IN SC WHERE THİS WAS SUPPOSED TO BE THE PROB BUT WE NEVER WHERE ABLE TO VERIFY AS CHİPS WERE NEVER SENT IN. CE TO FIND A BRD W/ A NON-TI CHIP AT L2 & REPLACE THAT CHİP AT THE SITE. IF PROB GOES AWAY CE TO SEND CHIP IN. OTHERWISE MOST LIKELY HAS A DISK PROBLEM. (25MIN) MIKEB

ASSIGNED: RAMSEDL MARI-ANNA DATE: 02/03/89 TIME: 11:49
STK HAD A TI CHIP & DID NOT WANT TO BE ORDERING BRDS TO FIND 1 W/ A MMI CHIP. CUST HAD RELOADED S/W & PROB DISAPPEARED. THE PROBLEM OR WHAT WAS THOUGHT TO BE THE SAME PROB CAME BACK & THE DRIVE WAS REPLACED AND AFTER RELOADING S/W HAS NOT HAD PROBLEM. CUST IS WORKING ERROR FREE AT THIS TIME. CLOSE CALL /CE. (20MIN) MIKEB
We had a CS/DS failing with I91 running a sort application using Redshaw OS and their software. Three boards gave us the same problem. They runned our diagnostics without any failure. We got two additional boards and they runned the Redshaw software. After looking for causes of failure I changed the chip at location L2 with PAL from MMI all the boards that were failing they runned fine. It looks that the PALS 20L8 from TI (150 ns) are not fast enough. Can you check the specification from this vendor.

The chip that works have the following info:

<table>
<thead>
<tr>
<th>MMI</th>
<th>PAL20L8BCNS</th>
<th>TEXAS INSTRUMENTS BAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>733788</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Redshaw knows how we fixed this problem, I talked to Henry. Keep in touch. Harvey

I checked the speed of the PALS from TI AND MMI AND THEY ARE 15ns. Better have the engineer check why the boards are failing using the redshaw software with the TI PALS. HARVEY
Marty, I was on site today at Wisenberg in Houston Texas, with the CE who services the centronics printer. He replaced the "personality" pcb (which is similar to the interface/Datalink card in Wang Prt's). On testing the errors reoccurred. He then disabled the APS (Auto Perforation Skip) option via Bit one of a 5 bit switch located next to the control panel. This seemed to eliminate the form feed errors. We tested for about 1 hour and the only thing noticed was that at times we had to set TOF twice when we changed to a different size form. Ther after all worked well. The CE will change the CPU pcb as he feels the command codes may not be clearing before the new codes come in for the new size form.

I am heading back to Austin today but all is documented. call me if I can help in any way.

Wisenberg is on Elite Advantage Software.

Louis Lugo
SCE
TAC
Information Call
Control Number 08307015

Contact Name LEWIS LUGO Position SCE
Rdb # 3515 Tdx # Phone # 713 968 7810 Ext #

System Type 2200CS Device Type CPU
Utility Name Software Level

Method of Call P T = Telex, P = Phone, M = Memo, E = Ems
Has the Area or District been contacted
N A = Area, D = District, B = Both, N = None
Is this inquiry pertaining to a National Account ?
U Y = Yes, N = No, U = Unknown

Use the following area to describe the site that created this request
Cust/Office Name WINEBURG Phone #
Address 2K12 City State
On Site Contact Name

Question (*) / Answer (+)

*EMP 20602
*DISPATCH 245210
*HAVING PROBLEM WITH SYNTRONIC PRINTER USING REDSHAW SOFT
*WARE THIS IS A HARDWARE ISSUE.
11/2/88: LEFT MESSAGE AT OFFICE TO CALL. (5MIN) MIKEB
>DTS CALLED IN. REDSHAW CUST USING A CENTRONICS PRINTER. W/ 1 PARTICULAR APPLICATION THEY HAVE
>INTERRUPTED TOP OF FORM PROBLEMS. HAS TRIED
>DIFFERENT CONTROLLERS BUT NO CHANCE. PROBLEM DOES
> NOT APPEAR TO HAPPEN FROM M/S PRINTER PORTS. TOP
>OF FORM IS A FUNCTION OF THE PRINTER. THIS IS A
>NON-SUPPORTED PRINTER. SUGGESTED LENDING CUST A
>2245 EPSON TO SHOW EQUIP IS PROPERLY WORKING. DTS
>TO TALK W/ REDSHAW & HAVE THEM GET IN TOUCH W/ ME
>IF NEED BE. (20MIN) MIKEB

11/02 STEVE TAVO DSM IN MGR @#713-968-7801 N/C/B. 12:18 CH
>CALLED DSM. HAS ARRANGED W/ REDSHAW TO HAVE PRIN-
>TER PEOPLE ON SITE TOMORROW W/ WANG. TOLD THEM I
>WILL BE AVAILABLE FOR SUPPORT MOST OF THE DAY
>EXCEPT FOR 9-10 AM DURING GROUP MEETING. (10MIN) MB

11/3/88: JUST RCV'D A 2ND CALL W/ SAME PROB. CALL DTS &
>INFORMED. LOOKS LIKE REDSHAW O/S MAY BE RELATED.
SEE CALL 08308052. NOW RUNNING ON A DUAL CONTROLL-
>ER. SEEMS TO WORK A FEW DAYS AFTER CHANGING BRD
>THEN STARTS FAILING AGAIN. DOES NOT BELIEVE O/S
>HAS BEEN UPDATED HERE. GOING ON SITE TOMORROW W/
>EPSON & CENTRONICS REP. (15MIN) MIKEB

11/18/88: HAVE NOT HEARD OF ANY PROBLEMS IN AT LEAST 2 WKS.
FOUND A SW (#5) IN PRINTER HAVING TO DO W/ AUTO
>PERFORATION SKIP IN WRONG POSITION & SEEMS OK

SINCE. WILL CHECK BACK W/ CUST & CALL BACK. (10MIN) MIKEB

+PROB CORRECTED. CORRECTING THE AUTO PERFORATION SW IN PRTR
+CORRECTED PROB W/ TOP OF FORM ON 1 JOB. 2ND PROB W/ FORM
+FEED CORRECTED BY FIXING SOMETHING IN PRINTER. CLOSE CALL.
11/28/88 (10MIN) MIKFR
TITLE: PROBLEM with the 1 MEG CPU/MEMORY BOARD (210-8937C) and GENERAL BOARD INFORMATION

PURPOSE:
To inform the field of a problem with the 1 Meg CPU/Memory board and the resolution. To provide other general information on the 210-8937 board.

EXPLANATION:
A problem has been found with the 1 Meg version only of the new 210-8937 CPU/Memory board usable in any single board 2200 CPU. When more than 8 terminals are used, or if greater than 512K memory is used the system may fail with PEDM errors (Parity Error in Data Memory). The problem has been found to be a Motorola chip, MC74F539N, sometimes used at L45. If L45 is something other than this specific Motorola chip, the board should be good.

CORRECTIVE ACTION:
The problem chips have been purged from manufacturing so all boards now being made will not have the problem. If you have a bad board with the MC74F539N Motorola chip, send it back identifying L45 as the problem. The chip is soldered in so it is not recommended to replace it in the field.

OTHER INFORMATION:
There are 6 versions of the 8937 board, each with it's own specific programmable array logic chip (PAL) at location L2 as shown below. Operating System 3.1 is required. Lower operating systems may fail during initial system IPL even if only 512K or less of memory is to be used. Use the new 2200 Diagnostics, p/n 195-2956-0, to properly test these boards.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Mem Size</th>
<th>PAL at L2</th>
<th>SIMM Modules Size</th>
<th>JUMPERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>210-8937A</td>
<td>128K</td>
<td>377-3483</td>
<td>2 256K</td>
<td>J1 in 2-3</td>
</tr>
<tr>
<td>210-8937B</td>
<td>512K</td>
<td>377-3484</td>
<td>2 256K</td>
<td>J2 in 2-3</td>
</tr>
<tr>
<td>210-8937C</td>
<td>1Meg</td>
<td>377-3485</td>
<td>4 256K</td>
<td>J1 in 2-3</td>
</tr>
<tr>
<td>210-8937D</td>
<td>2Meg</td>
<td>377-3486</td>
<td>2 1Meg</td>
<td>J2 in 1-2</td>
</tr>
<tr>
<td>210-8937E</td>
<td>4Meg</td>
<td>377-3487</td>
<td>4 1Meg</td>
<td>J1 in 1-2</td>
</tr>
<tr>
<td>210-8937F</td>
<td>8Meg</td>
<td>377-3488</td>
<td>8 1Meg</td>
<td>J2 in 1-2</td>
</tr>
</tbody>
</table>

JUMPERS:
P56 at line L65 on load of 015 / MUST USE 015 B.1

GROUP: VS On-Line Support

MAIL STOP: 001-260

COMPANY CONFIDENTIAL

WANG Laboratories, Inc.
DS w/ 2 64 meg drives at Drive Select 1 & 2.

CE set jumpers on drives to DS1 & DS2 respectively.

When copied floppy to DX1, also got disk copied to DX5.

Set both drive jumpers to DS1.

No problems.
TITLE: Wang Computer System (CS)
DATE: 5/13/88

This PUB affects: 741-1769
Color: Yellow

Previous Notice(s): None

REASON FOR CHANGE:
This PUB provides updated information to the appropriate sections of the Wang CS Computer System Product Maintenance Manual.

INSTRUCTIONS:
Remove and insert attached pages and/or microfiche as follows:

<table>
<thead>
<tr>
<th>REMOVE PAGES</th>
<th>INSERT PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cover</td>
<td>Cover</td>
</tr>
</tbody>
</table>
| 2. Title Page/Preface Page
 vii/viii/ix/Blank | Title Page/Preface Page
 vii/viii/ix/x/xi/xii |
| 3. 1-1/1-2 | 1-1/1-2 |
| 4. 6-11/6-12 | 6-11/6-12 |
| 5. 6-25/6-30 | 6-25/6-30 |
| 6. Sect. 9 Contents Page/Blank
 9-35/Blank | Sect. 9 Contents Pages
 9-35/9-57/Blank |
| 7. Sect. 10 Contents Page/Blank
 10-1/10-2 | Sect. 10 Contents Page/Blank
 10-1/10-2 |
| 8. 10-5/10-6/10-7/10-8 | 10-5A/5B/10-6A/6F/10-7/10-8 |
| 9. 12-1/Blank | 10-13A/Blank |
| 10. 12-1/12-2/12-3/Blank |

<table>
<thead>
<tr>
<th>REMOVE FICHE</th>
<th>INSERT FICHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fiche 1</td>
<td>Fiche 1</td>
</tr>
<tr>
<td>2. Fiche 2</td>
<td>Fiche 2</td>
</tr>
<tr>
<td>3. Fiche 3</td>
<td>Fiche 3</td>
</tr>
<tr>
<td>4. S1</td>
<td></td>
</tr>
</tbody>
</table>

This page constitutes a permanent record of revisions; place it directly following title page.
COMPANY PROPRIETARY STATEMENT

This document is the property of Wang Laboratories, Inc. All information contained herein is considered Company Proprietary, and its use is restricted solely to assisting you in servicing Wang products. Neither this document nor its contents may be disclosed, copied, revealed, or used in whole or in part for any other purpose without the prior written permission of Wang Laboratories, Inc. This document must be returned upon request of Wang Laboratories, Inc.

© Copyright 1987, Wang Laboratories, Inc.

COMPANY CONFIDENTIAL
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Office</th>
<th>TEL #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Justin Roark</td>
<td>Instructor</td>
<td>HO</td>
<td>744-6861</td>
</tr>
<tr>
<td>Jack Vocapini</td>
<td>New Products T.A.S. (Prod Support)</td>
<td>001440</td>
<td>60347</td>
</tr>
<tr>
<td>Joseph Scafeone</td>
<td>D.T.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felix Miscioscia</td>
<td>R.T.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John T. Hughes</td>
<td>DTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Don Kranz</td>
<td>Software Analyst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roy Bynum</td>
<td>RTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dennis Ivey</td>
<td>O.T.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paul Jarvis</td>
<td>AT.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jim O'Connor</td>
<td>RTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abe Spicer</td>
<td>DTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gary Loper</td>
<td>RTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marty Dusharm</td>
<td>Product Support</td>
<td>HO</td>
<td>656-0256</td>
</tr>
<tr>
<td>John Forbes</td>
<td>European Supp. London</td>
<td></td>
<td>441 568</td>
</tr>
<tr>
<td>John Murdock</td>
<td></td>
<td></td>
<td>x 3133</td>
</tr>
<tr>
<td>Mike Bahia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Baxl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ADDITIONS TO THE FAMILY

What's new for the CS line

BY EUGENE S. SCHULZ

The 2200 has filled a niche in the BASIC-2 marketplace for years, but as the needs of that marketplace mature, system demands change. In response, Wang announced the VLSI-based CS small business computer, a replacement for the 2200 and MicroVP, and the DS, their next-generation disk storage cabinet, last March. And in October, the following additions and changes to the CS line were announced.

CS-10/20/40/80. The new CS CPUs—the CS-10 (1Mb), CS-20 (2Mb), CS-40 (4Mb) and CS-80 (8Mb)—have 32K of control memory, nine I/O slots, support 16 users and can utilize existing CS-2/5 and 2200/MicroVP option boards, peripherals and communications controllers. Complete hardware and software compatibility with existing CS-2/5, 2200 and MicroVP systems is provided. However, in order to address memory greater than 512K, Release 3.1 of the multi-user operating system is required.

Release 3.1. This enhanced operating system supports the new 1Mb/2Mb/4Mb/8Mb CPUs and VLSI CPU upgrades. Changes include:

Memory support in excess of 512K: Up to 1Mb can be allocated to program partitions; partition 1 can be 61K, the remaining 15 partitions 56K. Unused memory can be allocated to RAMDISK. Therefore, on an 8Mb CPU, up to 1Mb can be allocated to partitions and 7Mb to RAMDISK. Any unused portion of the 1Mb also can be allocated to RAMDISK.

LIST DT. The number of available device table entries has been increased from 16 to a maximum of 256. Thus, the information displayed in the listing is unaltered.

3.0 has been modified to display any unused device table entries.

FILE#. Up to 256 file numbers are now allowed (#0 through #255). To use file numbers greater than #16, the user must include a SELECT or statement in the BASIC-2 program (where s is an integer specifying the largest file number to be used). During Resolution phase, the system determines the largest file number specified. It then allocates memory from the user partition for each file number, from #16 through the largest, effectively reducing the partition size. Each file number is allocated 2K bytes of memory. When a CLEAR or LOAD is executed, the memory allocated for file numbers is released back to the partition.

LIST DC TW. When the W option is invoked, only, the names of the files on the specified disk are displayed across the display or printer line. No index size information or detailed file information (such as start and end sectors) is provided. This option can be used with the file name and file mask options.

LIST COM/DIM: In 3.0, LIST, COM/DIM lists the currently defined variables and their current values. In 3.1, it lists both the common and noncommon variables, their defined length and values in the order of definition.

Printer drivers. The Generalized Printer Driver has the following enhancements:

• Supports lasers printers that accept ASCII escape sequences instead of hexadecimal. @LASR/V0 is a new printer driver table supporting the LCS15-DSK printer.
• @DMS0/V0 is a new printer driver table that supports the DMS0/300 dot-matrix printer.
• Further optimization of the driver logic has improved output performance for printers not directed through a printer driver.

The following are known anomalies in OS Release 3.0 that are corrected in Release 3.1:

RESAVE. Announced in 3.0, RESAVE updates program files by combining SCRATCH and SAVE. In 3.1, the existing file is marked as scratched prior to attempting to save the program. For cases when the new file requires more sectors, the file is marked as scratched and an error...
CS/2200 TIPS

D81 (File Full) is generated. In 3.0, the appropriate D81 error message was generated but didn't mark the file as scratched.

RENAME. Scratched files can now be renamed.

MOVE. Now generates the appropriate error message when the user-specified limits on the destination platter are to be exceeded.

MOVE FR. In Release 3.0, this statement wouldn't properly move the catalog from the source to the destination platter.

DATA LOAD BA/BM. In 3.0, there was a weakness in the syntax-checking logic. For example, DATA LOAD BAT (space between the B and A), wasn't properly handled. The syntax is now checked.

IF THEN ELSE. The statement wasn't properly handled in Immediate Mode.

Other anomalies corrected in Release 3.1 include flagging too-long program lines with the appropriate error; a partition put to sleep with $BREAK can now be awakened by an $ALERT from another partition; $GIO CLEAR now releases the hogged disk; and faster output to null device /000.

The @MXE0 microcode has been modified to correct two problems:

- When sending 6- or 5-bit character data to the MXE in TC mode, using the shift key caused the system to hang. Now all characters are transmitted as sent to the MXE.
- Under certain conditions, a 2436WP terminal's print stream to the local printer (device 204) would stop and not resume until the 2200/CS was rebooted. This has been corrected.

DS-140. This is a fixed-disk Winchester for the DS. Through switch settings on the Disk Processing Unit board, the user has the option of having either seven 16Mb platters (112Mb) or 14 10Mb platters (140Mb). The cabinet, ordered separately, can accommodate a 320K or 1.2Mb half-height removable diskette, 10Mb removable Winchester disk drive, a 45Mb tape streamer and a 20Mb/32Mb/64Mb/140Mb fixed Winchester. With the DS-140, users can configure a DS with up to 316Mb of fixed disk compared to the previous maximum of 192Mb. A CS will support three DSs, for a total fixed-disk capacity of 948Mb.

Memory upgrades. There are two types of memory upgrades available. The first allows existing VLSI CPUs to be field upgraded to 1Mb/2Mb/4Mb/8Mb by swapping out the existing 128K or 512K CPU board. The second type allows existing 1Mb/2Mb/4Mb/8Mb CPU board users to upgrade to 2Mb/4Mb/8Mb by adding a 1Mb Single Inline Memory Module to their existing CPU board.

At Technetron '87, Miguel Brazao, Wang's director of the 2200/CS, noted that future issues to be addressed include performance, removing many of the CS's restrictions (such as 65K partitions) and increasing the number of users. Just as it created the need for the CS products announced in 1987, the marketplace will no doubt continue to demand these and further improvements.

TURBO POWER RAM DISK SUBSYSTEM

FASTEST DISK I/O AVAILABLE
- Up to 210MB hard disk
- Up to 80MB RAM disk

OPTIONS
- 40MB tape drive
- 1.2MB floppy drive
- 16MB removable disk
- Automatic Battery Backup

COMPATIBILITY
- Supports all 2200 and CS systems
- Uses Standard Wang disk I/O
- Supports 2275 MUX

Pricing
- Starts at $1950
- Leasing available

Dealer discounts available.
Quantity discounts available.
International inquiries welcome (220-50HZ avail.).
MEMORANDUM

TO: Mike Riley
FROM: Joseph R. Scaglione Ex 60249
DATE: Nov. 1, 1989
SUBJECT: PTR # C512895 2200 printer problems with VLSI and partition 1 memory

Mike;

Here it is the 2nd case where the customer has had printer problems with
his 2200 system. I collected as much information as I could, should more
become available I will send it along. Keep me informed of your findings.

Customer: Lykins Oil Co. Milford, Ohio 513-831-8820
DTS: Martial Barnes Columbus, Ohio 614-885-9599
CE: Mike Byron Cincinnati, Ohio 513-786-8250

Hardware: 2200 Micro VP with 512K of data memory O.S. 3.1
(3) 210-7342 (3) PM017 printers @ 215 / 216 / 217

Software: Factor Software Oklahoma - oil distribution softw

Background: This customers hardware and software never changed. The problem
seemed to surface one day. I suggested they replace the OS. So
the DTS told the CE to go from the customers 2.7 up to 3.1 which
was done, but did not help! Genpart setup was the same from
both 2.7 and 3.1.
Customer experiences the problem within 2-5 min and other times
after hours have past.

Problem: Intermitently from the 1st workstation or any terminal attached
to partition #1.

Any printing from partition #1 to any one of the three printers
will cause the paper to stop line feeding and print over the
same line OR printer will underscore all printed text.

Rebooting the CS is the only way to clear this condition.

All 3 printer addresses do it 215 / 216 / 217.

They tried PM 017V1 and PM 017V3 no change.

Jobs printed from other partitions are ok. Even when the
printer @215 @ partition #1 is experiencing a problem.

Genpart: Genpart looked liked this when they had the problem.
Terminal # 1 Part. # 1 24 K
Terminal # 2 Part. # 2 37 K
Terminal # 3 Part. # 3 28 K
Terminal # 4 Part. # 4 28 K
Terminal # 5 through 10 has 56 K each

In closing: The CE has the customer on 3.1 - Terminal #1 Part. #1 has 61 K
Terminals 2-9 now have 56 K each- all is working fine - no
problems reported since.
MEMORANDUM

TO: Mike Riley
FROM: Joseph R. Scaglione Ex 60249
DATE: Nov. 1, 1989
SUBJECT: PTR # C410002139 2200 printer problems with VLSI and partition 1
memory

Mike:

Here it is the outline below is 1 case where the customer has had
printer problems with his 2200 system. I collected as much information as
I could and will send more as it becomes available. We should have enough
information to recreate, understand and possibly fix or document this
problem in a TSB. Let me know if you need more info I do have another
instance where this happened. I'll collect that info and send it.

DTS: Yuri Petriv EE# 16904 Burlington, Ma. Ex. 1-39184
Hardware: 2200 CS-10 PM017 @ 215 / 2235 @ 216 / HP Laser @ 217
O.S. 3.1
Software: Tom Speed 2.3 / 3500 WP /BMB Softw. (Joe Malone) 617-383-0540
Background: This problem seemed to surface after the customer went to 1 Meg.
of memory and 3.1 was installed. Customer experiences the
problem once a month to a couple of times a week.

Problem: Intermitently the printer @ 215 over prints lines (NO LINE FEED)
also prints at random "/". When printing from Partition 1.

Once the PM017 printer had the problem the I/O cable was moved
to a 2235 and that printer performed the same way.

Rebooting the CS is the only way to clear this condition from
printer 215.

Address 216 seems to be ok.

Jobs printed from other partitions seem to be ok. Even when the
printer @215 @ partition #1 is experiencing a problem.

In closing: The CE did say the vendor reported " partition 1 had an AUTO
BOOT attached without sufficient memory to support it. Auto
boot has been removed"

Question: What the Genpart looked liked when the customer was on 2.7 and
what it got changed to with 3.1 and the extra memory added, I
don't have answers for - I called BMB Software in Burlington,
Mass. and ask for Genpart before and after.
Still waiting for response.
MEMORANDUM

TO: Mike Riley
FROM: Joseph R. Scaglione Ex 60249
DATE: Nov. 4, 1989
SUBJECT: PTR # C410002139 2200 printer problems / Genpart Information

Mike:
I talked with the software vendor - the following is the genpart setup when the customer was having the printer problems.

Partition #1 had 5K (common sub-routines used by the software package not dedicated to print functions.)
Partition #2 had 56K Note: Part #1 and 2 were for terminal #1

Genpart was changed to the following and printer problems were resolved.

Partition #1 had 61K Terminal #1
Partition #2 had 56K Terminal #2
Still waiting for response.

Simm in loc L45
Hung on IPL w/ SRAM 256KB, DRAM 4096 KB

Simm in loc L43
Blank

L31
Hung w/ SRAM 256KB, DRAM 4096 KB

L27
Hung w/ SRAM 256KB, DRAM

L13
Blank
SRAM 256KB, DRAM 4096 KB

L10
Blank
SRAM 256KB, DRAM
Single Level Where-Used

Options: Item 3770768 Effectivity 4 Date

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>ITM</th>
<th>ITM</th>
<th>ITM</th>
<th>ENG</th>
<th>MFG</th>
<th>DEM</th>
<th>ISS</th>
<th>DSGN</th>
<th>DRAWING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM 377-0768</td>
<td>TYP</td>
<td>CLS</td>
<td>STA</td>
<td>UM</td>
<td>REV</td>
<td>REV</td>
<td>CTL</td>
<td>CTL</td>
<td>SRCE</td>
</tr>
<tr>
<td>IC 32XX8 CMOS SRAM 28 PIN</td>
<td>1</td>
<td>2</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Find Parent

<table>
<thead>
<tr>
<th>NO.</th>
<th>ITEM</th>
<th>SST</th>
<th>QUANTITY</th>
<th>UM</th>
<th>T</th>
<th>U</th>
<th>M</th>
<th>S</th>
<th>OP</th>
<th>SC</th>
<th>G</th>
<th>EFFECT</th>
<th>LVL</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>210-9426-A</td>
<td>1</td>
<td>1</td>
<td>6.0000</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>00</td>
<td>00</td>
<td>I01/22/88</td>
<td>AB</td>
<td>RA</td>
<td></td>
</tr>
</tbody>
</table>

Possible Locations

- 9561 - L2, L3, L4, L5, L21, L22, L23, L24

Single Level Where-Used

Options: Item 3770768 Effectivity 4 Date

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>ITM</th>
<th>ITM</th>
<th>ITM</th>
<th>ENG</th>
<th>MFG</th>
<th>DEM</th>
<th>ISS</th>
<th>DSGN</th>
<th>DRAWING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM 377-0768</td>
<td>TYP</td>
<td>CLS</td>
<td>STA</td>
<td>UM</td>
<td>REV</td>
<td>REV</td>
<td>CTL</td>
<td>CTL</td>
<td>SRCE</td>
</tr>
<tr>
<td>IC 32XX8 CMOS SRAM 28 PIN</td>
<td>1</td>
<td>2</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIND PARENT</th>
<th>NO.</th>
<th>ITEM</th>
<th>SST</th>
<th>QUANTITY</th>
<th>UM</th>
<th>T</th>
<th>U</th>
<th>M</th>
<th>S</th>
<th>OP</th>
<th>SC</th>
<th>G</th>
<th>EFFECT</th>
<th>LVL</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA CS-386 CPU BD</td>
<td>000</td>
<td>210-9561-D</td>
<td>2</td>
<td>1</td>
<td>8.0000</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>00</td>
<td>00</td>
<td>I02/07/89</td>
<td>AA</td>
<td>RA</td>
<td></td>
</tr>
</tbody>
</table>

Options: Item 3770768 Effectivity 4 Date

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>ITM</th>
<th>ITM</th>
<th>ITM</th>
<th>ENG</th>
<th>MFG</th>
<th>DEM</th>
<th>ISS</th>
<th>DSGN</th>
<th>DRAWING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM 377-0768</td>
<td>TYP</td>
<td>CLS</td>
<td>STA</td>
<td>UM</td>
<td>REV</td>
<td>REV</td>
<td>CTL</td>
<td>CTL</td>
<td>SRCE</td>
</tr>
<tr>
<td>IC 32XX8 CMOS SRAM 28 PIN</td>
<td>1</td>
<td>2</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIND PARENT</th>
<th>NO.</th>
<th>ITEM</th>
<th>SST</th>
<th>QUANTITY</th>
<th>UM</th>
<th>T</th>
<th>U</th>
<th>M</th>
<th>S</th>
<th>OP</th>
<th>SC</th>
<th>G</th>
<th>EFFECT</th>
<th>LVL</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA CS-386 CPU BD</td>
<td>000</td>
<td>210-9561-C</td>
<td>2</td>
<td>1</td>
<td>8.0000</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>00</td>
<td>00</td>
<td>I02/07/89</td>
<td>AA</td>
<td>RA</td>
<td></td>
</tr>
</tbody>
</table>

Possible Locations

- 9561 - L2, L3, L4, L5, L21, L22, L23, L24
TSO PRODUCT SUPPORT

IMPACT REVIEW CHECKLIST

- **WANG ECO#**
- **OEM ECO#**
- **PN#** 6106

1. **WANG MODEL #s AFFECTED:**
 - MICR0V's, CS', CS-D', CS-N' 386 CPU

2. **WANG FRU(s) #s AFFECTED:**
 - 210.9561

3. **IS THERE AN IMPACT ON WANG INSTALLED BASE? (IF NO, go to 7)**
 - YES NO X

4. **OF MODEL #s IMPACTED - UNIT FAILURES EXPECTED?**
 - ALL UNITS SOME UNITS

5. **HOW ARE THESE UNITS IMPACTED? (Check any that apply):**
 - SAFETY
 - FCC COMPLIANCE
 - TEMPEST INTEG.
 - INTERMITTENT
 - HARD FAILURE
 - CATASTROPHIC
 - ENHANCEMENT
 - RELIABILITY
 - OTHER (See 7)

6. **PLR DATA:**
 - **Unit Population**
 - **Product Failure Data**
 - **Total Calls**
 - **Total Fails**
 - **Fails per Year**
 - **Parts Related To ECO/PN**
 - **Total Used**
 - **Reduction By ECO/PN**
 - **Reduced FFY**

7. **FIELD REQUIREMENTS:**
 - Level A Information only
 - Level B TSB required
 - Level C FCO required

8. **FSC REQUIREMENTS:**
 - Level A Information only
 - Level B Upgrade on failure only
 - Level C Upgrade all assy's (KUB)

9. **LOGISTICS REQUIREMENTS:**
 - Level A Information only
 - Level B Future purchases
 - Level C Purge stock (FSC rework)

ANY OTHER INFO TO CLARIFY IMPACT:
(S/W range, documentation (i.e. Product Maintenance Manual, Service Handbook, etc.), configurations, repair/test process(es), tooling, etc.)

Spoke w/ John Tighe on this problem. He felt it was minor & may not affect performance, but do not know that for a fact. There should only be possibly 25 base w/ these chips.

REVIEWER'S SIGNATURE:

Michael Belcher

DATE: 6/12/94

(OVER FOR DEFINITIONS)

WRITE CLEARLY AND USE BLACK INK
PROBLEM NUMBER: C200009360 CUST NAME: CH DEAN & ASSOCIATES INC
PRIORITY: P3 CUST NUMBER: 00 00000358135

PROBLEM TYPE: INFO CUST CONTACT: MARSHALL BARNES
PRODUCT PROB NO: NOT LINKED CUST CONT PHONE: -614-885-9599
SYSTEM MODEL NO: CS-10 CUST ADDRESS 1: WINTERS BANK TOWER STE 2480
GEN SYST MODEL: 2200 CS CUST ADDRESS 2:
O. S. VERSION: CUST ADDRESS 3:
HW MODEL NUMBER: DS

SW MODEL NUMBER: RDB ASSIGNED: 8760
SW VERSION: PERSON ASSIGNED: BAHIA MICHAEL E
PART NUMBER: ORIG NAME: BAHIA MICHAEL E
PART NUM REV: ORIG PHONE: --

CALL TRKG DATE: 00/00/00 NETWORKED: N
CALL TRKG NO: RES DEPLOYED:
ORG ACT/SYM/ACN: DATE ENTER PTR: 07/13/89
STATUS DATE: 07/13/89 DATE TO R&D:
STATUS CODE: H O 495 WKDYS IN R&D:
STATUS ABBREV: NEW PROBLM TOT WKDYS OPEN:

PROBLEM SUMMARY : BAHIA MICHAEL E DATE: 07/13/89 TIME: 09:09
D.E. CAREN EE# 04513 DSP# N/A
NEED INFO ON CALL USING A DIFFERENT CUSTOMER. PROBLEM WITH THE DISK 3 HANGING.

ASSIGNED: BAHIA MICHAEL E DATE: 07/13/89 TIME: 12:06
DTS ON SITE YESTERDAY. MANY ENVIRONMENTAL PROBS.
CPU 1, SER # VL3174, SEEMS TO HAVE BULK OF HANGS.
CPU 7, SER # VL 3182, IS ALSO DIRECTLY CONNECTED.
DS 3, SER # VQ1416, IS THE DS IN QUESTION. FOUND FOLLOWING PROBLEMS & MADE
CORRECTIONS AS SHOWN IN LIMITED TIME WAS ABLE TO LOOK AT SYSTEM:
DS 3. 1. PROM UPGRADED TO R2.
2. I/O CABLE LOOSE DUE TO SHORT SCREWS. ABLE TO CREATE I90 BY WIG-GLING. REPLACED I/O CABLE & SECURELY FASTENED.

CPU 1. 1. 7715'S IN THIS CPU AT E-REV 6. UPGRADED TO E-REV 10.
2. 8 OF 10 W/S'S HAD GRND PROB. .8-1.3V N TO GRND. CUST TO FIX.
3. 2 CHAINTRAINS. 1 HAD NO GRND PRONG. LOOSE I/O CABLES. 2V N-GRND.
CE TO CORRECT CABLE PROBS, CUST GRND PROB.
PROBLEM NUMBER: C200009360 CUST NAME: CH DEAN & ASSOCIATES INC
PRIORITY: P3 CUST NUMBER: 00 00000358135

4. 2275MUX NOT SCREWED IN. CORRECTED.

CPU 7. 1. 2 7715'S, AT E-REV 2 & 3. UPGRADED TO 10.
SCHEDULED FOR FULL DAY ON 7/19. WILL CONTINUE THRU ON ACTION PLAN UP REV'G
BRDS & SECURING ALL CABLES. CUST USING TP BALUNS FOR W/S'S. MAY BE A PROB
THAT MAY NEED TO BE ADDRESSED. BM TO INFORM CUST OF THIS POSSIBILITY.
(35MIN) MIKEB

ASSIGNED: BAHIA MICHAEL E DATE: 07/13/89 TIME: 11:43
7/10. DISCUSSED SITUATION W/ DTS. CUST HAS 8 CPU'S & 7 DS'S. DS 3 HANGS 3
 TO 5 TIMES A WEEK. USUALLY IF RESET TERM OK BUT IF UNSURE WHICH TERM SHUTS O
FF DS & OK WHEN POWER BACK ON. THE 2 DRIVES IN THE HANGING DS WERE PUT IN A
DIFFERENT CAB WHICH IS NOW DS 3 & STILL THE HANGS CONTINUE.ACTION PLAN:
1. CUST TO DOC EA HANG, TERM, CPU, DS & PROG.
2. CHECK CPU & DS V'S & RIPPLE IN ALL UNITS TIED TO HANGING DS.
3. VERIF PROPER CABLING IS USED & SECURELY CONNECTED.
4. VERIFY CABLING W/IN DISTANCE SPEC, 12' DISK TO MUX, 100' MUX TO CPU MAX.
5. UPGRADE PROM IN DS TO R2 FOR ANY DS THAT MAY HAVE PROB.
7. GAVE CE CORRECT SW SETTINGS FOR MXE. CE TO VERIFY.
8. ALL GROUNDS TO BE CHECKED ON EQUIP IN QUESTION. SHOULD BE < .5V N TO GRD.
9. CHECK TERMINATION & CABLING IN DS. RECONNECT CABLES, ISOLATE DATA & POWR.
10. USE LINE ANALYZER ON CPU & DS IN QUESTION. MUST HAVE CONNECTED DURING
HANG TO DETERMINE IF CORRELATION BETWEEN HANG & POWER. (1HR) MIKEB

ASSIGNED: HOULE CARENMARIE DATE: 07/13/89 TIME: 09:09
TO: Jim Cunningham
FROM: Michael Riley
DATE: May 27, 1988
SUBJ: Trip Report to Europe on CS/DS Problems.

REASON FOR THE TRIP

In the last three to four months at least seventeen VARs and Vendors from Europe have complained that the 2200 CS and DS have not been as reliable as past 2200 systems. Most of the dissatisfaction came from German VARs and Vendors which lead in CS/DS sales in Europe.

PROBLEM

Collectively, the German VARs and Vendors had reported four major problems. 1. The CS and DS power supply failed quite often causing computer down time. 2. The DS tape Drive hangs in the middle of a backup and the new backup requires all of the DS's access time. 3. The 2275 MUX generates I90 and I92 Errors causing computer down time. 4. The German electric power outlets do not have a fixed hot and neutral polarity which causes systems failures.

The Wang 2200/CS customers in England are not getting any support information or fixes for problems that have been solved already.

TRIP

May 16 1988: John Baxi (European Support) and I met with Germany's Marketing and CSO Managers to discuss some of the 2200/CS problems they have seen. One problem I did discover was that the German's 2200/CS support person had been sick for the last four months and all the CS/DS fixes and information did not get to the field which caused delays in getting our customers systems fixed correctly.

May 17 to 23 1988: John and I visited Infor Data GmbH which is experiencing CS power supply problems causing circuit breakers to go out. The CS's power plug can go in the power outlet in either polarity in Germany. This causes problems in the switcher power supply because the supply requires the power to be in ONLY one polarity direction. They were still having DS tape problems that we fixed months ago. Also they gave us some ideas on new features they would like to see on the CS/DS system.

G&G Henninger & Wollweber had CS and DS power supply problems. They also wanted to know when we were going to update the IDEAS II package to support the DS.

CP Computer Partner had power polarity problems which causes system failures.

Audatex Computer Systms GmbH had tape drive and CS/DS power supply problems. They install their own systems and the floppy jumpers were configured for a PC not a DS.
SpanSet had 2275MUX problems that were fixed a month ago and a power conditioner that generated a split phase power not a reference power that the CS/DS needs.

BDB Buro KG is the software company that is working on the programs for the Shell project. They had power supply problems and DS errors or system hang problems. We may need to go out again to check out their system if the local CSO can not fix there problem.

(MOP) Management Organis Partner is another large seller of CS/DS systems. They had CS/DS systems causing circuit breaker to go out and tape backup problems. Also wanted the new terminal to have black on white and white on black capabilities. The PM017 can not be set up for 12" page length default.

Easydent GmbH had 2436 monitor alignment problems and the DE German character PROM is not correct. The CS/DS cable screws are not correct length. Power supply problems were reported once again.

Kerridge by contract from Wang UK is the only 2200/CS Sales and Service company in the UK. Kerridge is not getting any support from Wang UK and therefore our customer are not getting any service. If we are going to help our 2200 customers this problem needs to be resolved. They had 2275MUX and tape backup problems.

TRIP SUMMARY

The most frequent complaint was the CS and DS power supply failures. QA at Limerick will check out several bad supplies for common failing parts. Another complaint was that problem corrections took too long to get out to the customer. This was a real problem in Germany where our fixes sat on a desk for several months and did not get out to the field. In England, the lack of cooperation between Kerridge and Wang UK is causing all types of customer problems. The power polarity situation in Germany will be addressed by updating the installation procedures.

CONCLUSION

John and I met with manufacturing and Quality Assurance in Limerick Ireland that ships CS/DS systems to Europe. We generated an action plan for these problems. By the end of June we will update our progress on resolving the outstanding problems in the Report on 2200 CS/DS Problems Being Experienced in Europe. This report will be furnished upon request.

Wang Support
John Baxi, European Support

cc Miguel Brazao
0119m
Reference; your memo to Jim Cunningham; Trip Report To Europe On CS/DS Problems dated May 27, 1988.

In relation to the Power Supply failure of German CS/DS 2200 Systems, we investigated the Switching Power Supplies and the following were our findings relative to the information you provided us;

1. The CS/DS 2200 Systems leave our plant wired for the Domestic market, (U.S.A.), assembled with a power cord with 3 leads (hot, neutral and mechanical ground).

2. If the neutral and hot polarity is reversed there is no problem. However if the mechanical ground and the neutral are connected together (for a two lead power cord like the one used in Germany) and then the the polarity is reversed; this will connect hot to the chassis thus burning at least the capacitors. This will definitely cause a functional failure.

3. Another possible source of Power Supply failure is the ON/Off switch connected incorrectly while reconfiguring to the specific country power requirements.

We agree with your statement that the power polarity situation in Germany must be addressed revising the installation procedures.

Please feel free to contact us for any help, including sending us bad Power Supplies for analysis.

Best regards,
Jose'
REPORT ON 2200 CS/DS

PROBLEMS BEING EXPERIENCED IN EUROPE.

Contents:

1. Summary Report as presented to Mike Riley and John Baxi (This is broken into 4 sections)

2. Minutes of meeting held on Tuesday and Wednesday 24th & 25th of May.

PREPARED BY: VINCE SHIELS, QUALITY ASSURANCE

: PATRICK HANNAN, QUALITY ASSURANCE

FOR: LIMERICK QUALITY ASSURANCE DEPARTMENT.
PART # 1.
SUMMARY REPORT ON 2200 CS/DS

PROBLEMS BEING EXPERIENCED IN EUROPE.

PREPARED BY: PATRICK HANNAH, QUALITY ASSURANCE

FOR: LIMERICK QUALITY ASSURANCE DEPARTMENT.

DATE: 23/05/1988
Over the past number of weeks Quality Assurance in Limerick Manufacturing have responded to complaints on the quality of 2200 CS/DS/TS equipment by requesting information on their performance from the European Subsidiaries. The following report will give details of our findings and will also give details of feedback received from Wang Puerto Rico, who actually manufacture this equipment.

The first section consists of a breakdown of the reports sent to Limerick by the subsidiaries. This breakdown will give details of the type of problems being experienced and the fixes that were used (in some cases only) in the field.

The second section is a pareto of the reported defects.

The third section consists of a report on board repairs that have taken place in WESA.

The fourth section gives details of the reply to some of these problems by Angel Flores of Wang Puerto Rico.

Some countries have not yet replied to requests for information. As soon as these do so a further report will be issued.
SECTION 1.
NOTE: In the section marked WPR ACTION TAKEN, * denotes corrective action being taken

Illegal width.

Printout terminated by system.
Gentlemen:

The following information is related to Wang Puerto Rico manufacturing operations for the 2200 CS/DS product lines and its corresponding switching power supplies actually in transfer from Pawtucket Boulevard. The package contains information from various dependencies in terms of quality improvements and results obtained based on previous or ongoing investigations.

Focusing in detailed failures as reported from Europe:

1. Rafael Gutierrez, Product Safety Engineer for WPR took over the action item of investigation and generation of the corresponding ECO for the I/O disk cable with screws reported as too short. STATUS: He has completed his investigation and is in the process of writing the ECO. The cable is from an outside vendor (AMP). The screws are indeed too short to tie a CS and a DS.

2. A problem was reported with the card cage making almost impossible to install the interface pcb's in the unit. STATUS: Investigation revealed that it is quite difficult to install interface pcb's. There are no card guides and vision is obstructed when installing. No problem found that could lead to measurement errors in the mechanical design. We are looking for additional assistance.

3. Different ground potential between the controller, p/s, and chassis. STATUS: All three parts are attached to the same reference ground level. This could have been a p/s failure as well. Please inform if this problem was repetitive because it shouldn't.

4. Rear panel fan cables with reverse polarity. STATUS: A test to check correct assembly as well as correct fan operation will be incorporated within our process. Note: The panel with the fan installed is a buy item, therefore our supplier will be checked.

5. Power Supply reoccurrence failures. STATUS: Richard Lane (support from PB), is working on the 3H Power Supply Tester. He is currently verifying and fine tuning the programs as well as hardware used by the 3H to test the p/s units that WPR is taking over. Note: The tests for the 270-1094 (DS), and 270-0986 (CS) are already in place. WPR has just begun testing these two p/s.

6. Winchester upgrades missing parts. STATUS: This problem is not related to our operations.

Thanks to the effort of our engineers and technicians (as well as WLI's) ECO # 48051 was written for the 270-1094 p/s. This eco corrects a -12V line ripple. Additionally, ECO # 48919 was written by Gilles Carrier based on a request for investigation from our Senior Technician Juan Pena, to correct a problem with the 22C80 MUX Controller (210-7715) card. (Both are recent eco's). It improved quality on the card eliminating hang problems and reduced cost.
Products at the field are most likely to be without these changes. I strongly suggest a thorough verification of the MUB's for the 2200 line.

For both p/s the pre-test station has already been set in our process to assure the units are within specifications before their burn-in process.

From the report by Martin Davies, Technical Operations Mgr. we were able to trace back serial # 69453P, and 492950. Serial numbers with prefixes VK or VQ were not found in our files.
The first unit failed for a p/s for which I have been reporting already, and the second failed due to a 210-8034-2A. Actually this pcb is being replaced with the 210-8937.

Since the power supply operation has been troublesome (high failure rate reported), we are assuring that power cycling (on-off tests every 15 min.) is given to p/s within the 24 hr. burn-in period.

We have been informed that some changes were made to a prom in the tape streamer to correct backup errors. By copy of this report to Gilles Carrier I am requesting verification of such, or any other additional information that could benefit our people in the field. Errors reported were T 23 and T 27.

On software problems like I 91 and I 93, I am requesting assistance from PB (Mike Gushue), while in house covering the possibility of correcting some I 91 failures if the Shuggart is damaged.

In terms of configuration WPR does not configure the 2200 DS; Anyway if I can be of help, please advise.

We will be concentrating on increasing the quality of the power supplies as we take over the product. Improvements have already taken place and more are to come.

Please see attached memos as well.
If I can be of further assistance, please advise.

Best Regards,

Angel Flores
WPR QA Adm.
ANGEL:

Radames request from me to write a W/O mentioning process improvements done at SPS manufacturing operations. Here are most of them:

a- Preforming of PCB components, assures perfect fitting at manual assembly and holding of component through all the material handling previous wave solder.

b- Automatic Insertion-VCD, fixture design to process set of boards pertaining to one SPS product at the same time.

c- Push-A-Long concept implemented for all boards.

d- Dual set-up at PAL for two different boards at the same time.

e- New design on Chopper to feed dual lines of PAL at the same time.

f- PCB Cart new design allowing feeding from both sides, and in match pairs to be used later at wave solder.

g- Wave Solder fixtures that allows processing of pairs of matching boards per SPS at the same time, having same parameters and process condition for both.

h- In-System test done by pairs. This will keep test result matched to product parity avoiding mismatch performance between set of boards.

i- Improvements done on BURN-IN rack controls.

j- Unit packaging is done at manufacturing cell.

k- All sub-assemblies are build at the same manufacturing cell and quality feedback is enforced.

l- Complete manufacturing of an SPS unit is controlled under one Production Supervisor and Cost Center (except wave solder).
Gentlemen;

Here is some additional information regarding the 2200 CS/DS family:

1. ECO # P.R. 00406 has just been written by Rafael Gutierrez, one of our supporting engineers correcting the length of the screws for the cables 220-0364 and 220-0365 for CS/DS installations.

2. Juan Pena, from our Product Support group reported the following information as not related to our operations:
 a. 278-4055: Neither built nor installed.
 b. 379-2052: " " " " .
 c. 2436EP-DW6 WPR builds only the controller (8577) for the keyboard.
 2436EP-DE: Need more information on Azerty Proms. We do not ship them.
 d. 726-6418: Neither built nor installed.
 e. 210-7203: " " " " .
 f. 279-900-62: " " " " .
 g. 210-0753: " " " " .
 h. 210-7592A: " " " " .

3. The new 8937 pcb design is supposed to correct the problems of the 8034 including the PEDM error.

4. A test was put into place at our site (assy. line), to assure correct installation on the fans.

5. I have not receive feedback from Gilles Carrier regarding tape streamers backup errors.

6. Software errors were forwarded to the attention of Mike Riley. (I91,93).

Included is the trip report from Mike Riley to Europe for further reference.

Please forward feedback regarding the pending action items from the meeting at Wang Limerick. Will appreciate.

Best Regards,
Angel Flores
WPR QA Adm.
QUESTIONS FOR Q&A

1. MIKE DURING YOU DEMO OF THE DS INSTALLATION I THOUGHT I HEARD YOU SAY THAT THE DS CAN SUPPORT SEVEN DEVICES IS THAT CORRECT.

 → NOT EXACTLY, THERE ARE 7 DIFFERENT WINCHESTER SWITCH CONFIGURATIONS, BUT THE DS PHYSICALLY CAN ONLY SUPPORT A MAX OF 6 DEVICES, UP TO 41/2 HALF HEIGHT UNITS IN THE TOP SLOTS & 2 MORE FIXED WINCHESTERS IN THE LOWER SLOTS.

2. MIKE DURING OUR FIRST DS INSTALLATION OF THE 20 MEG FIXED WINCHESTER YOU SAID THAT IN THIS EXAMPLE THE DRIVE WOULD BE CONNECTED TO DS#3 COULD IT HAVE BEEN CONNECTED TO ANOTHER DRIVE SELECT CONNECTOR

 → YES IT COULD HAVE BEEN CONNECTED TO DRIVE SELECT #4. HOWEVER THE ADDRESS OF THE DRIVE PLATTERS WOULD HAVE CHANGED FROM 51 AND 52 FOR THE 20 MEG CONNECTED TO DRIVE SELECT #3 TO 55 AND 56 WHEN CONNECTED TO DRIVE SELECT #4. AT THE SAME TIME THE ADDRESS OF THE 64 MEG WOULD HAVE CHANGED FROM 53, 54, 55, AND 56 WHEN CONNECTED TO DRIVE SELECT #4 TO 51, 52, 53, AND 54 IF CONNECTED TO DRIVE SELECT #3

3. WHAT VOLTAGES ARE ADJUSTABLE ON THE DS AND WHERE ARE THE ADJUSTMENTS LOCATED IN THE DS CABINET.

 → ANS. TO ACCESS THE ADJUSTABLE VOLTAGES ON THE DS YOU WOULD FIRST NEED TO REMOVE THE FRONT COVER. ON THE BASE OF THE CABINET YOU WILL SEE 6 SCREWS. REMOVE THE SCREWS, PULL THE BOTTOM OF THE COVER FORWARD, & LIFT UP. YOU WOULD THEN BE ABLE TO SEE THE TWO ADJUSTMENT POTS. AS YOU LOOK IN FRONT OF THE VENT ON THE FRONT OF THE PS.
4. There are two 32 meg drives listed in the reference material. What is the difference? Logically there is no difference, but there is an error in the documentation. Both the Quantum 0540 disk and The Micropolis 1323 had two addressable platters. I would like the member of the audience to correct the number of platters assigned to the drive on the sheet marked alternate 32mb disk drive feature.

Change it to 2 addressable platters and also the # of sectors to 65024. This same error is in the ds maint manual on pg 11-1. Please beware.

5. How do you identify the drive select cable connectors.

Mike

Ans: There are two way you can identify which connector is 1, 2, 3 or 4. First the wrapping around each of the drive connectors is marked either drive select #1, 2, 3, or 4. Also you will see that there is only one plug at one end of the cable that is able to be connected with connector J4 on the DS PCB. Once you have identified this connector then you will see that the connector the furthest away from that connector is connector for drive select #1. The other 3 follow in sequence.

Justin

6. Justin, if you upgrade an MVP to a CS CPU and you use the customers existing PCBs is there anything that the CE has to do to complete the upgrade.
ANS: INSTALL THE CONTROLLER AS USUAL AND SET THE ADDRESS SWITCH SETTING THEN IF YOU HAVE BLACK PLASTIC SEPARATORS THEN YOU MUST REPLACE THEM WITH NEW METAL ONES.

7. IF A CE ARRIVES ON SITE AND BEGINS TO WORK ON A DS THAT HE OR SHE MIGHT NOT HAVE INSTALLED, IS THERE ANY WAY THAT THEY CAN DETERMINE WHAT TYPE OF DRIVE CONFIGURATION THEY ARE WORKING WITH. ANS: YES THERE IS. FIRST THEY CAN CHECK THE SWITCH SETTING ON SW#1 AND SW#2 ON THE DS PCB. SECOND THEY CAN CHECK THE MODEL NUMBERS ON THE DRIVES THEMSELVES AND THIRD THEY CAN RUN THE DISK UTILITY/DISK.

Follow up Question:

COULD YOU TELL ME A LITTLE MORE ABOUT THIS DISK UTILITY

THE DS UTILITIES DISK IS SENT OUT WITH EVERY DS. THE P/N IS 731-8015.

THE DISK IS SIMPLE TO USE. INSERT THE DISKETTE IN THE DS FLOPPY.

CLEAR MEMORY ON YOUR TERMINAL. LOAD PROGRAM "START" FROM THE DISK.

THIS WILL GIVE YOU THE DS UTILITY MENU. WITH THE CURSOR NEXT TO DS CONFIGUARTION THE NEXT SCREEN WILL ASK FOR THE BASE ADDRESS OF THE DS, D10, D20, OR D30.

INSERT THE ADDR & KEY RETURN. THE NEXT SCREEN WILL SHOW WHAT DRIVES ARE INSTALLED.

8. WE HAVE TALKED ABOUT THE WINCHESTER DRIVE ATTACHED TO DRIVE 1 OF PLATTERS ADDED TO THE PLATTERS.

SELECT #1 AND THE FLOPPY DRIVE NEEDING TO BE TERMINATED BUT DOES THE TAPE DRIVE NEED TO BE TERMINATED? DOES THE FLOPPY DRIVE NEED TO BE TERMINATED?

THE TAPE DRIVE COMES WITH THE TERMINATOR SOLDERED IN AT THE CARREL OF THE END WHERE THE DATA CABLE ATTACHES.

9. IS THERE A DIFFERENCE BETWEEN RAM DISK IN THE CS CPU AND THE DS DATA STORAGE CABINET?
(10) When reviewing the CS documentation have you come across any
errors

DS MAINT MNL 741-1806

Page 90.

SW settings for the Winchester drives is wrong in MNL.

Use documentation pkg provided today or the diagram

P. 11-1

Alt 32 meg 2 platters, not 4 sectors 65024 not 32512

11. Is there any special handling requirements when powering
up/down of 10 meg removeable and does the removeable cartridge
require any special handling requirements.

When the 10 meg REM is up & ready the green lite will be on steady. To
press button above the red-green LED's the green lite should start to flash indicating the drive is
spinning down. Once it stops spinning all lites on the drive should be out. Left the catch straight or this
unlatches the unit & allows you to pull the drive out forward approx 3½-4". Open the front door by

12. Review what connector will be used on the DS PCB if drive
placing thumb on

select #1 is attached to a removeable Winchester drive and when

drive select #1 is connected to a fixed Winchester drive?

REM WINC J7

Fixed J2, J9, J10 all common

Follow up question:

B cable connectors may need some clarification.

J2, J9, J10 are all common B cable connectors for fixed wing drives.

13. Review that slots 1 & 2 if not used for half height could be

used together for full height fixed Winchester.

The top left vertical slots 1 & 2 can house 1 or 2 half height
devices. If these slots are not needed for half height devices, any full height
 Winchester could be installed there.

14. What if no drive is connected to the drive select cable how are

the switches set on SW#1 and SW#2 on the DS PCB.

Sw settings for no drive is all off, so the 4 sw's on sw bank 1 or 2
associated with each drive select would be set to off. If there were no
 Winchester drives, all sw's on sw bank's 1 & 2 would be off.
1. Not exactly
 - 7 different winC SW settings
 Physically 6 Device Max
 Up to max 4 HH devices in top visible vertical slots
 Up to max 2 devices in lower horiz slot

2. 20 Meg if DS4 - DS5/DS6
 64 Meg if DS3 - DS1 - DS4

3. Remove front cover
 Unscramble pull out & lift
 +5V on right
 +12V on left

4. Logically no difference but SW settings
 Error in both your package & the manual
 Please correct # platters} alt 32 meg
 Last sector
 Sheet disk drive features.
P6 11-1 DS MNL.

5. Wrapping
 Connector to J4 different
 Furthest DS1

6. DS utility disk
 Sw'Bk 1 & 2
 Drive model #'s
 731-8015
 Start util menu
 DS config run
 Base addr return
 Drives installed 2 # platters 3 addr's 4 # sectors

1 K = 8 sectors
512 = 4096
1 Meg = 8192
6 min backup
3 min setup
11. 10 Meg Rem
 Green Ready
 Red Error
To Remove Cartridge when Ready
1. Sw above LED's
 Green flashes/spinning down
 Lites out
2. Lift latch ↑ - Unlocks
3. Pull 3½" - 4" out
4. Open Door - Remove
 --- --- --- ---
 To Install
1. Slide in cart w/ hub right
2. Shut Door
3. Close Latch
4. Slide unit back till latches
5. Press Sw
 Green Ready
13. Slots 1 & 2
 If no HH, 1 Fixed
14. All Off
 Sw 1 & 2
Our customer was so satisfied with the performance and support of their DS that is being discussed during this edition of TECH TALK that they decided to purchase and install a second unit. If the customer purchased the following DS components, how would you set up the unit?

You and other members of your team can answer this question and let the folks on TECH TALK know your answer right on the air. So, put on your thinking caps and answer the questions below and be the first group to call in with your answers. The customer purchased:

A. One 320 K floppy drive
B. One 32 Meg Quantum full height fixed Winchester drive
C. No Streaming tape drive
D. Two 64 Meg fixed Winchester drives

Assume that the second DS is connected to disk controller in the CS whose address is set for 320.

Also assume that the two 64 Meg fixed Winchester drives are positioned in the horizontal internal slots of the unit.

QUESTIONS:

A. What drive will be connected to drive select plug #1?

B. To what connector on the DS board will the B cable of the Winchester connected to Drive Select #1 be connected?

C. To what connector on the DS board will the floppy drive be connected?

Assume that the 32 Meg Quantum drive is connected to Drive select #1 on the A cable; that the one of the 64 Meg winchesters is connected to Drive Select #3 on the A cable and the other 64 Meg drive is connected to Drive Select #4 on the A cable when answering the remaining questions:

D. What will be the switch settings of switch bank #1.

E. What will be the switch settings of switch bank #2.

F. What will be the switch settings of switch bank #3?

G. What will be the command to select the address of the third platter of the drive connected to drive select three.

H. What will be the command to select the address of the fourth platter of the drive connected to drive select four.

I. Which drives will have a terminator and which drives will not?

J. To what connector on the DS board will the power cable be connected?
LOSTING TIME

Mike, Sorry it has taken me so long to reply, but I was in Hawaii on vacation and then in Lawrence for UPS class. The customer had received 3.3 on the wrong media, so he re-ordered it, but in the meantime he moved the remote printers and his problem went away. As soon as he gets the 3.30S he will try it with the printers attached. Thanks, Gary Loper

--- Reply ---

To: Gary Loper From: Mike Bahia
Subject: MircoVP and Remotes Date Sent: 05/17/89

There is a problem where I believe if a lot of printing is being done on the 4fth w/s it may affect the time. The fix is to upgrade to O/S 3.3. Let me know if this applies.

Regards,
Mike

--- Original Memo ---

To: Mike Bahia From: Gary Loper
Subject: MircoVP and Remotes Date Sent: 05/16/89

Mike, A customer of ours has a MVP with all local terminals, a CS with a mix of local and remote terminals, and a Micro VP with 7 Remotes and 1 local. This Micro VP loses about 15-20 minutes a week, and the others hardly lose any time at all. The MXE has been changed many times, and we have checked them out here in the office just running a clock program with no loss of time. It appears that the more remotes on the system, the more time is lost. Have you heard of anything like this before? The customer depends upon this clock to keep the time a user starts work every day. Any ideas would be appreciated.

Thanks, Gary
DESCRIPTION OF CHANGE

PRELIMINARY

Change parts list and sample board per attached sheets and as follows:

Change BOM 210-8937-A, 210-8937-B, 210-8937-C, 210-8937-D, 210-8937-E and 210-8937-F as follows:

Delete: 377-3490 IC PAL 16R4
Add: 377-3490-R1 IC PAL 16R4

CHANGE PAL AT LOCATION L42.
Delete the part number and product structure for 377-3490.

ECO TO BE
FEB 08 1989
REVIEWS

REASON/SYMPTOM FOR CHANGE

To correct memory sizing problem.

PROBLEM WHEN PARTITIONING SCREEN SHOWS 512K MEMORY AVAILABLE & LETS YOU PARTITION IT WHEN ONLY HAVE 128K BOARD WHEN PARTITION MORE THAN 128K RESULTS IN A PECM ERROR.
IMPACT REVIEW CHECKLIST

WANG ECO# 52361
OEM ECO# ________
PN# 210-8937A

1. WANG MODEL #s AFFECTED: CS MICROV, MVP 128

2. WANG FRU(s) #s AFFECTED: 210-8937A

3. IS THERE AN IMPACT ON WANG INSTALLED BASE? (IF NO, go to 7) YES ∑ NO

4. OF MODEL #s IMPACTED - UNIT FAILURES EXPECTED?: ALL UNITS __ SOME UNITS __

5. HOW ARE THESE UNITS IMPACTED? (Check any that apply):
SAFETY
FCC COMPLIANCE ______ INTERMITTENT HARD FAILURE ______ ENHANCEMENT RELIABILITY √
TEMPEST INTG. ______ CATASTROPHIC ______ OTHER (See 7) √

6. PLR DATA:
Unit Population

<table>
<thead>
<tr>
<th>Product Failure Data</th>
<th>Parts Related To ECO/PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Calls</td>
<td>Total Fails per Year</td>
</tr>
<tr>
<td>last 12 mo.</td>
<td></td>
</tr>
</tbody>
</table>

7. FIELD REQUIREMENTS:

Level A Information only
Level B TSB required
Level C FCO required

FCO requirements Next Call Est. installation time 10 min
Immediate Est. % of units to FCO

8. FSC REQUIREMENTS:

Level A Information only
Level B Upgrade on failure only
Level C Upgrade all assy's (MUB)

9. LOGISTICS REQUIREMENTS:

Level A Information only
Level B Future purchases
Level C Purge stock (FSC rework)

ANY OTHER INFO TO CLARIFY IMPACT: (S/N range, documentation (i.e. Product Maintenance Manual, Service Handbook, etc.), configurations, repair/test process(es), tooling, etc.)

ONLY THE 210-8937A BOARD NEEDS TO BE ECO'ed AS IT IS THE ONLY CONFIGURATION WHERE A PROBLEM EXISTS. All NEW BOARDS, 210-8937A/B, CD/F/FX SHOULD BE BUILT WITH THIS CHIP AS THE SAME CHIP IS USED ON ALL BOARDS.

REVIEWER'S SIGNATURE: ________________________ DATE: 1/31/89

(OVER FOR DEFINITIONS)
WRITE CLEARLY AND USE BLACK INK

0078P/7-14-88
Question: I have switched to the DS and my applications seem to run slower.

Answer 1: You may have replaced Phoenix drives on two disk controllers with a single DS cabinet. You now have one channel to the CPU instead of two.

Answer 2: The raw speed of the Phoenix is faster than a DS. If your software does not take advantage of the cache memory available it may well run slower. However, the DS has a cache memory of up to 1K sectors. On some reads to disk as many as 32 sectors are brought into cache. The Phoenix has a much smaller cache of 8 sectors.

Answer 3: One VAR has found that the time for an expected response could drop from 2 seconds to 20 seconds. If you move files to the DS surfaces properly this slowness will not occur.

1. Optimize the index size,
2. Use the new hash algorithm,
3. Move heavily used files close to the index area.

-- 1. Optimize the index size,
 Determine how many files will eventually be on the disk surface.

 Set an index of a size that will be used to 75-80% capacity.

 A full index uses 16 file names per sector, 15 in sector 0. 75% of
 capacity would be 12 names per sector. A 10 sector index is saturated
 with 159 names, comfortable with 120. A default index of 24 sectors has
 room for 383 file names.

-- 2. Use the new hash algorithm,

 When you move files to the DS cabinet it may pay to use the new disk index
 hashing algorithms. A description of the differences was detailed in an
 article for TechKnowledge in September 1987. The old "hash" algorithm
 "hashed" items to every third sector in the index and then. The new
 algorithm "hashes" more equitably to every sector. The new algorithm also
 uses a look-ahead rather than a look-behind feature.

-- 3. Move heavily used files near the index area.

 Files should also be moved so that the heavily used files occur close to
 the index sectors to minimize head movement.
Index Structuring:
A Better Way
by Tyler Olsen

The CS/2200 computer uses disks as a primary media for program and data storage. Its BASIC-2 operating system has a built-in catalog mode for accessing logical disk surfaces so that users can find program and data files automatically. For each logical disk surface, the assigned catalog disk area includes space for index sectors and and space for programs and data storage.

The catalog index lists file names, types, and locations in the storage sectors of the disk surfaces. The index area begins in sector zero and continues through a user-requested number of sectors; that is, the user chooses how much of the catalog disk area will be dedicated to index sectors as well as how large the catalog disk area for that surface will be.

The balance of the catalog disk area is left over for program and data storage.

ASSIGNING SPACE

By applying the SCRATCH DISK command to a specific disk surface, the user establishes the form and size of the catalog index area as well as the maximum size of the program and data area. The initial assignment is by a BASIC-2 command such as

```
SCRATCH DISK T/D25, LS = 50, END = 38000
```

New versus old index structuring: The new CS/2200 hashing method (left) distributes entries among index sectors more efficiently than the old (right).
Since the 2200 series was introduced in the early 1970s, two hashing (index-structuring) techniques based on BASIC-2 commands such as this one have been introduced. The new hash method was introduced as a more efficient way of assigning index sector usage and managing disk accesses as an option in release 2.5 of the CS/2200 BASIC-2 operating system. All subsequent releases of the operating system support both the old and new hashing methods.

THE CRITICAL DIFFERENCE

The first index sector contains disk-surface data and up to 15 file pointers; subsequent index sectors contain up to 16 file pointers. The hashing algorithm used by the operating system points to a specific sector in the index area.

The old hashing method is invoked with this command:

SCRATCH DISK T /D25 , LS = 50, END = 38910

while the new hashing method is invoked with

SCRATCH DISK ' T /D25 , LS = 50, END = 38910

where the prime symbol invokes the new hashing method, /D25 identifies the specific logical disk surface, LS = ii designates the size in sectors of the index area, and END = nnnnn designates the maximum number of sectors in the catalog area.

The hashing algorithm used by the operating system quickly points to a specific sector in the

Though both the old (right) and new (left) hashing methods use 81 percent of the index area, the old hashing algorithm leaves 66 percent filled to capacity, suggesting substantial backward overflow. What little overflow the new method yields is forward overflow, facilitating caching by the data processing unit to reduce the number of performance-crippling disk accesses.
CS/2200 Disk access comparisons

All times in milliseconds

<table>
<thead>
<tr>
<th>Disk Model</th>
<th>Sequential Access Times</th>
<th>Random Access Times over entire Platter</th>
<th>Sequential access Times over 1st 2000 Sectors</th>
<th>Typical Sequence Access Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2270 Diskette</td>
<td>52.7</td>
<td>391.6</td>
<td>329.0</td>
<td>98.5</td>
</tr>
<tr>
<td>2275 Diskette</td>
<td>24.6</td>
<td>329.4</td>
<td>313.3</td>
<td>132.9</td>
</tr>
<tr>
<td>DS 320KB</td>
<td>19.6</td>
<td>110.3</td>
<td>84.9</td>
<td>17.7</td>
</tr>
<tr>
<td>LVP diskette</td>
<td>18.9</td>
<td>282.3</td>
<td>190.0</td>
<td>66.5</td>
</tr>
<tr>
<td>DS 1.2 MB</td>
<td>15.2</td>
<td>181.6</td>
<td>93.3</td>
<td>36.3</td>
</tr>
<tr>
<td>2275 10MB</td>
<td>7.9</td>
<td>133.0</td>
<td>67.0</td>
<td>15.8</td>
</tr>
<tr>
<td>2275 32MB</td>
<td>6.8</td>
<td>66.3</td>
<td>48.5</td>
<td>14.6</td>
</tr>
<tr>
<td>LVP 32MB</td>
<td>6.6</td>
<td>89.4</td>
<td>45.5</td>
<td>14.0</td>
</tr>
<tr>
<td>DS 10MB</td>
<td>6.0</td>
<td>141.5</td>
<td>36.3</td>
<td>18.1</td>
</tr>
<tr>
<td>DS 20MB</td>
<td>5.0</td>
<td>90.8</td>
<td>23.4</td>
<td>10.1</td>
</tr>
<tr>
<td>DS 64MB</td>
<td>4.9</td>
<td>42.5</td>
<td>15.1</td>
<td>7.7</td>
</tr>
<tr>
<td>DS 32MB</td>
<td>4.8</td>
<td>59.5</td>
<td>21.1</td>
<td>8.0</td>
</tr>
<tr>
<td>DS 140MB</td>
<td>4.7</td>
<td>46.3</td>
<td>14.3</td>
<td>7.7</td>
</tr>
<tr>
<td>2280 80MB</td>
<td>4.2</td>
<td>43.1</td>
<td>23.8</td>
<td>10.2</td>
</tr>
<tr>
<td>DS RAM disk</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>CS RAM disk</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Diskettes

<table>
<thead>
<tr>
<th>Diskette Model</th>
<th>Sequential Access Times</th>
<th>Random Access Times over entire Platter</th>
<th>Sequential access Times over 1st 2000 Sectors</th>
<th>Typical Sequence Access Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2270 Diskette</td>
<td>52.7</td>
<td>391.6</td>
<td>329.0</td>
<td>98.5</td>
</tr>
<tr>
<td>2275 Diskette</td>
<td>24.6</td>
<td>329.4</td>
<td>313.3</td>
<td>132.9</td>
</tr>
<tr>
<td>DS 320KB</td>
<td>19.6</td>
<td>110.3</td>
<td>84.9</td>
<td>17.7</td>
</tr>
<tr>
<td>LVP diskette</td>
<td>18.9</td>
<td>282.3</td>
<td>190.0</td>
<td>66.5</td>
</tr>
<tr>
<td>DS 1.2 MB</td>
<td>15.2</td>
<td>181.6</td>
<td>93.3</td>
<td>36.3</td>
</tr>
<tr>
<td>2275 10MB</td>
<td>7.9</td>
<td>133.0</td>
<td>67.0</td>
<td>15.8</td>
</tr>
<tr>
<td>2275 32MB</td>
<td>6.8</td>
<td>66.3</td>
<td>48.5</td>
<td>14.6</td>
</tr>
<tr>
<td>LVP 32MB</td>
<td>6.6</td>
<td>89.4</td>
<td>45.5</td>
<td>14.0</td>
</tr>
<tr>
<td>DS 10MB</td>
<td>6.0</td>
<td>141.5</td>
<td>36.3</td>
<td>18.1</td>
</tr>
<tr>
<td>DS 20MB</td>
<td>5.0</td>
<td>90.8</td>
<td>23.4</td>
<td>10.1</td>
</tr>
<tr>
<td>DS 64MB</td>
<td>4.9</td>
<td>42.5</td>
<td>15.1</td>
<td>7.7</td>
</tr>
<tr>
<td>DS 32MB</td>
<td>4.8</td>
<td>59.5</td>
<td>21.1</td>
<td>8.0</td>
</tr>
<tr>
<td>DS 140MB</td>
<td>4.7</td>
<td>46.3</td>
<td>14.3</td>
<td>7.7</td>
</tr>
<tr>
<td>2280 80MB</td>
<td>4.2</td>
<td>43.1</td>
<td>23.8</td>
<td>10.2</td>
</tr>
<tr>
<td>DS RAM disk</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>CS RAM disk</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Hard disks

<table>
<thead>
<tr>
<th>Hard disk Model</th>
<th>Sequential Access Times</th>
<th>Random Access Times over entire Platter</th>
<th>Sequential access Times over 1st 2000 Sectors</th>
<th>Typical Sequence Access Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2275 10MB</td>
<td>7.9</td>
<td>133.0</td>
<td>67.0</td>
<td>15.8</td>
</tr>
<tr>
<td>2275 32MB</td>
<td>6.8</td>
<td>66.3</td>
<td>48.5</td>
<td>14.6</td>
</tr>
<tr>
<td>LVP 32MB</td>
<td>6.6</td>
<td>89.4</td>
<td>45.5</td>
<td>14.0</td>
</tr>
<tr>
<td>DS 10MB</td>
<td>6.0</td>
<td>141.5</td>
<td>36.3</td>
<td>18.1</td>
</tr>
<tr>
<td>DS 20MB</td>
<td>5.0</td>
<td>90.8</td>
<td>23.4</td>
<td>10.1</td>
</tr>
<tr>
<td>DS 64MB</td>
<td>4.9</td>
<td>42.5</td>
<td>15.1</td>
<td>7.7</td>
</tr>
<tr>
<td>DS 32MB</td>
<td>4.8</td>
<td>59.5</td>
<td>21.1</td>
<td>8.0</td>
</tr>
<tr>
<td>DS 140MB</td>
<td>4.7</td>
<td>46.3</td>
<td>14.3</td>
<td>7.7</td>
</tr>
<tr>
<td>2280 80MB</td>
<td>4.2</td>
<td>43.1</td>
<td>23.8</td>
<td>10.2</td>
</tr>
<tr>
<td>DS RAM disk</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>CS RAM disk</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>
index area based upon a mathematical calculation on the eight-byte file name being referenced. The difference between the old and new hashing methods is in this search algorithm and what happens when there is a file-reference overflow from one index sector to another. An overflow occurs when a hashing calculation points to an index sector that already contains its full complement of 16 items. The old hashing method looked to the prior sector for the overflow; the new method looks to the next sector. To understand how the two methods achieve such different results, let's look at how the CS/2200 manages forward data overflow storage.

The new Wang data storage (DS) cabinets [see March 22, 1987 (711-1311) TechKnowledge, p. 10] come with a data processing unit (DPU) which has a given amount of fast storage buffer, or cache, memory. Up to 1,024 sectors of cache memory are available. If a requested sector is within the DPU cache memory, no real disk access has to be made for the data; consequently, information in cache can be transferred to the CPU much faster. The DPU caches to requested disk sectors using a modified least-recently-used algorithm. Such sector caching, therefore, reduces disk accesses. Running the DS utility @HITRATE will show the cache hit efficiency.

GRAPHIC DIFFERENCES

Two sets of index-usage results illustrate the efficiency differences between the old and new hashing methods. For both sets, a program was written to randomly name and open 310 files on a single diskette.

In the first case, the old hashing algorithm left 33 percent of the index sectors empty and filled another 33 percent to capacity. By contrast, the new hashing method distributed data much more evenly and logically among the index sectors, yielding a consolidated bell curve when usage was plotted against number of entries per sector.

The difference is even more striking in the second set of index-usage results. In this set, both the old and new hashing algorithms used 81 percent of a 24-sector index area. The old hashing method filled 66 percent of the sectors to capacity, suggesting substantial backward overflow. Again, the new hashing method yielded a bell-curve distribution around 12 to 16 items per sector, suggesting little forward overflow. What overflow there is, is handled by the DS cache technique so that performance is not greatly affected.

BEST USE

The savings that can be realized using the new hashing method are especially noticeable when programs or program overlays are loaded. A disk surface that is primarily for program storage might be organized to use the new hashing method in a minimum number of index sectors. When programs are moved to this surface, the most-often referenced programs and program overlays might be moved first, grouping them nearer to the index.

If data files are opened and closed repeatedly, they might also benefit by being assigned to a location on the disk surface by the new hashing method. With release 3.1 of the CS/2200 operating system, the number of files that can be opened concurrently within a partition has increased from 16 to 256 so that conversion of data-file disk surfaces to the new hashing method might not be necessary to increase access efficiency. Some applications, however, may have been written requiring the old hashing method. Code can be added to these applications to make them compatible with either method.

Expanded main CPU memory in the MicroVP and CS/2200 computers [see October 1987 (711-1324) TechKnowledge, p. SW-12] put a potential of 8MB of CPU RAM disk at the user's disposal. The disk is accessible as disk 340, a totally separate disk address. While the CPU RAM memory is fast, it is also volatile and easily lost on a power outage. Still, it remains the ideal medium for easily recovered files such as programs or sort work areas.

Tyler Olsen
is a principal software engineer for Wang Laboratories' (Lowell, MA) CS/2200 Product Group.
Disk Drive Specifications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Platters</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>14 or 7</td>
</tr>
<tr>
<td>Capacity/Platter</td>
<td>320-KB (360-KB for PC)</td>
<td>1-MB (1.2-MB for PC)</td>
<td>10-MB</td>
<td>16-MB</td>
<td>16-MB</td>
<td>10-MB or 16-MB</td>
</tr>
<tr>
<td>Sectors/Platter</td>
<td>1,280 (1,440 for PC)</td>
<td>4,160 (4,800 for PC)</td>
<td>38,912</td>
<td>65,024</td>
<td>65,024</td>
<td>38,912 or 65,024</td>
</tr>
<tr>
<td>Bytes/Sector</td>
<td>256 (512 for PC)</td>
<td>256 (512 for PC)</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>Average Access Time</td>
<td>100 ms</td>
<td>100 ms</td>
<td>68 ms</td>
<td>45 ms</td>
<td>27 ms</td>
<td>27 ms</td>
</tr>
<tr>
<td>Data Transfer Rate</td>
<td>250 KB/sec</td>
<td>500 KB/sec</td>
<td>5 MB/sec</td>
<td>5 MB/sec</td>
<td>5 MB/sec</td>
<td>5 MB/sec</td>
</tr>
</tbody>
</table>
Extending the Life and Performance of Your 2200

by

Tim VeArd

Tens of thousands of organizations are wondering what to do about that old Wang 2200 that's been sitting in the corner for years. Why is this old dinosaur still being used? Because it's reliable and still works! In fact, many of its users have never experienced a major problem with it.

The 2200 is the second most successful minicomputer ever built — only the IBM System 34 had more users. But, unlike IBM 34 users, 2200 users have choices available when it comes time to replace their computers. Data and software from a 2200 can be transferred as is to many machines. In addition to Wang's own replacement for the 2200, the CS/DS, BASIC-2 programs and data can be moved to at least 120 other computers by using either Niakwa Management Systems' BASIC-2C, Spectrix's BASIC-3 or CCI's BASIC-K.

Perhaps another reason for the 2200 still being used by so many people is that maybe now there are too many choices to analyze. While many have successfully replaced their 2200, others have discovered that moving data and software to another manufacturer may not have been the best choice for them. In some cases, the newer hardware wasn't faster, was less reliable, had limited growth paths and it wasn't as easy to use as the 2200.

What do you do? While I have my own list of favorite replacements for the 2200, there are just too many choices for one to be "right" for everyone. Making the correct choice is not just a simple matter of picking another computer. You should consider the availability and cost of maintenance; will the system be as easy to use; will it be as fast; will it "hold up" as well for many years; can you use any of your existing peripherals; will you need special power or air conditioning; can you get software support; is the manufacturer financially stable and do they have a history of "upward migration". Very few companies are as committed as Wang is at providing a growth path for existing users to newer products. Some users have their 12 year old multi-user 2200VPs (upgraded from single user 2200VPs) working with new Wang DS cabinets. I'm using a 14 year old disk drive with a CS.

There are new options being announced every month and rumors of spectacular developments coming soon. For some, the best course of action today could be to wait until tomorrow. As long as your 2200 still performs or can be made to perform better, waiting might be a good choice. There are several things you can do to improve the performance and extend the life of your current hardware. Your options range from investing a few weekend hours to spending a couple thousand dollars. These strategies involve rearranging data on your disks, reconfiguring your hardware, adding a few new or used components, completely replacing some hardware or modifying programs.

Reconfiguring Data Disks

Many 2200 owners use Phoenix or Winchester disk drives with multiple platters. Drives with multiple platters have separate heads to read or write data on each platter, but these heads are "ganged" (all heads move together). To visualize this, picture a head glued to the tip of each finger on your right hand. Now imagine that the fingers of your left hand are disk platters. Put the fingers of one hand in between the fingers of the other and move your right hand back and forth. Like the finger tips of your moving hand, the heads for all platters always move together.
Pretend that on platter #1 (the top finger of your left hand) there is a data file positioned at the beginning of the platter (near your finger tip) and another file located at the end of the platter (near the joint of the two fingers). When two people use these files at the same time, the heads are constantly flying from one end of the platter to the other to retrieve data. If these two files were closer together, the heads won't have to move as far to service both users - thus operations become faster.

Complicate this picture (are your fingers tired yet?) with another file on platter #4 (your baby finger). Let's put this file near the middle of the platter (by your knuckle). When a third person asks for data from that file, the heads really begin to fly. Remember, the heads for all platters move together. So, you now have the top head moving from end to end and taking the bottom head (who wants to stick in the middle) with it. It's no wonder that your drive often sounds like an out-of-balance washing machine.

You can reduce some of the movement of the heads by rearranging the data files on your disk. LIST all of your disks to find out what area of each platter, by sector address, your files occupy. Analyze which files are used most often by the most number of people. Backup and reformat all platters. Using your analysis, copy files back one at a time. Your goal is to position the most active files on separate platters and in the same relative areas on each platter (preferably, near the center of each). Start by moving some of your least used files. Then, as a platter becomes full enough, move one of your most active files so that it now occupies the center, then finish by moving the remaining files back.

You can use BASIC-2 commands (COPY or MOVE) or utilities (like @MOVEFIL). But, some software systems (like AIMS) require that you use their utilities to successfully move a file and its companion work files. Be patient, because this procedure takes time. Don't take too much time trying to get it absolutely perfect, because at best, it only improves performance by about 15% on Phoenix drives and up to 30% on Winchester drives. The real payoff comes from making the drive operate smoother, thus extending its life. Anyway, who wants to listen to an out-of-balance washing machine all day?

Reconfiguring Hardware

Spreadout Users and Data - A few years ago, this option was too expensive to even consider. Now, with so much used hardware available, you can achieve tremendous gains in performance for just a few hundred dollars. It's possible to buy a used 2200 or Phoenix disk drive for under $1,000 (I've seen them for as low as $500 each). It's possible for well under $2,000 to double your system "through put" (the amount of work that can be done in any given period of time) by simply adding another CPU and disk drive. First, make sure that your software is able to handle "logical" terminals before trying to use multiple CPUs.

Rearranging your most active files on separate disk drives, instead of just separate platters, yields a dramatic boost in performance. Also, as many have discovered, adding a ninth user "brings a 2200 to its knees". There are a few reasons for not putting more than eight terminals on a 2200, but mainly it's because only one terminal at a time can do anything. The 2200 shares its time among all users, in 30 millisecond periods called "time slices". The more users a 2200 has to poll, the less number of time slices each user gets. Thus, each user gets more time slices by having less users on each 2200. You can share up to four disk drives with up to four 2200's. With a little effort, it's possible to have up to 32 terminals sharing data and performing just as well as an 8 terminal system.
Organize Users by Function — When you do have multiple CPUs, you will also have a few other options. You can analyze what types of jobs are being performed and then arrange users on those CPUs to make your critical tasks faster. For example, most word processing software packages available for the 2200 slow down all other users. When a terminal runs word processing software, it completely uses each time slice. Other types of software can use INPUT/LINPUT or versions of KEYIN statements that put a terminal "to sleep" in between keystrokes. When a terminal is not truly busy, it gives up its time slice. Therefore, at any given time, most terminals (except for word processors) are "asleep" and the 2200 is free to dedicate most of its time to servicing the currently active users. However, all software systems have some peak use periods when they will also consume all of their available time slices (for example, an accounting system closing a month).

You can experiment by confining all word processors to one CPU and leaving another CPU to just service accounting operators. Or you can balance your system by evenly distributing word processors and accounting across all available CPUs. You can even manage (swap terminal plugs) your resources on a daily basis to get the best "through put" for the scheduled work load.

Adding New Components

There are several "add on" devices that can improve the performance of your system, such as additional core memory and RAM disks. A word of warning, some of these devices cannot be used with another manufacturer's hardware should you later decide to replace your CPU. You should also take the time to be sure that the benefits are cost justified.

Additional Memory — Depending upon the software and the CPU you are using, additional memory can yield two benefits. First, some software can take advantage of having additional memory available. Years ago, an "unwritten" standard was adopted by many software authors not to use more than 28K bytes of memory per terminal. Now that memory is cheaper, some authors rewrote their packages to give better performance (my own system is now 65% faster if there is more memory). Contact your supplier and ask if there is a new release of your software that improves performance if you have 56K of memory per terminal available. If you write your own software, later in this article you will find a few suggestions (some requiring more memory) that may help you make your own code faster. Second, the Wang CS (and a 2200 using extended memory supplied by Southern Data Systems in Raleigh, NC), can configure additional memory not used by terminals as RAM disk.

RAM Disk — RAM (Random Access Memory) disks are a form of additional electronic memory that can be used just like a regular disk drive. There are two types of RAM disk, internal (extended main memory) and external (attached to the CPU's I/O bus like another disk drive). Unlike regular disk drives, there are no mechanical parts like spinning platters and moving heads, therefore these electronic disks are very fast. Compare the access rate of a Winchester drive of 27ms to a RAM disk's 1.5ms (internal) or 3.4ms (external) — a RAM disk is obviously many times faster.

Unlike regular disk drives, when the power is turned off, internal RAM disks send what is written on them to the "bit bucket" (data heaven). One safe configuration is to put only programs on a RAM disk. My research shows that an average program loads about 0.25 seconds faster from a RAM disk. If your software constantly loads other programs or overlays pieces of programs, you'll see screens "pop up" faster. My system used to load 5 programs in a row in over 6 seconds. With RAM disk, it now does it under 5 seconds or about 22% faster. But, if your system only loads one program and then uses that same program for hours, you will see no benefit at all.
You can also put work or reference files that are not written to on the RAM disk. This way, if power does fail, then nothing can be lost. But, it generally requires changes in your software to configure and use a file in this fashion. If you try to copy an entire disk to an internal RAM disk, you may run into other problems in addition to losing data. Many software systems want a disk to make sure that it is really there and ready to use. That test uses a $GIO statement because a $IF ON is not always reliable. You will usually get an I92 error (time out) when using $GIO on internal RAM disks. Another problem is that internal RAM disks use a unique, fixed address that some software packages written many years ago won't recognize.

External RAM disks are better when you have multiple CPUs, since terminals on one CPU cannot share programs or data on another CPU's internal RAM disk. Also, some external RAM disks (like Northeast Digital Corporation of Southampton, PA) let you pick the address to use, support the $GIO test and automatically backups everything written on the RAM disk to a built-in Winchester disk drive during a power failure or normal shut down.

My tests indicate that RAM disks really begin to “pay off” when you have many users sharing the same sets of programs and work files. With just a few users or shared files, there are only small gains (about 15-25%) in performance. Where as, you may see higher gains (around 40-50%) when 8 terminals are using a properly configured RAM disk. Unless you have many programs that are frequently loaded and heavily used or shared work files, you may not experience enough benefits to cost justify a RAM disk. Also, more is not always better. You don't need a large internal RAM disk if you are just putting programs and work files on it. I used Wang's 2 meg (about 7,500 sectors) RAM disk and got great results, but increasing its size to 4 meg or 8 meg did not really increase performance much more, until investing weeks rewriting my software to perform sorts on the bigger RAM disk.

Replacing Some Existing Hardware

Carefully selecting new or replacement disk drives, terminals and CPUs can really help you improve the performance and extend the life of the rest of your hardware. In some cases, you can actually build a “bridge” to another computer system, while still using your existing hardware.

Terminals - You can implement several strategies when replacing or adding new terminals. If you are heavily using word processing on your Wang CS or 2200, consider using Wang's new 2436WP terminal. The 2436WP does the word processing and gives up its time slices on the 2200 while doing it. There are 6 "windows" that let you start, monitor or switch jobs on the 2200 while doing word processing. We measured an increase in system performance of about 12% by switching just one word processing user to a 2246WP.

If you are planning to replace your CPU later, there are some terminals (Spectrix Microsystems of Markham, Canada) that can be used on your 2200 and later be used by other CPUs. Of course, there are a few replacement CPUs that can also use your existing 2200 terminals, so you can still buy Wang terminals and have options later. You can also use IBM PC clones as terminals on your 2200 by using software (Southern Data System's 2536PC or MacSoft of Bakersfield, CA) that makes the PC emulate a 2200 terminal.

Disk Drives - If you must replace an existing disk drive, it's a golden opportunity to truly enhance the performance of your system. Don't just buy a new drive without planning for growth. Investigate the many features that you can also get for very little extra when buying a new drive. Even if you plan to migrate to another CPU, there are choices that let you use the drive now on your 2200 and then later on another CPU.
To illustrate what you should now expect from any new disk drive, look at Wang's DS. In addition to getting a disk drive, you also get cache memory (which can also be configured as a RAM disk). It's almost like buying a hamburger, because you can "have it your way". Buy an empty cabinet and add on more drives as your budget permits. Drives range from slower 10 and 20 megs, all the way up to faster 64 and 140 meg drives. You can have several drives in the same cabinet or connect several cabinets together.

Best of all, anyone can pick up the entire DS cabinet and carry it anywhere. Caution should be taken moving a cabinet. The cabinet is not designed to be moved w/ drives installed. Another important feature to look for in any new disk drive is how do you backup? Like Wang's DS, some manufacturers (like Magna Computer Corp. of Manchester, NH) now offer you choices between built-in tape drives or small removable disk cartridges. Some manufacturers can offer things like built-in cache memory, RAM disk and backup systems - others cannot. Most of the disk drive systems now available will work as well as your existing drives. But, some of the replacement drives will not be faster because they do not have those extras. Even though Wang's DS is designed to provide with their new Wang CS, you will also see improved "through put" on a 2200 with proper use of its cache memory and external RAM disk.

Southern Data Systems makes a disk drive that has a built-in RAM disk, cache memory and removable backup, but can also be used with other CPUs. For example, your Wang 2200, Wang CS, Wang PC and dozens of other IBM PC clones can all share the same disk drive. In fact, SDS even lets your 2200 emulate certain MS/DOS commands and read MS/DOS files. This drive lets you "network" a 2200 with many non-Wang CPUs and directly exchange data.

CPUs - You can keep most of your existing hardware and just replace your CPU. Most of a computer system's cost is in its peripherals (terminals, disks and printers), not the CPU. With a 2200, there are several options that may let you have the best of both worlds. Most users like their 2200 and really don't want to completely replace it. Some people are required to have some MS/DOS or UNIX capability and are planning to replace their 2200 to meet those corporate goals. By integrating an MS/DOS or UNIX based CPU with your 2200, you not only achieve the ability to communicate with those other computers, you also make your existing 2200 perform better by spreading out some of its current work load. If you purchase components wisely, both CPUs can share the same resources (like terminals, printers and even disk drives) in case of emergencies or hardware failures.

The cleanest and simplest way to replace your 2200 is with Wang's new CS. You do not have to buy a DS or any new peripherals to use a CS. The CS uses every device that a 2200 uses, without exception - even non-Wang items like SDS's Extended BASIC-2 language, terminals, printers and disks. The CS has low maintenance costs (low enough to almost pay for it by just what is saved on your 2200's maintenance). The CS is smaller, quieter and generates less heat. However, replacing a 2200 with a CS will not increase your overall system performance yet (don't forget Wang's commitment of "upward migration" and rumors now being heard), unless you also buy extra memory for RAM disk or a DS. A CS and DS together are about 20% faster than a 2200 for most users, mainly because of the cache memory in the DS.

You can also buy another CPU and integrate it with your existing CS/2200. Using one of the BASIC compilers, you can exchange data with the 2200 and the new CPU. Data can be exchanged between many different CPUs (including the 2200) using Niakwa's BASIC-2C compiler and a floppy diskette. You can directly share data between a large variety of CPUs using both Southern Data System's disk drive and Niakwa's BASIC-2C. With Spectrix's BASIC-3 or CCI's BASIC-K you can connect a wire between CPUs and transfer entire disk platters back and forth, without conversion (but taking some time).
Modifying Software to Increase Performance

If you purchased software, contact your supplier to see if there are new releases offering performance enhancements. Wang's BASIC-2, SDS's Extended BASIC-2, Niaowa's BASIC-2C, Spectrix's BASIC-3 and CCI's BASIC-K have all included several new verbs in their recent releases that can improve the performance of software. As a result, many software authors are making major improvements to their packages now to take advantage of those verbs.

If you write your own software, you can use those new verbs and also learn to generate more efficient code. It would be impossible to cover in this article all of the "tricks" that I've accidently stumbled over during the years to make code faster. But, without giving away too many trade secrets, I can share some ideas that show you how to start developing your own techniques. I categorize most improvements as belonging to one of three basic groups: (1) structure, (2) save-a-byte and (3) save-a-second.

Structure: This refers to how a program is organized. The 2200 is stack oriented. All variables and internal values are put into "push down, linked electronic lists". A "push down" stack means that the last used (or referenced) value is put on top of a list. "Linked" means that there are several entry points into a stack. For example, there are 26 entry points into the variable stack - one for each letter of the alphabet.

10 DIM A$64,B$12,N$24,C$32,C1$20,C2$10,C(10),C$(2)5

In the statement above, C$ is referenced first, so it's on the bottom of the list of C's. When your program needs the value held in C$, the 2200 jumps to the "C stack" and asks the first variable "are you C$?", to which the stack says "No, I'm C$()". The 2200 moves down the list until it finds C$ at the bottom before it retrieves the value stored in it. If C$ is used a lot by your program, you will improve over all "through put" if C$ is DIMensioned after all the other variables that start with the letter C. Spreadout variables to take advantage of the 26 entry points, because if they all start with the same letters, your program will be slower.

Generally putting your most frequently used subroutine at the top of your program makes it faster. To prevent the 2200 from scanning every line starting from the top of a program with each GOSUB or GOTO, line numbers are divided into 16 groups. In the statement "GOSUB 9000", the 2200 jumps to a starting line number stored in memory for that group of lines and then scans the lines from that entry point to find out where line #9000 is in memory, before it can execute the routine you put there. If you add more code to your program, a subroutine may move from the top of one entry point to the bottom of another. If your subroutine is used thousands of times, put it at the top of the program and it will probably run faster. If all DEFFN X(v)'s (defined functions) are put together in the same area (like the top) of a program, instead of sprinkled through out, they will also execute faster. Since the 2200 only maintains 16 line number references for user defined subroutines, other GOSUB'XXs will be slower.

Since most versions of BASIC automatically print spaces between verbs and syntax when LISTing code, many programmers develop a bad habit of inserting spaces as they write code. The 2200 takes extra time to analyze the blanks (and extra disk space and memory is wasted). 2200 programs are resolved before running. Variables are assigned to stacks, verbs are turned into machine code (atomized) and other housekeeping chores are done. Programs resolve faster if there are no imbedded blanks found in your statements. Imbedded spaces also impede the overall program execution. You can automatically eliminate imbedded blanks by using the "(S)" parameter the next time you SCRATCH and SAVE your program: SAVE (S) T$() "program".
Save-a-byte: These techniques can be used to do the same things with less code, and often as a result, less time. To illustrate some "tricks" not found in manuals, I'll list some statements and their shorter equivalents:

<table>
<thead>
<tr>
<th>Normal Statement</th>
<th>Short Version doing the same thing</th>
</tr>
</thead>
<tbody>
<tr>
<td>STR(A$,1,20)=STR(B$,1,20)</td>
<td>STR(A$,20)=B$</td>
</tr>
<tr>
<td></td>
<td>'1' is assumed as the default and string for B$ isn't needed</td>
</tr>
<tr>
<td>STR(A$(1),20,6)=STR(B$(1),40,6)</td>
<td>STR(A$(1),20,6)=STR(B$(1),40)</td>
</tr>
<tr>
<td></td>
<td>again, 1 is assumed and length for B$ isn't needed</td>
</tr>
<tr>
<td>IF K$="N" OR K$="Y" THEN 200</td>
<td>IF POS("YN"=K$) > 0 THEN 200</td>
</tr>
<tr>
<td>A=POS(A$=HEX(0D))</td>
<td>A=POS(A$=OD)</td>
</tr>
<tr>
<td></td>
<td>- HEX is assumed</td>
</tr>
<tr>
<td>IF POS(HEX(0102)=STR(A$,1,1)) THEN.</td>
<td>IF POS(HEX(0102)=A$) THEN.</td>
</tr>
<tr>
<td>A=VAL(STR(A$,1,1))</td>
<td>A=VAL(STR(A$,1,1)) - or - A=VAL(A$)</td>
</tr>
<tr>
<td></td>
<td>- Only 1st referenced byte of A$ is actually checked or used</td>
</tr>
<tr>
<td>A$=" " .. or .. A$=HEX(20)</td>
<td>A$=Z$</td>
</tr>
<tr>
<td></td>
<td>- DIM Z$. If used a lot, saves core and time (imbedded blanks)</td>
</tr>
</tbody>
</table>

There are literally dozens of similar "gimmicks" that save memory. My love affair with looking for "save-a-byte" gimmicks started by accident fifteen years ago when I was desperately looking for ways to avoid A01 (memory overflow) errors. I was puzzled when I didn't get an error message when entering the first statement shown above and by mistake omitted a '1'. BASIC verbs require rigid syntax (rules and structured format). Therefore, the 2200 expects to find certain values assigned. With many verbs, if the value is not supplied, the 2200 assigns a default value.

Some gimmicks, like combining short program lines together, saves both space in memory and time. The smaller a program is, the faster it loads and resolves. Every line number that is eliminated, saves 4 bytes of memory (and may result in less lines for GOSUBs to fall through).

Also use LIST V and look for variables that are not used very often. If these identified variables are just temporary work variables, meaning that their values are not needed later, they can be combined. Reuse one variable over and over again as a temporary work variable. For every numeric variable that you eliminate, you will save 12 bytes of core memory.

Save-a-second: Another set of techniques involves replacing code with verbs that do the same thing, but faster. Every BASIC verb takes a unique amount of time to execute. Years ago, I formed the habit of starting each work day by spending a few minutes looking for ways to do things faster and with less code. It resulted in creating a list of ratios used to compare how long a verb takes to execute. You can develop your own list by writing a simple one line program that executes a verb at least one million times using a FOR/NEXT loop and then time how long each verb takes. I'll share part of my list with you. The verbs are listed in time order, with the fastest on top and the slowest at the bottom of the list. The list compares each verb to the REM verb.
As you can see, every statement in a program takes time to execute, even a REM statement that does nothing. In repetitive routines, when a group of lines are used thousands of times, eliminate statements that are not really needed. When sorting 50,000 records, a REM can cost minutes. A common mistake is to imbed a statement like "A=1" in the middle of heavily used routines. As the table shows, setting "A=1" takes 3.3 times longer than a REM. If the "A=1" can be moved outside of that frequently used routine, your program will be faster. Now using the table, let's substitute verbs that do the same thing, but execute faster. Consider these examples:

<table>
<thead>
<tr>
<th>Normal Statement</th>
<th>Faster Version doing the same thing</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF A=1 THEN 200</td>
<td>ON A GOTO 200</td>
</tr>
<tr>
<td></td>
<td>- ON is 25% faster than an IF</td>
</tr>
<tr>
<td></td>
<td>and ON is also shorter</td>
</tr>
<tr>
<td>IF A=3 THEN 20: IF A=4 THEN 30</td>
<td>ON A-2 GOTO 20, 30</td>
</tr>
<tr>
<td></td>
<td>- Replace 2 IF's with 1 ON is</td>
</tr>
<tr>
<td></td>
<td>38% faster and much shorter</td>
</tr>
<tr>
<td>A=A*2</td>
<td>A=A+A</td>
</tr>
<tr>
<td></td>
<td>- ADD is faster than MULTIPLY</td>
</tr>
</tbody>
</table>

As you can see, these investigations can result in vastly more efficient code. Let me share a few other general observations with you:

- Alphanumeric comparisons are always faster than numeric comparisons
- Comparing a HEX code is faster than comparing an alphanumeric
- Eliminating extra variables from your program not only saves memory, it also saves time because it makes scanning the stacks a little faster for all verbs that use variables.

Finally, there are a few new verbs in all versions of the BASIC-2 language that can also make your programs somewhat faster. Most notably is:

```
DATA LOAD/SAVE BM T(A) A$( )
```

This verb can replace the BA (block address) LOAD/SAVE statements in your programs. With it, you can build large data buffers to load a track (24 sectors) of data at a time. It can dramatically reduce the number of "disk hits" your program uses to retrieve or save data, thus eliminating "traffic jams" for those overworked disk heads. By simply using this verb, I was able to reduce the "disk hits" from 839 down to merely 52 when sorting 836 records. Reducing the total number of disk hits made the sort about 10% faster when only 1 terminal was in use. But, when 4 terminals were in use, the sort was 36% faster. Just like a RAM disk, the more users involved, the better your response time will be as you adjust how a disk is used.
Miscellaneous Tips

While these tips probably won't give your computer a sudden burst of speed, they might help you avoid costly "down times" and also help extend its life. Any computer system works better and lasts longer if it is properly maintained and used with a little care.

Environment - Most computers will function properly even at the higher temperatures now found in many of today's offices. But rapid changes in temperature and humidity will harm your computer's life. The temperature range recommended by most manufacturers is 65 to 80 degrees Fahrenheit (18 to 27 degrees Celsius). Humidity should be from 40% to 60%. Some computers will tolerate different ranges, but most experience some problems when the temperature changes by more than 2 degrees per hour. The humidity should also not vary by more that 2% per hour.

Perhaps the most neglected element is humidity. Too much humidity and moisture leaves residue on the disk surface. High humidity causes paper to expand, which can jam some printers. Too little humidity and you get static electricity which causes dust build-up, reduced disk life, excessive wear of printer heads and random data problems on disk. If possible, CPUs and disk drives should not be placed on carpets, unless they are anti-dust and anti-static computer carpets.

Maintenance - Several years ago, many users abandoned their maintenance contracts. They felt it would be cheaper to pay "by the call" or use a third party maintenance organization. Some users said they could save enough money on maintenance costs to buy another system when their existing system no longer worked. In practice, some people did save some money for awhile—during the years when Wang maintenance was high. Today, Wang maintenance prices are realistic, especially on the CS and DS.

There are several disadvantages to not being on a maintenance contract. Obviously, when an emergency does occur and you do need service, you have a lower priority than those other companies who are on maintenance. This is true regardless of who you use for maintenance, either Wang or one of the third party companies. Second, like the self service gas stations of today, relatively little preventative maintenance is being done by many users. For example, filters are not being cleaned or replaced on Phoenix disk drives (which cause as much down time as electronic failures).

Some third party maintenance companies "repair to the part" or use boards that have been repaired before. They simply cannot afford to carry a large stock of parts, nor do they even have the latest engineering changes (ECNs) that may be applicable to your hardware. Quite often, manufacturers swap defective boards or complete systems with new components. It's not unusual for a customer on maintenance to have their complete CPU replaced when several problems occur at once. While how quickly a problem is fixed is an important measurement of how well maintenance is being done, having old components being replaced with new ones can have a hidden benefit of extending the overall life of your system. One study that examined the effect of swapping boards versus replacing the exact part, suggests that you might get several more years of use from hardware where swaps are made.

With today's more realistic maintenance prices, you may be better off with a service contract. But, actively monitor preventative maintenance. Place a tag on the front of each piece of your equipment. Record the dates that each was last serviced, particularly noting when the filters were last replaced or cleaned. Make a habit of routinely checking the tags and when your customer engineer visits, be sure the filters are cleaned if needed.
Daily Operations - Obviously, you should avoid raising dust or smoking near the CPU, disk drives and disk platter storage areas. The clearance between some disk platters and the heads flying over them is 100 micro inches. A portion of cigarette smoke is 250 micro inches. One human hair is 4,000 micro inches. Since they won't fit in between the platters and heads, you might get a "head crash" and lose everything on the drive. Vacuum cleaners or other machinery with large electric motors should not be operated near the CPU or disk drive - and certainly, never while they are running.

Many users come to work early in the morning to do backups. The hardware is powered on, and almost immediately they start copying disks or performing other disk intensive operations. This is the worst time of the day to do a backup. Not only is the hardware still warming-up, so is the air around it. Most offices are not fully heated or cooled at night, thus in the morning the temperatures are usually changing by more than two degrees per hour. If possible, let the hardware warm-up for at least several minutes (I wait at least 15 minutes) before doing backups. Just like an expensive sports car, let it warm-up before racing it. Also, monitor the temperature changes during this period. If the air temperature varies a lot during this warm-up period, see if you can either adjust when the building starts heating or cooling, or else do backups during a period when temperatures and humidity are not changing (the end of the work day is usually best).

It is important to note that data should not be written to a disc at a temperature significantly different than the environment, as errors exist that you were not aware of. You should keep a daily backup and a backup that is at least a week old (many keep a backup for last month and last year). You should also keep one backup "off site" in case of a disaster like a flood, fire or a natural disaster. One disaster that occurs more often than a natural catastrophe is damage caused by disgruntled employees. If they destroy things you can see, it's easier to recover from than having someone insert or delete subtle changes to your data that you may not see for weeks or months. Keeping several sets of backups on site can help if this occurs.

Disaster Planning - Most users backup their data and programs. But, most do not keep a "grandfather" backup that is different than today's backup. In case the current backup was made when errors existed that you were not aware of. You should keep a daily backup and a backup that is at least a week old (many keep a backup for last month and last year). You should also keep one backup "off site" in case of a disaster like a flood, fire or a natural disaster. One disaster that occurs more often than a natural catastrophe is damage caused by disgruntled employees. If they destroy things you can see, it's easier to recover from than having someone insert or delete subtle changes to your data that you may not see for weeks or months. Keeping several sets of backups on site can help if this occurs.

Disaster planning should not be limited to just off site backups. Ask yourself, if your computer was completely destroyed by fire, how long would it take you to get back into business? How long did it take to get your current system after you ordered it? It could take months before you can get new hardware to even load that "off site" backup on a drive. You can join forces with other local users and simply agree to share each other's hardware (after hours, for example) until the other receives new hardware. Some groups have created a joint pool of hardware that members can use during a disaster, or borrow whenever one piece of equipment is out of service while waiting for repair parts. Some companies offer Disaster Contracts that guarantee that you can be processing again within 24 hours.

Summary

You do have several inexpensive options that will help extend the life of your hardware. But, sooner or later, you will need to replace most of your system. Most electronic and mechanical devices eventually wear out. After all, how long do you expect your car or TV to last? A life cycle model I did suggests that mechanical devices like printers and disks are usually replaced within 4 to 6 years, while CPUs can last from 8 to 10 years. This article was not intended to convince you that you can indefinitely extend the life of your hardware. You should view it as extending the time in which you have to form a long-ranged plan for future growth. With a little planning, you may never have to stop using one system and then start using another, but rather, just gradually replace components as they wear out.
Problem Call

Control Number 08237035

Contact Name LARRY HORNIBROOK Position CE
Rdb # 3522 Tdx # Phone # 405 848 9852 Ext #

System Type 2200CS Device Type DS
Utility Name Software Level

Method of Call P = Telex, P = Phone, M = Memo, E = Ems
Has the Area or District been contacted
N = Area, D = District, B = Both, N = None
Is this inquiry pertaining to a National Account?
U = Yes, N = No, U = Unknown

Use the following area to describe the site that created this request
Cust/Office Name OMEGA INSURANCE Phone # 405 769 6701
Address 2KOB City CHOCPAU State OK
On Site Contact Name

Problem (*) Solution (+)

*EMP 28543
*DISPATCH 20A206898
*HAVING CS GETTING PEDM ERROR WHILE BOOTING. UNSURE WHETHER
*HARDWARE OR SOFTWARE
8/24/88: LEFT MESSAGE AT OFFICE TO CALL. (5MIN) MIKEB
>REDHAW ACCOUNT USING THE NEW SIMMS CPU BRDS W/ 128K MEM. GETTING PEDM ERROR CONSISTENTLY ON BOOT. TRIED ANOTHER BRD & NO CHANGE. TESTED W/ O/S 3.1 & NO PROB. REDHAW MUST EITHER UPGRADE THE CUST O/S TO 3.1 OR MUST DOWNGRADE TO A NON-SIMM BRD. CE TO TALK W/ CUST & CALL BACK. (15MIN) MIKEB

8/25 4:29 CE CALLED AND SAID THANKS FOR YOUR HELP. HE SAID IF YOU WANT YOU CAN CALL RUTH AT 1-800-999-1115 AT REDHAW ACCOUNT D WHITE
8/26/88: CALLED RUTH AT REDHAW. WAS NOT AVAILABLE. LEFT MESSAGE TO CALL. LEFT MESSAGE FOR CE TO CALL. (10MIN) MIKEB
>RUTH CALLED BACK. RT NOW. WILL NEED TO USE THE OLDER SINGLE BRD CPU CARDS TO ALLEVIATE THE COMPAT PROB. WILL TALK TO R&D ABOUT STEPS TO TAKE. LEFT MESSAGE FOR MR TO CALL. (20MIN) MIKEB

8/26 11:06 CE WILL C/B VSP
8/26 1:35 CALLED AND NEEDS A C/B ON HIS BEEPER @ # 405-686-3286 CAREN 1:35
8/26/88: TALKED W/ CE. NEED TO CHECK CHIP L45 TO INSURE IT IS NOT A MOTOROLA MC74F539N. IF IT IS, NEED TO TEST W/ A BRD W/ A DIFFERENT L45 CHIP. IF FAILS W/ GOOD CHIP, WILL NEED TO TEST W/ 8 PARTITIONS OR MORE ON O/S'S 2.7 & 3.0. IF CAN'T CHECK WILL REQUEST BRD SENT IN. (20MIN) MIKEB
8/29/88: BRD HAS GOOD CHIP AT L45. CE TO SEND IN BRD FOR TESTING W/ OUR 2.7 & 3.0. (10MIN) MIKEB

9/2/88: RCV'D BRD. OUR MVP 2.7 IS NOT RECOGNIZING THE PAL CHIP & AS A RESULT IT WILL ALLOW YOU TO GEN 512K MEM. GEN'G BEYOND 128K WILL CAUSE A PEDM ERROR. R&D LOOKING INTO SITUATION. PROB LOOKS TO ONLY EXIST ONLY W/ 128K BRDS. R&D TO TEST A 512K W/ OUR 2.7. (1HR) MIKEB

9/6 CALLED AND WILL CALL BACK LATER. CAREN 11:15 FLASHED

12:15 CALLED CE. CUST NOW HAVING ANOTHER PROB. CAN'T ACCESS DISK. CE GOING ON SITE TODAY. TOLD CE THERE IS A PROB W/ 2.7 USING THE NEW BRDS AS 2.7 WILL NOT READ THE PAL & THINKS 128K BRD HAS 512K. WAITING FOR WORD BACK FROM R&D ON FIX. ALSO WANTS TO KNOW IF OLD & NEW BRDS LOGISTICALLY INTERCHANGEABLE. (1HR) MIKEB

9/12/88: BRDS ARE LOGISTICALLY INTERCHANGEABLE /JC. CALLED CE. INSTALLED O/S BRD. LEAVING CALL OPEN AS POSSIBLE BETA SITE FOR NEW PAL. (10MIN) MIKEB

10/17/88: CE TO CHECK W/ CUST TO SEE IF WILLING TO BETA TEST NEW CHIP. WILL CALL BACK. (10MIN) MIKEB

10/18/88: CE CALLED IN. CUST RELUCTANT TO BETA UNTIL END OF MONTH.WILL CHECK FOR OTHER BETA SITES WHICH COULD TEST EARLIER & USE THIS SITE AS A BACKUP IF NEEDED. (10MIN) MIKEB

10/19 9:05 CALL BACK TO OFC VSP

10/20/88: TALKED W/ CE. REDSHAW DOES NOT WANT US BETA TESTING CHIP AT SITE. REDSHAW WILL BETA TEST AT THEIR HO. RUTH MOORE IS CONTACT AT REDSHAW, 1-800-999-1115. WILL CHECK W/ R&D THEN CALL REDSHAW. (5MIN) MIKEB

12/12/88: IN TRAINING TILL 12/26. LEFT MESSAGE. (5MIN) MIKE

12/27/88: TALKED W/ CE. WILL SEND OUT CHIP FOR BETA TESTING TODAY. (5MIN) MIKEB

>CHIP SENT OUT FED XPRESS, AIR BILL 1069820735. CE TO CALL BACK WHEN INSTALLED & TESTED. (10MIN) MB

12/28/88: RCV'D BETA CHIP BUT INSTALLED AT SITE ON 512K BRD. NEEDS TO PUT ON 128K BRD & VERIFY AT PARTITIONING SCREEN ONLY SHOWING 128K. CE TO CORRECT & TEST. (10MIN) MIKEB

+INSTALL NEW CHIP AT L42 & WORKING PERFECTLY. CLOSING CALL. 1/4/88 (10MIN) MIKEB
TAC

Information Call

Control Number 08307041

Contact Name MIKE COOPER Position ACE
Rdb # 3436 Tdx # Phone # 803 571 5534 Ext #

System Type 2200CS Device Type DS
Utility Name Software Level

Method of Call P = Telex, P = Phone, M = Memo, E = Ems
Has the Area or District been contacted
N A = Area, D = District, B = Both, N = None
Is this inquiry pertaining to a National Account ?
Y U = Yes, N = No, U = Unknown

Use the following area to describe the site that created this request
Cust/Office Name MAPAS INS AGENCY Phone #
Address 2K01 City State
On Site Contact Name

Question (*) / Answer (+)

*EMP 34744
*DISPATCH 0147761
*HAVING PROBLEM WITH REDSHAW HARDWARE NOT ENOUGH MEMORY
*TO CONTROL WORKSTATION

11/2/88: TRYING TO UPGRADE FROM O/S 128K BRD TO N/S 512K
BRD. BOTH BRDS FAIL W/ THE SAME PECM ERROR. CE TO
GET 3RD N/S BRD, AN O/S 512 BRD, & A WANG O/S. IF
3RD N/S 512 BRD FAILS WANT CE TO TEST ALL 3 W/
WANG O/S & LET ME KNOW RESULTS. MAY NEED BRD SENT
IN. WILL ALSO HAVE O/S BRD IF NEEDED. (15MIN) MIKE

11/28/88: LEFT MESSAGE AT OFFICE TO CALL. (5MIN) MIKE
+HAD 5 BRDS. 3 BRDS FAILED & 2 WORKED. THE 3 THAT FAILED ALL
+HAD TI CHIPS AT L2 WHILE THE 2 THAT WORKED HAD MMI CHIPS.
+ONLY FAILED 1 SORT PROG W/ A PECM ERROR. INSTALLED 512K BRD
+W/ MMI CHIP AT L2 & NO PROB SINCE. CLOSE CALL.

12/20/88 (10MIN) MIKEB
Gene, Based on your request for information regarding reported problems with CS units in Europe, the following information is provided:

PART NUMBER 270-1094, Board Number 210-9363 Failed components are. L6 & L8 (37 6-0973) Cap # 35 (300-1931). Board # 210-8961 Xfmr T1 (410-0303) 8 AMP Fuze (36 0-1154). Board 210-9362 T1 & Q4 (375-1167, Diode 12 & 13 (380-4030), RES R19 & 2 0 (330-1048), T3 (320-1024), Diode 3 & 4 (380-4033) and Diode 8 & 9 (380-4022). WPR reports that the 270-1094 cable is a major problem. The problem seems to be "How we Crimp the Cable), They have to replace most cables (270-3439).

PART NUMBER 270-0986, Board Number 210-8399, Q1 & Q2, 210-8499 L3, Q3, Q4. They report that on the 210-8399 Q1 & Q2 are replaced 75% of the time during repair. On the 210-8499 L3, Q3 and Q4 are replaced 75 to 80% of the time.

While this is not my project. I would recommend that you have some one follow this up with R&D. If I can of any help please feel free to call me.

Jerry.
MEMORANDUM

TO: Aissa Betancourt
FROM: Gilles Carrier
DATE: May 2, 1988
SUBJECT: CS 1Meg CPU Card Memory Problem

A memory error problem was reported on the 210-8747 CS 1Meg CPU card, by Mike Riley. The errors would only happen when using 256K simms. Errors occurred when using a Motorola, MC74F539N IC at L45. These IC's have been taken off the QVL by Charlie Scribner (see attached sheets). All boards coming into the repair center should have L45 replaced if the Motorola part is used. Signetics or Fairchild 74F539 IC's can be used as replacements.

Thank You,

Gilles Carrier

CC: Rob Clark
Rheal Leblanc
Mike Riley
NEW PRODUCT STATUS

2200 8 MEGABYTE CPU PCB

Domestic FCS Product is shipping
International FCS Product is shipping
Alpha Test N/A
Beta Test Testing at 5 sites

Current Status: 210-8937

Logistics:
This new 2200 CPU PCB will be packaged in six versions 128KB, 512KB, 1MB,
2MB, 4MB, and 8MB.
Fail data provided.
210-8937 CPU/MEM PCB MTBF: 21013 HRS

Technical Documentation:
Publication update bulletins to the CS, MicroVP, and MVP-128/512 product
maintenance manuals have been reviewed and approved.
Tech. Writer: Curt Stein
New Product TSB distributed (HWT 8003, 02/09/88).

TEE/FSC:
Repair plan number is 611-0.

Diagnostic Support:
The current version of 2200 Boot Proms do not support testing of the
increased memory. Although the boot proms test the added memory addressing
restrictions make the error reporting incorrect.
The increased memory on the new PCB will be supported by revision 179E of
the memory diagnostic. The diagnostic is included in package number
195-2956-0.

Technical Training Center:
2200 training is conducted as demand warrants. Training on the new CPU PCB
will be provided in future classes. CE's currently trained to service
MVP-128/512, MicroVP-1/2, and CS-2/5 can be familiarized with the new CPU
board through PUB's to existing Product Maintenance Manuals and a TSB.
POWER SUPPLY VOLTAGE ADJUSTMENTS

5. Remove left-most blank panel, or PC board from that slot.
6. Locate motherboard voltage test point indicators.

NOTE
It may be necessary to remove a second PC board or blank panel to access the test points.

7. Power-up the CS

Diagram:
- Connect common lead of DVM to TP1 on motherboard.
- Connect DVM to TP1 - TP5 on motherboard to verify DC limits.

<table>
<thead>
<tr>
<th>Test Point</th>
<th>Voltage</th>
<th>Limits (VDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP2</td>
<td>-5V(fixed)</td>
<td>-4.95V to -5.05V</td>
</tr>
<tr>
<td>TP3</td>
<td>+5V(adj)</td>
<td>+4.95V to +5.05V</td>
</tr>
<tr>
<td></td>
<td>(see fig.)</td>
<td></td>
</tr>
<tr>
<td>TP4</td>
<td>+12V(adj)</td>
<td>+11.95V to +12.05V</td>
</tr>
<tr>
<td></td>
<td>(see fig.)</td>
<td></td>
</tr>
<tr>
<td>TP5</td>
<td>-12V(fixed)</td>
<td>-11.95V to -12.05V</td>
</tr>
</tbody>
</table>

POWER SUPPLY VOLTAGE ADJUSTMENTS

WARNING

Do not open the switching power supply under any circumstance. Extremely dangerous voltage (in excess of 300 volts DC) and unlimited current are present within the power supply. Do not attempt to repair the supply; it is field replaceable only.

Tools and test equipment required:

- Fluke DVM (or equivalent).
- Small flat-blade plastic screwdriver.

1. Power down CS and disconnect AC power cord from outlet.
2. Remove four power supply screws.
3. Slide power supply out far enough to gain access to +5V and +12V adjustment pots.
4. Set AC voltage select switch to correct voltage available at site.

 Set for 220 VAC, 50 Hz operation

 230V

 Set for 115 VAC, 60 Hz operation

 115V

NOTES:

1. IF A REMOVABLE CARTRIDGE WINCHESTER IS USED, ITS 'B' CABLE MUST BE CONNECTED TO J7.

2. TERMINATING RESISTORS OF DRIVES 2, 3, AND 4 MUST BE REMOVED. DRIVE 1 TERMINATOR MUST BE INSTALLED.
DEVICE ADDRESSES

DEVICE ADDRESSES ARE:

<table>
<thead>
<tr>
<th></th>
<th>MASTER</th>
<th>SLAVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floppy</td>
<td>D x 0 (hex)</td>
<td>D x 0 + 40 (hex) RAM Disk</td>
</tr>
<tr>
<td></td>
<td>D x 1 (hex)</td>
<td>D x 1 + 40 (hex) see Note 9</td>
</tr>
<tr>
<td></td>
<td>D x 2 (hex)</td>
<td>D x 2</td>
</tr>
<tr>
<td></td>
<td>D x 3 (hex)</td>
<td>D x 3</td>
</tr>
<tr>
<td></td>
<td>D x 4 (hex)</td>
<td>D x 4</td>
</tr>
<tr>
<td></td>
<td>D x 5 (hex)</td>
<td>D x 5</td>
</tr>
<tr>
<td></td>
<td>D x 6 (hex)</td>
<td>D x 6</td>
</tr>
<tr>
<td></td>
<td>D x 7 (hex)</td>
<td>D x 7</td>
</tr>
<tr>
<td></td>
<td>D x 8 (hex)</td>
<td>D x 8</td>
</tr>
<tr>
<td></td>
<td>D x 9 (hex)</td>
<td>D x 9</td>
</tr>
<tr>
<td></td>
<td>D x A (hex)</td>
<td>D x A</td>
</tr>
<tr>
<td></td>
<td>D x B (hex)</td>
<td>D x B</td>
</tr>
<tr>
<td></td>
<td>D x C (hex)</td>
<td>D x C</td>
</tr>
<tr>
<td></td>
<td>D x D (hex)</td>
<td>D x D</td>
</tr>
<tr>
<td></td>
<td>D x E (hex)</td>
<td>D x E</td>
</tr>
<tr>
<td>Removeable</td>
<td>D x F (hex)</td>
<td>D x F + 40 (hex) Streaming Tape Drive</td>
</tr>
<tr>
<td>Winchester</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES (Drive Addressing):

1. Switch settings on the Disk Controller PCB (in CPU) control the master base addressing.
2. The slave address is master address plus 40 (hex).
MAGNETIC DEVICES

<table>
<thead>
<tr>
<th>Description</th>
<th>Wang Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1/4" HH 360KB Floppy</td>
<td>278-4033</td>
</tr>
<tr>
<td>5 1/4" HH 1.2MB Floppy</td>
<td>278-4055</td>
</tr>
<tr>
<td>5 1/4" HH Cassette Tape</td>
<td>725-1481</td>
</tr>
<tr>
<td>10 MB HH Removeable Disk</td>
<td>278-4049</td>
</tr>
<tr>
<td>20 MB HH Winchester</td>
<td>278-4062</td>
</tr>
<tr>
<td>32 MB FH Winchester</td>
<td>278-4034</td>
</tr>
<tr>
<td>32 MB FH Winchester</td>
<td>278-4069</td>
</tr>
<tr>
<td>64 MB FH Winchester</td>
<td>278-4054</td>
</tr>
<tr>
<td>112 MB FH Winchester</td>
<td>TBD</td>
</tr>
<tr>
<td>140 MB FH Winchester</td>
<td>TBD</td>
</tr>
</tbody>
</table>

CABLES

<table>
<thead>
<tr>
<th>Description</th>
<th>Wang Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/0 Cable</td>
<td>220-0364</td>
</tr>
<tr>
<td>Winchester A Cable</td>
<td>220-3629</td>
</tr>
<tr>
<td>Winchester B Cable</td>
<td>220-3630</td>
</tr>
<tr>
<td>Floppy Cable</td>
<td>220-3627</td>
</tr>
<tr>
<td>Cassette Cable</td>
<td>220-3628</td>
</tr>
</tbody>
</table>
DISK DRIVE FEATURES

<table>
<thead>
<tr>
<th>No. of Platters/ Addresses</th>
<th>Capacity/ Platter</th>
<th>Sectors/ Platter</th>
<th>Average Access Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>320-KB Diskette (half height)</td>
<td>1 320 KB</td>
<td>1280</td>
<td>100 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1440 (PC)</td>
<td></td>
</tr>
<tr>
<td>1.2-MB Diskette (half height)</td>
<td>1 1.2 MB</td>
<td>4160</td>
<td>100 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4800 (PC)</td>
<td></td>
</tr>
<tr>
<td>Removable Hard Disk (half height)</td>
<td>1 10 MB</td>
<td>38912</td>
<td>95 ms</td>
</tr>
<tr>
<td>20-MB Hard Disk (half height)</td>
<td>2 10 MB</td>
<td>38912</td>
<td>68 ms</td>
</tr>
<tr>
<td>32-MB Hard Disk (full height)</td>
<td>2 16 MB</td>
<td>65024</td>
<td>45 ms</td>
</tr>
<tr>
<td>Quantum Q640</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate 32-MB Drive (full height)</td>
<td>16 MB</td>
<td>65024</td>
<td>45 ms</td>
</tr>
<tr>
<td>64-MB Hard Disk (full height)</td>
<td>4 16 MB</td>
<td>65024</td>
<td>27 ms</td>
</tr>
<tr>
<td>112-MB Maxtor (full height)</td>
<td>7 16 MB</td>
<td>65024</td>
<td>27 ms</td>
</tr>
<tr>
<td>140-MB Maxtor (full height)</td>
<td>14 10 MB</td>
<td>38912</td>
<td>27 ms</td>
</tr>
</tbody>
</table>

Bytes per sector, all drives: 256

Data Transfer Rate

- 320-KB Diskette: 250 KB per second
- 1.2-MB Diskette: 500 KB per second
- All hard-disk drives: 5 MB per second
Our customer was so satisfied with the performance and support of their DS that is being discussed during this edition of TECH TALK that they decided to purchase and install a second unit. If the customer purchased the following DS components, how would you set up the unit?

You and other members of your team can answer this question and let the folks on TECH TALK know your answer right on the air. So, put on your thinking caps and answer the questions below and be the first group to call in with your answers. The customer purchased:

A. One 320 K floppy drive
B. One 32 Meg Quantum full height fixed Winchester drive
C. No Streaming tape drive
D. Two 64 Meg fixed Winchester drives

Assume that the second DS is connected to disk controller in the CS whose address is set for 320.

Also assume that the two 64 Meg fixed Winchester drives are positioned in the horizontal internal slots of the unit.

QUESTIONS:

A. What drive will be connected to drive select plug #1?

B. To what connector on the DS board will the B cable of the Winchester connected to Drive Select #1 be connected?

C. To what connector on the DS board will the floppy drive be connected?

Assume that the 32 Meg Quantum drive is connected to Drive select #1 on the A cable; that the one of the 64 Meg winchesters is connected to Drive Select #3 on the A cable and the other 64 Meg drive is connected to Drive Select #4 on the A cable when answering the remaining questions:

D. What will be the switch settings of switch bank #1.

E. What will be the switch settings of switch bank #2.

F. What will be the switch settings of switch bank #3.

G. What will be the command to select the address of the third platter of the drive connected to drive select three.

H. What will be the command to select the address of the fourth platter of the drive connected to drive select four.

I. Which drives will have a terminator and which drives will not?

J. To what connector on the DS board will the power cable be connected?
TRAINING QUESTIONNAIRE

In a continuing effort to improve the training products presented to CSO personnel we are asking for your help in evaluating the current training programs. This Training Questionnaire is one means by which you can provide us with feedback on training. At the same time we would like to know how the training prepared you to do your job.

PLEASE USE THE SCALE BELOW FOR COMPLETION OF PART 1
RATE EACH ITEM BY SELECTING THE NUMBER WHICH BEST REPRESENTS YOUR LEVEL OF SATISFACTION.

0	1	2	3	4	5	6	7	8	9	10
---	---	---	---	---	---	---	---	---	---	
COMPLETELY DISSATISFIED	COMPLETELY SATISFIED									
STRONGLY DISSATISFIED	STRONGLY SATISFIED									
SOMewhat DISSATISFIED	SOMewhat SATISFIED									

PART 1 - Satisfaction With Training

1. ____ Overall, I feel that the video broadcast instruction enabled me to work more effectively in my job.

2. ____ The instruction and materials received in training enabled me to effectively install and support the product.

3. ____ Are there specific topics or subjects which you believe should be added or deleted?

 WHY

4. ____ Considering your field responsibilities, what information or topics presented during training were the MOST useful, and which were the LEAST useful?

 MOST USEFUL:

 LEAST USEFUL:

5. ____ Did each segment of the broadcast hold my interest?

 Comments

6. ____ Was the program the right length? If not, was it too long or short?

 Comments

 QUALITY

7. ____ The video and audio quality was good.

 PUBLICITY

8. ____ I received sufficient notification for the broadcast.

 Comments

9. ____ What future topics could be aired on Wang TV that would help you in your job?
DS INSTALLATION PROBLEM

Our customer was so satisfied with the performance and support of their DS that is being discussed during this edition of TECH TALK that they decided to purchase and install a second unit. If the customer purchased the following DS components, how would you set up the unit?

You and other members of your team can answer this question and let the folks on TECH TALK know your answer right on the air. So, put on your thinking caps and answer the questions below and be the first group to call in with your answers. The customer purchased:

A. One 320 K floppy drive
B. One 32 Meg Quantum full height fixed Winchester drive
C. No Streaming tape drive
D. Two 64 Meg fixed Winchester drives

Assume that the second DS is connected to disk controller in the CS whose address is set for 320.

Also assume that the two 64 Meg fixed Winchester drives are positioned in the horizontal internal slots of the unit.

QUESTIONS:

A. What drive will be connected to drive select plug #1? ANY WINCHESTER

B. To what connector on the DS board will the B cable of the Winchester connected to Drive Select #1 be connected? J2, J9, J10

C. To what connector on the DS board will the floppy drive be connected? J6

Assume that the 32 Meg Quantum drive is connected to Drive select #1 on the A cable; that the one of the 64 Meg winchesters is connected to Drive Select #3 on the A cable and the other 64 Meg drive is connected to Drive Select #4 on the A cable when answering the remaining questions:

D. What will be the switch settings of switch bank #1. 7 on only

E. What will be the switch settings of switch bank #2. 1, 3, 5, 7 on only

F. What will be the switch settings of switch bank #3.? All Off

G. What will be the command to select the address of the third platter of the drive connected to drive select three. SELECTDISKT/D63 or SELECTDISKD63

H. What will be the command to select the address of the fourth platter of the drive connected to drive select four. SELECTDISKT/D68 or SELECTDISKD68

I. Which drives will have a terminator and which drives will not? FLOPPY & 32 MEG

J. To what connector on the DS board will the power cable be connected? J3
HARDWARE FUNCTIONAL SPECIFICATIONS
FOR
THE 2200 CPU WITH EXPANDED MEMORY

MOHAMED MAKHLOUF
M.S. 014-390.
INTRODUCTION

This document describes the hardware of the 2200 Central Processing Unit (CPU) with expanded memory. This product is an enhancement of the 2200 Micro VP in that it increases the data (user) memory to eight megabytes maximum in the same board space as the former CPU. Memory modules, SIMMs will be used to conserve board space. Control memory will remain at a maximum of 64kx24 bits. Data memory uses 256 kbits x 9 or one Megabits x 9 Dynamic Random Access Memory, DRAM and control memory uses 32 kbytes Static Random Access Memory, SRAM.

The new version will be loaded with 32 kwords or 64 kwords of control memory and one of the following DRAM options:

0.5 Megabytes
1.0 Megabytes
2.0 Megabytes
4.0 Megabytes
8.0 megabytes
SPECIFIC HARDWARE FEATURES

The hardware of this product consists of the following components.

1. The Central Processing Unit, CPU.
2. The DRAM Controller.
3. The Bootstrap PROMs.
4. The Control Memory.
5. The Data Memory.

The CPU
This product uses a proprietary Very Large Scale Integration, VLSI chip, WL2200 as the processor. This chip is packaged in ceramic, and supports 120 pins for its different buses and signals as described below:

NOTE: Signals prefixed with a slash are active low.

<table>
<thead>
<tr>
<th>SIGNAL</th>
<th>DIRECTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>referenced to CPU.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POR: Input. Power On Reset must be held high for 1.2 microseconds in order to guarantee proper operation. It may be held high indefinitely for testing purposes. When asserted, this signal causes the next instruction to be fetched from location 8003H in control memory.

RESET: Input. Reset is similar to POR with respect to timing and use. It causes the next instruction to be fetched from location 8001H in the control memory. Reset has lower priority than either POR or PEDM (Parity Error in Data Memory) and thus will be ignored while either of these conditions exist.

CMWR: Output. Control Memory WRite. Initiates writing to control memory with a pulse of 200 nSeconds. It occurs after the control memory address CA15 - CA0 has been stabilized.

CA15-CA0: Output. Control memory Address lines.

CD23-CD0: Input or Output—Control memory Data lines. Carry the twenty four bits wide program instructions.

DMWR: Output. Data Memory WRite. Initiates writing operations to data memory. It occurs and becomes stable before ALE.

ALE: Output. Address Latch Enable. Initiates memory operations by causing the DRAM contoller to latch the address lines at the rising edge of ALE. At the falling edge of ALE, the DRAM controller issues the Row Address Strobe, RAS and the Column Address Strobe, CAS for memory access.

WAIT: Input. The Wait signal is issued by secondary logic when the DRAM controller begin DRAM refreshing.
DA18-DA0: Output. Data memory Address lines designated as follows:
DA0=1 means the Least Significant Byte, LSB of a word is selected for writing. ie the even byte.
DA0=0 means the Most Significant Byte, MSB of a word is selected for writing. ie the odd byte.

DA18-DA1 select one of 256 kwords (16 bits of data and two bits of parity in each word) for writing as dictated by DA0 above. During reading, the same address bits select one of 256 kwords without regard to DA0. It should be noted here that the CPU writes in byte portions and reads in word portions.

DD17- DD0 Input or output. Data memory Data lines. These eighteen data lines carry data between the CPU and DRAM, include two parity bits and are designated as follows:
DD8 - DD0 carry the byte delivered to DRAM during writing and carry the LSB of the word read from DRAM. DD17 - DD9 carry the MSB of the word read from DRAM ie do not participate in writing operations. DD17 and DD8 are the parity bits for the MSB and LSB respectively.

/ABS Output. Address Bus Strobe indicates that a valid device address is present on /AB8 - /AB1. All devices except the addressed device should stop interacting with the processor. This pulse has a duration of 5 microseconds.

/AB8-/AB1 Output. Peripheral devices Address Bus. Device 00 is not allowed.

/CBS Output. Command Bus Strobe. A 5 microsecond pulse that indicates to the addressed peripheral device that the byte on the /OB bus should be interpreted as a command.

/OBS Output. Output Bus Strobe. A 5 microseconds pulse that indicates to the addressed peripheral device that the byte on the /OB bus should be interpreted as a data byte.

/OB8- OB1 Output. Output Bus. Carries data to peripheral devices.

/R or B Input. Ready or Busy respectively. Indicates to the CPU whether the selected peripheral is willing to accept data or commands from the CPU.

/CPB Output. Central Processor Busy. This signal will be asserted low when the CPU is handling internal data that must not be interrupted by peripherals delivering data to the CPU. When false, high level, it signals the selected device to generate /IBS (Input Bus Strobe). See next item. /CPB will be asserted automatically when /IBS is received; the program should deassert it to permit another input event.
/IBS Input. Input Bus Strobe. This signal is asserted by the selected peripheral if /CPB is high, and indicates to the CPU that the data on the /IB lines, Input Bus is valid.

/IB9-/IB1 Input. Input Bus. This bus carries the data byte transferred to the CPU. The ninth bit, called "END1" is not a parity bit analogous to bit 9 on the DD bus; rather it is used by different peripherals to mean different things and is interpreted accordingly by the program.

HALT Input. A pulse longer than 1.2 microsecond on the Halt line will cause program execution to stop. The signal originates at the keyboard and is used in single stepping program execution.

DRAM Controller and Memory Organization.

The new board, identified by drawing 8937, will utilise a one Megabyte Dynamic RAM Controller chip, National Semiconductors part number DP8429V-70, WLI 377-5055. From a system's perspective the design will provide a maximum of 128 (one Hundred Twenty Eight) memory segments (banks). Each bank is 64 kbytes wide for a maximum of 8 (Eight) Meagabytes. Hardware realization of this objective is as follows:

Since the 'natural' address of the processor, 19 bits covers 512 kbytes only, the Operating System provides a seven bit register named "Bank Selection Register" BSR which expand the actual address to 26 bits (three bits are duplicates) four of which augment the natural address to 23 bits covering 8 Megabytes.

The Data Address, DA22 - DA01 is derived from the eighteen 'natural' address bits from the CPU plus four bits derived from the Bank Selection Register. DA0 is used to select the Odd or Even byte during memory write operations. The twenty two bits are organized as follows:

- DA22 - DA21 will be decoded to select four blocks of memory when the 1 Megabyte SIMMS are loaded and DA20 - DA19 will be decoded to select four blocks of memory when the 256 kbytes SIMMS are loaded. Each block is contained in two SIMMS.
- DA20 - DA11 feed into the Column Address while DA10 -DA01 feed into the Row Address of the DRAM Controller.

The Operating System will provide the hardware with a byte containing address expansion information as follows:

- The Address Bus AB8-AB1 will signal address expansion when it carry 80H.
- The address expansion proper will be carried on the Output Bus OB8-OB1 with the following designation.
 - OB8 = 0 will mean DA18 - DA16 will be derived from the 'natural' corresponding bits. (Upper three bits of the SL register).
 - OB8 = 1 will mean that DA18 - DA16 will be derived from the lower three bits of the Bank Selection Register, "BSR".
- The remaining seven bits of the address expansion byte are designated as follows:
 - OB7 - OB4 = DA22 - DA19 respectively
 - OB3 - OB1 = DA18 - DA16 respectively when OB8 =1 as indicated above
The hardware provides a jumper to distinguish between 256 kbyte SIMMs and 1 Megabyte SIMMs.

When the former SIMMs are installed; maximum of eight, eighteen address lines are needed. Hence DA20 - DA19 will be decoded to provide four blocks each of which comprises eight 64kbytes banks. Thus:

$$4 \text{ blocks} \times 8 \text{ banks/block} \times 64K/\text{bank} = 2048 \text{ K} = 2 \text{ Megabytes.}$$

When the 1 Megabytes SIMMs are installed; maximum of eight, twenty address lines are needed. Hence DA22 - DA21 will be decoded to select four blocks each of which comprises thirty two 64 kbytes banks. Thus:

$$4 \text{ blocks} \times 32 \text{ banks/block} \times 64 \text{ k/\bank} = 8192 \text{ K} = 8 \text{ megabytes.}$$
To: Dr. Wang
 Horace Tsiang
 Don Dunning
 Miguel Brazao

From: Gene Schulz

Subj: Business Plan For The MICROVP 2MB VLSI CPU Card

Date: June 19, 1987

This document outlines the proposed business plan for the 1/2/4/8MB CPU card for the new CS and existing VLSI CPUs, e.g., the MVP-128/512 and the MICROVP-1/2. Elements of this proposal include the new CS models, one new CS "S" package, VLSI CPU memory upgrade pricing and a new 140MB fixed Winchester for the DS.

Below are the objectives of the attached plan:

. To provide a 128KB, 512KB, 1MB, 2MB, 4MB and 8MB version of the new CS.

. To provide a memory upgrade path to existing VLSI CPU users, e.g., MVP-128/512, MICROVP-1/2 and CS-2/5 users, and 8MB capable new CS users who wish to expand 1, 2 or 4MB systems.

. To increase the amount of available program memory from 512KB to 1MB.

. To increase the amount of available memory for RAMDISK (under REL. 3.0) up to a maximum of 7MB.

. To increase the maximum size of each partition from 28KB to 56KB for all 16 partitions.

. To make Wang memory options cost/competitive with the Wang "look-a-likes"

. To give present non-VLSI CPU users an additional reason to upgrade to the CS.

. To provide a 140MB fixed Winchester option for the DS.

This business plan covers PEP H0245B.
INTRODUCTION

As a result of the release of the CS, new life has been born into the 2200 product line. Our CS/2200 VARs (Value Added Resellers), have evolved into the prime distribution channel for the CS and are very pleased with the current state of the product line. As a further enhancement to the CS, we need to increase the amount of main memory available for programs and RAMDISK. Under a 512KB system, the maximum partition size, if using all 16 partitions is 28KB. Increasing main memory to 1MB, will increase the maximum partition size to 56KB. Under REL. 3.0 of the latest operating system, all unused main memory can be allocated to RAMDISK. To fully utilize this feature, an 8MB memory board will provide up to 7MB of RAMDISK.

The new 1, 2, 4 and 8MB memory boards, will offer our users and VARs the following benefits:

- Twice the amount of program capacity.
- An efficient RAMDISK of up to 7MB that can provide for a 20-70% increase in throughput.

The DS-140 is a fixed Winchester for the DS that can either be seven 16MB platters (112MB) or fourteen 10MB platters (140MB). With the addition of the DS-140, our end-users now have the flexibility to configure a DS with up to 316MB of fixed disk compared to the previous maximum of 192MB. A CS will support three DSs, for a total fixed disk capacity of 948MB.

 Hardware

Modify the existing VLSI CPU card to support up to 8MB of data memory and 64KB of control memory. This board will not replace the existing 128 and 512KB version. CS models to be available are as follows:

- CS-2 128KB
- CS-5 512KB
- CS-10 1MB
- CS-20 2MB
- CS-40 4MB
- CS-80 8MB

The DS-140, through switch settings on the DPU board, gives the end-user the option of having either seven 16MB platters (112MB) or fourteen 10MB platters (140MB). The data storage cabinet is ordered separately and a 320KB or 1.2MB half-height removable diskette, 10MB removable winchester disk drive, a 45MB tape streamer, and 20, 32 or 64MB fixed winchesters can be inserted into the cabinet. With the addition of the DS-140, our end-users now have the flexibility to configure a DS with up to 316MB of fixed disk compared to the previous maximum of 192MB. A CS will support three DSs, for a total fixed disk capacity of 948MB.

 Software

Release 3.0 Operating System to support the additional data memory.
Market Analysis

There are estimated to be 45,000 to 67,000 current users worldwide and we are currently selling on the average 150 new CS systems per month. The low selling price, modern appearance and increased capabilities of the new CS and DS, will encourage existing users to update their present system to the new CPU and add new disk drives. Increased program capability and RAMDISK, will encourage 2200 VARs to sell larger configurations to new users.

With lower prices for increased storage, increased flexibility in back-up, a modern looking and renamed CPU and low cost multiplexing, we will be able to effectively leverage the corporate Installed Base Program to sell upgrades to existing users.

Market Requirements

New CS Models

The following are the current and proposed new CS CPU models:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>MEMORY</th>
<th>COST</th>
<th>SELL</th>
<th>GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-2</td>
<td>128KB</td>
<td>992</td>
<td>4,950</td>
<td>80.0</td>
</tr>
<tr>
<td>CS-5</td>
<td>512KB</td>
<td>1,015</td>
<td>6,400</td>
<td>84.1</td>
</tr>
<tr>
<td>CS-10*</td>
<td>1MB</td>
<td>1,307</td>
<td>7,500</td>
<td>82.6</td>
</tr>
<tr>
<td>CS-20*</td>
<td>2MB</td>
<td>1,439</td>
<td>8,500</td>
<td>83.1</td>
</tr>
<tr>
<td>CS-40*</td>
<td>4MB</td>
<td>1,704</td>
<td>9,500</td>
<td>82.1</td>
</tr>
<tr>
<td>CS-80*</td>
<td>8MB</td>
<td>2,234</td>
<td>11,500</td>
<td>80.6</td>
</tr>
</tbody>
</table>

* New Models

Recommended New "S" Package

To go from either a 128KB or 512KB CPU to 1/2/4/8MB system, requires a CPU board swapout. This means that under the current CS-SO through CS-S10+2 package structure, if a VAR or end user orders a factory system with a memory upgrade to 1MB or greater, the CPU board would either have to be switched at the factory or at time of installation. To simplify this process, an additional package should be created that includes at least a 1MB CPU board. Additional memory updates would then only require adding a memory chip for each 1MB.
<table>
<thead>
<tr>
<th>PACKAGE</th>
<th>MFG COST</th>
<th>TOTAL COST (+Auto Enc.)</th>
<th>SELL</th>
<th>GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-S11 (A/B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS-10</td>
<td>$1,494.00</td>
<td>$1,494.00</td>
<td>$7,500</td>
<td>80.1%</td>
</tr>
<tr>
<td>22C11</td>
<td>44.00 X1</td>
<td>44.00</td>
<td>300</td>
<td>85.3%</td>
</tr>
<tr>
<td>2236MXE</td>
<td>287.00 X1</td>
<td>287.00</td>
<td>800</td>
<td>64.1%</td>
</tr>
<tr>
<td>2436DE</td>
<td>444.52 X2</td>
<td>889.00</td>
<td>2,590</td>
<td>65.7%</td>
</tr>
<tr>
<td>DS</td>
<td>1,129.00 X1</td>
<td>1,129.00</td>
<td>2,500</td>
<td>54.8%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>3,843.00</td>
<td>13,690</td>
<td>71.9%</td>
</tr>
<tr>
<td></td>
<td>DISCOUNT (10%)</td>
<td>1,365</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUGGESTED SELLING PRICE</td>
<td>12,325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5068(1MB to 8MB)</td>
<td>1,056.00</td>
<td>1,056.00</td>
<td>4,500</td>
<td>76.5%</td>
</tr>
<tr>
<td>DS-1.2</td>
<td>112.00</td>
<td>112.00</td>
<td>200</td>
<td>44.0%</td>
</tr>
<tr>
<td>DS-10R</td>
<td>881.00</td>
<td>881.00</td>
<td>1,800</td>
<td>51.1%</td>
</tr>
<tr>
<td>DS-64</td>
<td>1,030.00</td>
<td>1,030.00</td>
<td>2,500</td>
<td>58.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,922.00</td>
<td>21,325</td>
<td>67.5%</td>
</tr>
</tbody>
</table>

140MB Fixed Winchester

The following is the proposed pricing for the new DS-140. The DS-140 is a fixed Winchester that can either be formatted as either 7 X 16MB platters (112MB) or 14 X 10MB platters (140MB):

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>COST</th>
<th>SELL</th>
<th>GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-140</td>
<td>112/140MB fixed Winchester</td>
<td>2,254</td>
<td>5,500</td>
<td>59.0</td>
</tr>
<tr>
<td>DS-140</td>
<td>With 12% adder</td>
<td>2,525</td>
<td>5,700</td>
<td>55.7</td>
</tr>
<tr>
<td>DS-140A</td>
<td>112/140 fixed Winchester field upgrade</td>
<td>2,254</td>
<td>5,700</td>
<td>60.5</td>
</tr>
<tr>
<td>DS-140A</td>
<td>With 12% adder</td>
<td>2,525</td>
<td>6,000</td>
<td>57.9</td>
</tr>
</tbody>
</table>

Sample Configurations:

DS, DS-1.2, DS-10R, DS-140 (without adder) 4,370 10,000 56.3
DS, DS-1.2, DS-TS, DS-140, DS-140 (without adder) 6,174 14,700 58.0

The following are the proposed field upgrades for MVP-128/512, MICROVP-1/2 and CS-2/5 VLSI CPUs:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>COST</th>
<th>SELL</th>
<th>GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board Replacements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5056</td>
<td>128KB to 512KB*</td>
<td>440</td>
<td>2,400</td>
<td>81.7</td>
</tr>
<tr>
<td>UJ-5057</td>
<td>128KB to 512KB</td>
<td>440</td>
<td>1,900</td>
<td>76.8</td>
</tr>
<tr>
<td>UJ-5065</td>
<td>128KB to 1MB</td>
<td>621</td>
<td>3,000</td>
<td>79.3</td>
</tr>
<tr>
<td>UJ-5066</td>
<td>128KB to 2MB</td>
<td>726</td>
<td>4,000</td>
<td>81.9</td>
</tr>
<tr>
<td>UJ-5067</td>
<td>128KB to 4MB</td>
<td>991</td>
<td>5,000</td>
<td>80.2</td>
</tr>
<tr>
<td>UJ-5068</td>
<td>128KB to 8MB</td>
<td>1,521</td>
<td>7,000</td>
<td>78.3</td>
</tr>
<tr>
<td>UJ-5069</td>
<td>512KB to 1MB</td>
<td>621</td>
<td>2,000</td>
<td>69.0</td>
</tr>
<tr>
<td>UJ-5070</td>
<td>512KB to 2MB</td>
<td>726</td>
<td>3,000</td>
<td>75.8</td>
</tr>
<tr>
<td>UJ-5071</td>
<td>512KB to 4MB</td>
<td>991</td>
<td>4,000</td>
<td>75.2</td>
</tr>
<tr>
<td>UJ-5072</td>
<td>512KB to 8MB</td>
<td>1,521</td>
<td>6,000</td>
<td>74.7</td>
</tr>
</tbody>
</table>
* For pricing consistency, the current UJ-5056 ($3,000) for the MICROVP and MVP-128/512 should be repriced to $2,400 for MVP-128 and MICROVP-1 VLSI CPUs.

Additional Memory Chips Only

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Range</th>
<th>Price 1</th>
<th>Price 2</th>
<th>Price 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>UJ-5059</td>
<td>1MB to 2MB</td>
<td>264</td>
<td>1,500</td>
<td>82.4</td>
</tr>
<tr>
<td>UJ-5060</td>
<td>1MB to 4MB</td>
<td>528</td>
<td>2,500</td>
<td>78.9</td>
</tr>
<tr>
<td>UJ-5061</td>
<td>1MB to 8MB</td>
<td>1,056</td>
<td>4,500</td>
<td>76.5</td>
</tr>
<tr>
<td>UJ-5062</td>
<td>2MB to 4MB</td>
<td>264</td>
<td>1,500</td>
<td>82.4</td>
</tr>
<tr>
<td>UJ-5063</td>
<td>2MB to 8MB</td>
<td>792</td>
<td>3,500</td>
<td>77.4</td>
</tr>
<tr>
<td>UJ-5064</td>
<td>4MB to 8MB</td>
<td>528</td>
<td>2,500</td>
<td>78.9</td>
</tr>
</tbody>
</table>

Competition (Northeast Digital)

<table>
<thead>
<tr>
<th>NE MODEL</th>
<th>NE PRICE</th>
<th>NE WANG MODEL</th>
<th>WANG PRICE</th>
<th>DIFF</th>
<th>% +/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-8 2MB</td>
<td>3,000</td>
<td>UJ-5066 (128KB to 2MB) 4,000</td>
<td>1,000</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UJ-5070 (512KB to 2MB) 3,000</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UJ-5059 (1MB to 2MB) 1,500</td>
<td>1,500</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>2000-32 8MB</td>
<td>5,500</td>
<td>UJ-5068 (128KB to 8MB) 7,000</td>
<td>1,500</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UJ-5072 (512KB to 8MB) 6,000</td>
<td>500</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UJ-5061 (1MB to 8MB) 4,500</td>
<td>1,000</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UJ-5063 (2MB to 8MB) 3,500</td>
<td>2,000</td>
<td>36.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UJ-5064 (4MB to 8MB) 2,500</td>
<td>3,000</td>
<td>54.5</td>
<td></td>
</tr>
</tbody>
</table>

Note: All Northeast Digital RAMDISK is treated as a disk controller and occupies an I/O slot. Memory can not be utilized for programs.

Our major disadvantage is going from 128KB to 2 or 8MB. In all other cases we are either slightly higher or below NE in price.

Forecasts

U.S. Forecast

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Q1 FY'88</th>
<th>Q2 FY'88</th>
<th>Q3 FY'88</th>
<th>Q4 FY'88</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-2</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>CS-5</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>CS-10</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>CS-20</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>CS-40</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>CS-80</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

INT. Forecast

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Q1 FY'88</th>
<th>Q2 FY'88</th>
<th>Q3 FY'88</th>
<th>Q4 FY'88</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-2</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>CS-5</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>CS-10</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>CS-20</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>CS-40</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>CS-80</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>NEW MODEL /PACKAGE</td>
<td>SELL</td>
<td>MAINT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS-80</td>
<td>11,500</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS-S11 (A/B)</td>
<td>11,600</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-140</td>
<td>5,500</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-140A</td>
<td>5,700</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5056</td>
<td>2,400</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5057</td>
<td>1,900</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5065</td>
<td>3,000</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5066</td>
<td>4,000</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5067</td>
<td>5,000</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5068</td>
<td>7,000</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5069</td>
<td>2,000</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5070</td>
<td>3,000</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5071</td>
<td>4,000</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5072</td>
<td>6,000</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5059</td>
<td>1,500</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5060</td>
<td>2,500</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5061</td>
<td>4,500</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5062</td>
<td>1,500</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5063</td>
<td>3,500</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJ-5064</td>
<td>2,500</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Announcements

<table>
<thead>
<tr>
<th>Announcement Date</th>
<th>U.S.</th>
<th>INT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Announcement Date</td>
<td>7/31/87</td>
<td>7/31/87</td>
</tr>
<tr>
<td>FCS</td>
<td>8/31/87</td>
<td>8/31/87</td>
</tr>
<tr>
<td>Volume</td>
<td>9/30/87</td>
<td>9/30/87</td>
</tr>
</tbody>
</table>
The customer has no further problems with "hangs" since work was performed on 7/28. It would appear that the items that we corrected at that time have taken care of the problem. It would appear that we are ready to close this call if there are no objections. M Barnes.

The customer has informed the CE that since we performed our work on 4/28 they have had NO hangs on their DS cabinet or CPU. The system was hanging 3 to 5 times per week. We will monitor this site to make sure customer resolves his power problems. We would like to keep this call open till 8/25.

We took system and checked each DS/CS/Micro apart. We had to upgrade EVERY
PROBLEM NUMBER: C41W352004 CUST NAME: CH DEAN & ASSOCIATES INC
PRIORITY: P2 CUST NUMBER: 00 00000358135

210-7715 and 210-8824 in each system. We also found power supplies with
excess ripple in the DS that has been hanging (VGI416) and in the micro that
has had the most hangs (VL3174) We checked the customers power for every out-
let that had Wang equipment on it. The customer has a major problem with
excessive voltage between neutral and ground and neutral to ground shorts.
The customer was given a list of these outlets and he will correct.

ASSIGNED: BAHIA MICHAEL E DATE: 07/21/89 TIME: 11:46
UPDATE ACKNOWLEDGED. MIKEB

ASSIGNED: BARNES MARSHALL E DATE: 07/18/89 TIME: 09:36
Customer has delayed giving the system up until 7/27. We now have all update
proms for the DS cab. and updated 210-7715 for the CPU's.

ASSIGNED: BARNES MARSHALL E DATE: 07/13/89 TIME: 13:29
Went on site 7/12/89, found problems with down-rev 210-7715 boards. found
problems with power connection to cpu and workstation. found bad/no connection
on cables between DS cab. and cpu's. will take entire sys. 7/19 to correct
the balance of problem.

ASSIGNED: BARNES MARSHALL E DATE: 07/13/89 TIME: 13:09
Picking up problem from Joe Heal.

ASSIGNED: HEAL JOSEPH H DATE: 12/18/87 TIME: 10:45

ASSIGNED: HEAL JOSEPH H DATE: 12/18/87 TIME: 10:45
CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.

>>> START OF OLD TAC DATA <<<

12/18/87 CUSTOMER SITUATION IS GETTING HOT! THEY WILL BE
WILLING TO BE "BETA" FOR ANYTHING THAT MAY HELP
WITH THIS PROBLEM. CUST IS CURRENTLY A BETA SITE
FOR 3.1 SOFTWARE. THIS WAS AN H.O. REQUEST TO
ESCALATE THIS CALL VIA REGIONAL TAC SYSTEM.
REGION ACCEPTED AND SENT TO H.O. FOR
DISPOSITION. JOE HEAL/MIKE WASIELEWSKI

&! UPDATE QUEUED TO FIELD OFFICE
*CALL SUCCESSFULLY SENT TO HOST SYSTEM
$12/18/87: HAVE REQUESTED CE VERIFY PROBLEM ALSO OCCURS W/ A
$ SUPPORTED O/S SUCH AS 3.0. IF HAPPENS W/ 3.0 CE TO
$. TEST MUX'S W/ SORT PROGRAM GIVEN & IF THAT ALSO
$ Fails will run test on standard controller.
$ Requested this done over phone w/ CE on 12/17. All
$ Testing must be done w/ supported O/S. MIKEB
$ $12/22/87: CE called in. Has 1 MUX that seems to pass test &
$
$ Assigned: HEAL JOSEPH H Date: 12/18/87 Time: 10:45
$ Converted TAC data located on the detail screen.
$ 1 failing. Will test 3rd brd. must test w/ 3.0.
$ Will try to get 1 or 2 beta brds as needed. Wait-
$ ing for test results. MIKEB
$ $12/30/87: CE called in. Retested MUX. 1 brd failed on 3rd
$ pass & 2nd on 4th pass w/ O/S 3.0. No prob w/
$ straight controller. Requested 2 brds sent in.
$ Hopefully will have something next week to send
$ out. MIKEB
$ $1/14/88: Still waiting for brds to be sent in from field.
$ Need brds to have something to update. Testing out
$ beta brds now just rcv'd from R&D but need brds
$ from field. Please send 2 brds asap. MIKEB
$ $1/14/88: Both brds failed testing. Still waiting for brds.
$ Please send brds in for updating. Called CE to
$ give status & again request brds be sent in. CE
$ was told by his BM, JC of new products would be
$ sending the cust 2 2275 MUX & 1 to CE. Unaware of
$
$ Assigned: HEAL JOSEPH H Date: 12/18/87 Time: 10:45
$ Converted TAC data located on the detail screen.
$ JC sending any brds. Will find out status in AM as
$ JC gone for day. MIKEB
$ $1/15/88: Talked w/ JC. JC had talked w/ BM concerning beta
$ testing the 8 MEG CPU BRDS at CH DEAN, NOT THE
$ 2275 MUX. Called BM & explained situation. MIKEB
$ $1/18/88: Have new beta MUX brds. Had been testing all day
$ OK, but while away got error on 1 BRD. Will run
$ test overnite to insure don't have problem &
$ should be shipping out tomorrow. Call BM w/
$ status. Will call tomorrow to verify shipment.
$ MIKEB
$ $1/19/88: 2 new beta brds (TEST23 & TEST24) sent out fed
$ Xpress this PM, Airbill # 475253371. Test23 ran 99
PROBLEM NUMBER: C41W352004 CUSTOMER ACCOUNT DETAIL REPORT

PRIORITY: P2 CUST NUMBER: 00 00000358135

$ ERROR FREE PASSES SINCE MONDAY & TEST24 234 PASSES
$ THEN ANOTHER 79 AFTER AN ERROR OF UNDETERMINED
$ CAUSE OCCURRED. PLEASE UPDATE AS SOON AS BRDS
$ INSTALLED & USE MUXTEST TO VERIFY GOOD AT INSTALL.

ASSIGNED: HEAL JOSEPH H DATE: 12/18/87 TIME: 10:45
CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.
$ STILL WAITING FOR BRDS TO BE RETURNED. NEED IMMEDIATELY TO HAVE MORE BRDS TO UPDATE. MIKEB
$2/10/88: RCV'D 2 BRDS BACK FROM FIELD. WHAT IS STATUS OF
$ THIS CST? IS SITE RUNNING ERROR-FREE? MIKEB
&03/30/88: I'M SURPRISED THIS CALL HAS NOT BEEN CLOSED. JOE
& HEAL SAYS ACCORDING TO THE CE, LOCKUPS ARE STILL
& OCCURRING AS OF 3/21 & CE WAITING ON MORE DETAILS
& REGARDING WHEN PROBLEM OCCURS (IT'S INTERMITTENT).
& CST IS BEING VERY COOPERATIVE AND IS GATHERING
& AS MUCH INFO AS THEY CAN FOR US. IF THERE ARE NO
& ADDITIONAL UPDATES IN THIS CALL BY 4/9/88, PLEASE
& CLOSE! (HEAL/MCMENEMY)
$3/30/88: ARE THE BETA BRDS WORKING PROPERLY. IF THERE ARE
$ PROBLEMS W/ THE BETA BRDS THEY MUST BE COMMUNICATED.
$ MIKEB
$4/4/88: HAS 1 CS THAT HANGS THE SYSTEM A FEW TIMES A DAY
$ WHEN CLEARING MESSAGES TO 1 PARTICULAR DS. THIS

ASSIGNED: HEAL JOSEPH H DATE: 12/18/87 TIME: 10:45
CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.
$ CPU IS A SLAVE ON THIS DS & SEEMS TO WORK FINE TO
$ A DS IT IS MASTER TO. CE GOING ON SITE TOMORROW.
$ WILL MAKE THE FAILING CPU THE MASTER H/ PROBLEM
$ DS. TO CLEAR MESSAGES A GIO STATEMENT IS USED.
$ WHICH HOGS & UNHOGS DS. CE WILL ALSO GET GIO
$ STATEMENT AS THERE COULD BE A S/W PROB. MIKE
&04/22/88: I WENT ON SITE WITH STEVE WRIGHT AND JOHN PERDUE
& THE FIRST THING WE DID WAS RE-RUTE THE AC POWER
& CORDS AND ARRANGE THEM SO THAT EACH CS WAS PLUGED
& IN WITH A DS. 2ND FOUND THAT CS3 WAS FAILING THE
& MOST AND ALSO CS5 FAILED OASSIONALLY IN MP. CS3
& AND CS5 WERE BOTH PLUGGED INTO THE SAME 2275. MUXE
& SO WE MOVED CS3 TO WHERE CS4 WAS CONNECTED.
PRIORITY: P2

3RD WE CHECKED REV'S ON THE CS AND MICRO'S ALSO WE
MOVED THE DISK CONTROLLER IN CS3 FROM SLOT 8 TO
SLOT 4 CLOSER TO THE CPU. ON 4/29/88 RECEIVED A
CALL FROM JOHN PERDUE AND HE SAID THAT CS4 HAD A

ASSIGNED: HEAL JOSEPH H
DATE: 12/18/87
TIME: 10:45

CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.
&
& HANG ON 4/27/88 WHILE IN WP. WE ARE GOING TO MOVE
& CS4 TO A SPARE SLOT ON THE OTHER 2275 MUX. I
& THINK THAT THE CUSTOMER IS PUSHING THE LIMITS OF
& THE 2275 MUX'S MUXE. THEY JUST ADDED THE 7TH CS
& AND THE 6TH DS TO THERE SYSTEM. THE 2275 MUXE HAS
& BEEN REPLACED EARLIER BUT I WILL REPLACE IT AGAIN
& IF THE PROBLEM STAYS WITH THE PORT. (J.HEAL)

$4/29/88: UPDATE ACKNOWLEDGED. HOW BUSY THE MUX IS SHOULD
NOT PRESENT A PROBLEM OTHER THAN SLOW DOWN ACCESS
TIME. THIS MUX SET UP IS DESIGNED TO SUPPORT UP TO
16 CPU'S WHICH COULD HAVE 16 H/S'S EACH ALTHOUGH
THAT IS NOT A LIKELY SETUP. INSURE CUSTOMER DOCS-
MENTS EA PROBLEM AS DETAILED AS POSSIBLE. LOOKS
LIKE A FLAKY MUX EXT WHICH WAS ASSOCIATED W/ CS3
& CS5 & NOW HAS CS4 ATTACHED. MIKEB

$5/09/88: I WILL BE GOING TO C.H. DEAN AND WILL LET YOU KNOW
WHAT WE DO. PROBABLY WE WILL CHANGE THE 2275 E.

ASSIGNED: HEAL JOSEPH H
DATE: 12/18/87
TIME: 10:45

CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.

$ IF WE HAVE ONE AVAILABLE BY 5/12/88.

$5/13/88: SPOKE W/ JOE HEAL. MOVED CS4 TO AN OPEN PORT ON
 THE 2275MUX YESTERDAY & NO PROB SINCE. CS3 & CS4
 ARE BOTH NOW ATTACHED TO THE 2275MUX BUT CS5 IS
 STILL ATTACHED TO THE MUX EXT BUT HASN'T FAILED
 RECENTLY. LOOKS LIKE THAT 1 PORT IS DEFINITELY BAD
 & SHOULD BE MARKED. BRD IS TO BE REPLACED IN NEAR
 FUTURE. MIKEB

$5/31/88: STATUS PLEASE. HAS MUX EXT BEEN REPLACED? MIKEB

$6/24/88: PLEASE UPDATE. HAS MUX EXT BEEN REPLACED? MIKEB

$6/29/88: CE SW LEFT COMPANY. CUST STILL EXPERIENCING

$ INTERMITTENT PROBLEMS ONCE OR TWICE A WEEK WHICH
 THEY SEEM TO BE LIVING WITH. THIS PROBLEM SHOULD
PROBLEM TRACKING AND REPORTING

CUSTOMER ACCOUNT DETAIL REPORT

SELECTED CRITERIA

- PTR NUMBER: C41W352004
- START: C41W352004
- END: C41W352004
- PRIORITY: ALL
- PROBLEM TYPE: ALL
- RDB: ALL
- ASSIGNED RDB: ALL
- CUST RDB: ALL
- ORIG RDB: ALL
- HW/SW INDICATOR: ALL
- STATUS TYPE: 0
- STATUS CODE: ALL

PROBLEM NUMBER: C41W352004
CUST NAME: CH DEAN & ASSOCIATES INC
PRIORITY: P2
CUST NUMBER: 00 0000358135

$ BE RESOLVED. NEED TO HAVE CUST DOCUMENT EXACTLY
$ WHAT HAPPENS WHEN FAILS, TERM, CPU, & DS INVOLVED.
$ WITH THIS INFO, AFTER A FEW ERRORS WE SHOULD HAVE
$ A GOOD IDEA WHERE THE PROBLEM IS. TALKED W/ BM &

ASSIGNED: HEAL JOSEPH H
DATE: 12/18/87
TIME: 10:45

CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.
$ HE WILL FOLLOWUP ON THIS. MIKEB
$ 7/7/88: LEFT MESSAGE AT OFFICE FOR DTS TO CALL ME. NEED
$ STATUS. MIKEB
$ 7/7/88: DTS CALLED IN. ALL ERRORS SEEMED TO BE ASSOCIATED
$ W/ CS5 GOING THRU A SPECIFIC MUX EXTENDER PORT.
$ THIS WAS THE SAME EXTENDER BRD WITH THE BAD PORT
$ THAT CS4 WAS FAILING WITH. WHEN CS4 WAS MOVED TO
$ ANOTHER PORT THE PROBLEMS W/ CS5 SEEMED TO GO
$ AWAY, BUT IT IS NOW FAILING AGAIN. REPLACED MUX
$ EXT YESTERDAY & MONITORING. MIKEB
$ 7/21/88: STATUS PLEASE? CALLED DTS' OFFICE & LEFT MESSAGE
$ TO CALL. MIKEB
$ 7/21/88: DTS CALLED BACK & LEFT MESSAGE. BOTH CP4 & CP5
$ HUNG TWICE THIS WEEK. 1ST PROBLEMS SINCE REPLACING
$ MUX EXT A FEW WEEKS BACK. DTS TO GET DETAILS FROM
$ CE. COULD THESE PROBLEMS HAVE BEEN WEATHER
$ RELATED? MIKEB

ASSIGNED: HEAL JOSEPH H
DATE: 12/18/87
TIME: 10:45

CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.
$ 8/16/88: UPDATE PLEASE. WHAT IS PRESENT STATUS? MIKEB
$ 8/31/88: PLEASE UPDATE? WHAT IS CURRENT STATUS? MIKEB
$ 9/8/88: CALLED DTS'S OFFICE & LEFT MESSAGE FOR HIM TO CALL
$ ME DIRECT. MIKEB
$ 9/13/88: CALLED DTS. CUST HAS NOT BEEN COMPLAINING ALTHOUGH
$ STILL HANGING A COUPLE TIMES A WEEK. WAS UNDER
$ IMPRESSION CUST DEALING DIRECT W/ WANG & BEING
$ TAKEN CARE OF. TO IS CUST CONTACT BELIEVE. STILL
$ NEED TO ISOLATE H/W. LEFT MESSAGE FOR TO TO CALL
$ ME. DTS TO CHECK W/ CUST TO FIND OUT CURRENT
$ SITUATION. CUST NOW HAS 7 CPU'S & 6 DS'S ALL
$ MUX'D. BELIEVE PROB ONLY W/ 1 OR 2 CPU'S. CUST IS
$ DOCUMENTING PROB SO SHOULD BE ABLE TO ISOLATE PROB
PROBLEM NUMBER: C41W352004 CUSTOMER ACCOUNT DETAIL REPORT

PROBLEM TYPE: ALL
RDB - ASSIGN RDB: ALL CUST RDB: ALL
HW/SW INDICATOR: ALL
STATUS TYPE: 0
STATUS CODE: ALL

PROBLEM NUMBER: C41W352004 CUSTOMER NAME: CH DEAN & ASSOCIATES INC

$ IF ONLY 1 OR 2 CPU'S FAILING. DTS TO FIND OUT
$ SITUATION & CALL BACK. MIKEB
$9/13/88: DTS CALLED BACK. TALKED W/ CUST. GOING ON SITE END
$ OF NEXT WEEK. PROBLEMS SEEM CONFINED TO CS5 & CS7

ASSIGNED: HEAL JOSEPH H DATE: 12/18/87 TIME: 10:45
CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.
$ ONLY & JUST 1 TERMINAL ON 1. DTS TO INSPECT SYSTEM
$ FOR CABLES, GROUNDING, E-REV'S ON MUX BRDS. WILL
$ TRY TO ISOLATE BY SNIPPING ASSY BETWEEN WORKING &
$ FAILING SETUPS. MIKEB
&10/06/88: I WILL BE GOING TO THE CUSTOMER TOMORROW AND LET
YOU KNOW WHAT WE GET DONE. (J.HEAL)
&10/11/88: REPLACED A LOT OF SHORT SCREWS IN SEVERAL CONTROL
& ERS. NOTED HANGS & NOTED PHYSICAL LOC OF I/O PCB'S
& THE CUSTOMER WILL LET US HAVE THE SYSTEM FOR ABOUT
& 2 HOURS. WE ARE GOING TO WORK ON CS 7 & CS 5
& AND D.S. 3. CHECK RIPPLE IN ALL 3 UNITS AND
& CONNECTOR CONTACTS. ALSO GOING TO MOVE THE MXXE'S
& CLOSER TO THE CPU AND MAYBE MOVE SOME WORKSTATION
& AROUND DEPENDING ON THEIR ERROR LOG. (HEAL)
$10/13/88: CE TO CK THAT ALL I/O'S ARE SCREWED INTO PLACE.
$ TALKED ABOUT RIPPLE ON 5,12 AND -12V -ALSO TO CK

ASSIGNED: HEAL JOSEPH H DATE: 12/18/87 TIME: 10:45
CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.
$ MOLEX CONNECTORS MAKING SURE ALL WIRES ARE LOCKED
$ INTO PLACE. WILL KEEP US INFORMED JOE S
$10/24/88: CALLED DTS'S OFFICE & LEFT MESSAGE TO CALL. MIKEB
$10/26/88: DTS CALLED IN. ON SITE YESTERDAY. SINCE SEPTEMBER
$ 1ST THERE HAVE BEEN 8 HANGS ON CP7 (RECENTLY
$ ADDED), 7 ON CP5, & 1 ON CP4 ALL W/ DS 330. DS 330
$ IS THE MOST HEAVILY USED & MOST LIKELY THAT IS WHY
$ THE FAILURES OOF HERE. ALSO W/S 3 ON CP7 & W/S 4
$ ON CP5 SEEM TO BE THE BIG CULPRITS BUT AGAIN IT
$ MAY BE BECAUSE OF THEIR INTENSIVE USE OF DISK AS
$ THEY ARE CONSTANTLY USED FOR WP. YESTERDAY ALL
$ CONTROLLERS WERE MOVED UP NEXT TO THE CPU BRDS &
$ CABLES WERE SECURELY CONNECTED & GROUNDED. IF PROB
PROBLEM NUMBER: C41W352004 CUSTOM NUMBER: 00 0000358335

$ $ $ $ $ $ $ $ PERSISTS WILL SNAP OUT W/S. ALSO SUGGESTED ISOLATING PHYSICAL LOCATION. IF PROBS CONTINUE WANT $ $ $ $ $ $ $ $ ENTIRE CPU W/ I/O CONTROLLERS SWAPPED W/ WORKING CPU AT SITE. CUST ALSO HAS SOME TYPE OF ROTARY SW

ASSIGNED: HEAL JOSEPH H DATE: 12/18/87 TIME: 10:45

CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.
$ $ $ $ $ $ $ $ THIS SW IS NOT A SUPPORTED FEATURE. MIKEB

$10/31/88: WENT BACK ON SITE END OF LAST WEEK. STILL FAILING MOSTLY W/ W/S 3 ON CP7 TO DS330. MOVED THE 2275MUX & THE MUX EXT FOR DS3 FROM CP2 TO CP5. ALSO SWAPPED W/S 3 W/ A WORKING W/S & WHEN FAILED AGAIN PUT IT ON PORT 2 BUT STILL FAILED. WILL BE GOING BACK THIS WEEK TO SWAP THE MUX MASTER FOR DS 330 W/ 1 THAT HAS NOT FAILED & TO MOVE CP7 FROM THE MUX EXTENDER FOR DS 3 TO THE NEW MASTER. WILL ALSO LOOK INTO THE CABLE FOR THE W/S TO SEE IF ROUTED THRU ANY PROBLEM AREAS. ALSO FOUND 40 MILV RIPPLE ON -12V ON DS3 & REPLACED THE PS. RIPPLE NOW AT 7 MILV. ALSO REPLACED THE DATA CABLE TO DS3. MIKEB

$11/1/88: DTS CALLED IN. TODAY THEY MOVED DS3 FROM THE 3RD PORT ON THE MUX EXT TO THE 1ST PORT ON THE MASTER. HAD REQUESTED THE DTS SNAP THE MUX MASTER PREV-

ASSIGNED: HEAL JOSEPH H DATE: 12/18/87 TIME: 10:45

CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.

$ $ $ $ $ $ $ $ USUSL W/ A WORKING MUX MASTER BUT THIS WILL NOW BE DONE ON THE NEXT TRIP. MOST FREQUENT FAILING USER (W/S 3/CP7) HAS ALSO BEEN ASKED TO TRY WORKING FROM A DIFFERENT W/S TO ISOLATE ENVIRONMENT & WILL TRY TO COMPLY. MIKEB

$12/8/88: STATUS PLEASE. WHAT'S CURRENTLY HAPPENING HERE?

$12/9/88: IN THE LAST FEW WEEKS PROBLEMS SEEM TO BE ISOLATED TO W/S 7 ON CPU INTERMITTENTLY HANGING & SEVERAL HANGS & I90'S TO DS3 FROM CPU'S 1, 3 & 4. HAS SWAPPED PORTS, MUX BRDS, & W/S'S, FOR THE W/S PROB & THE PROB DID NOT MOVE. HAD OPERATOR USE ANOTHER W/S & NO PROB. APPEARS TO HAVE BAD CABLE. FOR THE
PROBLEM NUMBER: C41W352004
CUST NAME: CH DEAN & ASSOCIATES INC
CUST NUMBER: 0 00000358135

$ DS3 PROB, CPU'S 3 & 4 ARE ON THE 2275 MUXMASTER & HW/SW INDICATOR: ALL
$ CPU 1 ON THE SLAVE WILL SNAP OUT THE MUXMASTER & HW/SW INDICATOR: ALL
$ EXISTING WORKING 1 & PUT CPU 1 ON ANOTHER PORT. MB: CH DEAN & ASSOCIATES INC $/1/12/89: STATUS PLEASE. ARE WE WORKING ON THIS? MIKEB:

ASSIGNED: HEAL JOSEPH H
CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.

$1/23/89: THIS IS SUPPOSE TO BE AN ESCALATED CALL. IT IS NOW
13 MONTHS OLD & THE ONLY MUX SITE EXPERIENCING
PROBLEMS THAT HAS NOT BEEN RESOLVED. IF A RESPONSE
IS NOT FORTH COMING A CALL WILL NEED TO BE MADE TO
THE REGION. AT ANOTHER SITE THE SW SETTINGS ON THE
MUX EXPANDER BRDS WERE ALL SET TO OFF & THIS
CAUSED VERY INTERMITTENT ERRORS. PLEASE CHECK THE
SW SETTINGS & LET ME KNOW WHAT WAS FOUND. SW SET-
TINGS SHOULD BE: 1 ON ONLY ON 1 ST MUX EXTENDER.
4 ON ONLY ON THE 2 ND MUX EXTENDER.
ALL OFF ON 3 RD MUX EXTENDER.

&02/06/89: WENT TO CH DEAN AND INSTALLED A LINE MONITOR.
& TEMP/HUM GUAGE. CHECKED OUT 9 OF THE WORKSTATIONS
& THAT WERE HANGING. FOUND GROUNDS TO BE GOOD ON ALL
& WORKSTATIONS BUT 3 NEEDED THERE VOLTAGE AJD
& USTED. THE MAIN TERMINAL CPU 1 TERM-1 IS A 2436
& WITH R 0101 PROM & 8577 B RO. THIS IS TERMINAL 1 ON
& THE MUX-E.

ASSIGNED: HEAL JOSEPH H
CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.

$2/10/89: PLEASE RESEND LAST UPDATE. ONLY A PORTION OF THE
$ OF THE UPDATE WAS RCVD.

&02/14/89: MIKE I HOPE THIS WORKS. IF YOU DON'T GET THE
UPDATE, CALL ME. MICHAEL KIRCHGESSNER-513/786-8112

$ EXTENDER (8825) BD BE CHECKED. WHERE IS THAT RESPONSE?
$ WHAT ARE THE SWITCH SETTINGS TO?

$2/22/89: 3 RD REQUEST FOR SWITCH SETTINGS STATING ON 2/17/89
$ AND 1/89 - WHY CAN'T WE GET AN ANSWER ON THIS? JOE S.
$3/2/89: PLEASE UPDATE. HAVE SW SETTINGS BEEN CHECKED? MB
$3/7/89: PLEASE RESPOND. WHAT IS HAPPENING? THIS CALL IS
ESCALATED. LET'S GET THIS FINISHED. HAVE THE SW
SETTINGS BEEN CORRECTED? MIKEB

ASSIGNED: HEAL JOSEPH H. DATE: 12/16/87 TIME: 10:45
CONVERTED TAC DATA LOCATED ON THE DETAIL SCREEN.

RESOLUTION TEXT: BAHIA MICHAEL E DATE: 08/18/89 TIME: 08:58
HC 160 IN CLOSING - THIS CUSTOMERS HANGS SEEM TO BE UNDER CONTROL.
YES, WE CAN CLOSE THIS CALL. ANY OUTSTANDING PROBS ON WORKSTATIONS
(2536DH) AND PRINTERS WILL CONTINUE TO BE HANDLED ON CALL C610001445

Joe S.

No problem after securely connecting all cables, updating all Telev's & 8824's
to latest e-rev's, 10 & 4 respectively. Also had ripple prob w/ps in most
frequently used MicroVP & w/1 DS. Sys has not hung since these correc-
tions were made although power problem were identified on several outlets where
voltage between neutral & ground was too high. Customer to correct. DTS in
training. Back after Labor Day.